
1 Special relativity

1.1 Fundamenta l p r inc ip les of spec ia l re lat i v i ty (SR)
theory

The way in which special relativity is taught at an elementary undergraduate level – the
level at which the reader is assumed competent – is usually close in spirit to the way it was
first understood by physicists. This is an algebraic approach, based on the Lorentz transfor-
mation (§ 1.7 below). At this basic level, we learn how to use the Lorentz transformation to
convert between one observer’s measurements and another’s, to verify and understand such
remarkable phenomena as time dilation and Lorentz contraction, and to make elementary
calculations of the conversion of mass into energy.

This purely algebraic point of view began to change, to widen, less than four years
after Einstein proposed the theory.1 Minkowski pointed out that it is very helpful to regard
(t, x, y, z) as simply four coordinates in a four-dimensional space which we now call space-
time. This was the beginning of the geometrical point of view, which led directly to general
relativity in 1914–16. It is this geometrical point of view on special relativity which we
must study before all else.

As we shall see, special relativity can be deduced from two fundamental postulates:

(1) Principle of relativity (Galileo): No experiment can measure the absolute velocity of
an observer; the results of any experiment performed by an observer do not depend on
his speed relative to other observers who are not involved in the experiment.

(2) Universality of the speed of light (Einstein): The speed of light relative to any unac-
celerated observer is c = 3 × 108 m s−1, regardless of the motion of the light’s source
relative to the observer. Let us be quite clear about this postulate’s meaning: two differ-
ent unaccelerated observers measuring the speed of the same photon will each find it to
be moving at 3 × 108 m s−1 relative to themselves, regardless of their state of motion
relative to each other.

As noted above, the principle of relativity is not at all a modern concept; it goes back
all the way to Galileo’s hypothesis that a body in a state of uniform motion remains in that
state unless acted upon by some external agency. It is fully embodied in Newton’s second

1 Einstein’s original paper was published in 1905, while Minkowski’s discussion of the geometry of spacetime
was given in 1908. Einstein’s and Minkowski’s papers are reprinted (in English translation) in The Principle of
Relativity by A. Einstein, H. A. Lorentz, H. Minkowski, and H. Weyl (Dover).
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2 Special relativity
�

law, which contains only accelerations, not velocities themselves. Newton’s laws are, in
fact, all invariant under the replacement

v(t) → v′(t) = v(t) − V,

where V is any constant velocity. This equation says that a velocity v(t) relative to one
observer becomes v′(t) when measured by a second observer whose velocity relative to the
first is V. This is called the Galilean law of addition of velocities.

By saying that Newton’s laws are invariant under the Galilean law of addition of veloc-
ities, we are making a statement of a sort we will often make in our study of relativity,
so it is well to start by making it very precise. Newton’s first law, that a body moves at a
constant velocity in the absence of external forces, is unaffected by the replacement above,
since if v(t) is really a constant, say v0, then the new velocity v0 − V is also a constant.
Newton’s second law

F = ma = m dv/d t,

is also unaffected, since

a′ = dv′/d t = d(v − V)/d t = dv/d t = a.

Therefore, the second law will be valid according to the measurements of both observers,
provided that we add to the Galilean transformation law the statement that F and m are
themselves invariant, i.e. the same regardless of which of the two observers measures them.
Newton’s third law, that the force exerted by one body on another is equal and opposite to
that exerted by the second on the first, is clearly unaffected by the change of observers,
again because we assume the forces to be invariant.

So there is no absolute velocity. Is there an absolute acceleration? Newton argued that
there was. Suppose, for example, that I am in a train on a perfectly smooth track,2 eating a
bowl of soup in the dining car. Then, if the train moves at constant speed, the soup remains
level, thereby offering me no information about what my speed is. But, if the train changes
its speed, then the soup climbs up one side of the bowl, and I can tell by looking at it how
large and in what direction the acceleration is.3

Therefore, it is reasonable and useful to single out a class of preferred observers: those
who are unaccelerated. They are called inertial observers, and each one has a constant
velocity with respect to any other one. These inertial observers are fundamental in spe-
cial relativity, and when we use the term ‘observer’ from now on we will mean an inertial
observer.

The postulate of the universality of the speed of light was Einstein’s great and radical
contribution to relativity. It smashes the Galilean law of addition of velocities because it
says that if v has magnitude c, then so does v′, regardless of V. The earliest direct evidence
for this postulate was the Michelson–Morely experiment, although it is not clear whether
Einstein himself was influenced by it. The counter-intuitive predictions of special relativity
all flow from this postulate, and they are amply confirmed by experiment. In fact it is
probably fair to say that special relativity has a firmer experimental basis than any other of

2 Physicists frequently have to make such idealizations, which often are far removed from common experience !
3 For Newton’s discussion of this point, see the excerpt from his Principia in Williams (1968).
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�

our laws of physics, since it is tested every day in all the giant particle accelerators, which
send particles nearly to the speed of light.

Although the concept of relativity is old, it is customary to refer to Einstein’s theory sim-
ply as ‘relativity’. The adjective ‘special’ is applied in order to distinguish it from Einstein’s
theory of gravitation, which acquired the name ‘general relativity’ because it permits us to
describe physics from the point of view of both accelerated and inertial observers and is
in that respect a more general form of relativity. But the real physical distinction between
these two theories is that special relativity (SR) is capable of describing physics only in
the absence of gravitational fields, while general relativity (GR) extends SR to describe
gravitation itself.4 We can only wish that an earlier generation of physicists had chosen
more appropriate names for these theories !

1.2 Defin i t ion of an iner t ia l observer in SR

It is important to realize that an ‘observer’ is in fact a huge information-gathering system,
not simply one man with binoculars. In fact, we shall remove the human element entirely
from our definition, and say that an inertial observer is simply a coordinate system for
spacetime, which makes an observation simply by recording the location (x, y, z) and time
(t) of any event. This coordinate system must satisfy the following three properties to be
called inertial:

(1) The distance between point P1 (coordinates x1, y1, z1) and point P2 (coordinates
x2, y2, z2) is independent of time.

(2) The clocks that sit at every point ticking off the time coordinate t are synchronized and
all run at the same rate.

(3) The geometry of space at any constant time t is Euclidean.

Notice that this definition does not mention whether the observer accelerates or not.
That will come later. It will turn out that only an unaccelerated observer can keep his
clocks synchronized. But we prefer to start out with this geometrical definition of an inertial
observer. It is a matter for experiment to decide whether such an observer can exist: it is not
self-evident that any of these properties must be realizable, although we would probably
expect a ‘nice’ universe to permit them! However, we will see later in the course that a
gravitational field does generally make it impossible to construct such a coordinate system,
and this is why GR is required. But let us not get ahead of the story. At the moment
we are assuming that we can construct such a coordinate system (that, if you like, the
gravitational fields around us are so weak that they do not really matter). We can envision
this coordinate system, rather fancifully, as a lattice of rigid rods filling space, with a clock
at every intersection of the rods. Some convenient system, such as a collection of GPS

4 It is easy to see that gravitational fields cause problems for SR. If an astronaut in orbit about Earth holds a
bowl of soup, does the soup climb up the side of the bowl in response to the gravitational ‘force’ that holds
the spacecraft in orbit? Two astronauts in different orbits accelerate relative to one another, but neither feels
an acceleration. Problems like this make gravity special, and we will have to wait until Ch. 5 to resolve them.
Until then, the word ‘force’ will refer to a nongravitational force.
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�

satellites and receivers, is used to ensure that all the clocks are synchronized. The clocks
are supposed to be very densely spaced, so that there is a clock next to every event of
interest, ready to record its time of occurrence without any delay. We shall now define how
we use this coordinate system to make observations.

An observation made by the inertial observer is the act of assigning to any event the
coordinates x, y, z of the location of its occurrence, and the time read by the clock at
(x, y, z) when the event occurred. It is not the time t on the wrist watch worn by a scientist
located at (0, 0, 0) when he first learns of the event. A visual observation is of this second
type: the eye regards as simultaneous all events it sees at the same time; an inertial observer
regards as simultaneous all events that occur at the same time as recorded by the clock
nearest them when the events occurred. This distinction is important and must be borne
in mind. Sometimes we will say ‘an observer sees . . .’ but this will only be shorthand for
‘measures’. We will never mean a visual observation unless we say so explicitly.

An inertial observer is also called an inertial reference frame, which we will often
abbreviate to ‘reference frame’ or simply ‘frame’.

1.3 New uni t s

Since the speed of light c is so fundamental, we shall from now on adopt a new system of
units for measurements in which c simply has the value 1! It is perfectly okay for slow-
moving creatures like engineers to be content with the SI units: m, s, kg. But it seems silly
in SR to use units in which the fundamental constant c has the ridiculous value 3 × 108.
The SI units evolved historically. Meters and seconds are not fundamental; they are simply
convenient for human use. What we shall now do is adopt a new unit for time, the meter.
One meter of time is the time it takes light to travel one meter. (You are probably more
familiar with an alternative approach: a year of distance – called a ‘light year’ – is the
distance light travels in one year.) The speed of light in these units is:

c = distance light travels in any given time interval

the given time interval

= 1 m

the time it takes light to travel one meter

= 1 m

1 m
= 1.

So if we consistently measure time in meters, then c is not merely 1, it is also dimension-
less! In converting from SI units to these ‘natural’ units, we can use any of the following
relations:

3 × 108 m s−1 = 1,

1 s = 3 × 108 m,

1 m = 1

3 × 108
s.
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The SI units contain many ‘derived’ units, such as joules and newtons, which are defined
in terms of the basic three: m, s, kg. By converting from s to m these units simplify consid-
erably: energy and momentum are measured in kg, acceleration in m−1, force in kg m−1,
etc. Do the exercises on this. With practice, these units will seem as natural to you as they
do to most modern theoretical physicists.

1.4 Spacet ime d iagrams

A very important part of learning the geometrical approach to SR is mastering the space-
time diagram. In the rest of this chapter we will derive SR from its postulates by using
spacetime diagrams, because they provide a very powerful guide for threading our way
among the many pitfalls SR presents to the beginner. Fig. 1.1 below shows a two-
dimensional slice of spacetime, the t − x plane, in which are illustrated the basic concepts.
A single point in this space5 is a point of fixed x and fixed t, and is called an event. A
line in the space gives a relation x = x(t), and so can represent the position of a parti-
cle at different times. This is called the particle’s world line. Its slope is related to its
velocity,

slope = d t/dx = 1/v.

Notice that a light ray (photon) always travels on a 45◦ line in this diagram.

x (m)

t
(m)

Accelerated
world line

World line of light, v = 1

World line of particle moving at
speed |v| < 1

World line with velocity v > 1

An event

�Figure 1.1 A spacetime diagram in natural units.

5 We use the word ‘space’ in a more general way than you may be used to. We do not mean a Euclidean space in
which Euclidean distances are necessarily physically meaningful. Rather, we mean just that it is a set of points
that is continuous (rather than discrete, as a lattice is). This is the first example of what we will define in Ch. 5
to be a ‘manifold’.
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�

We shall adopt the following notational conventions:

(1) Events will be denoted by cursive capitals, e.g. A,B,P . However, the letter O is
reserved to denote observers.

(2) The coordinates will be called (t, x, y, z). Any quadruple of numbers like
(5,−3, 2, 1016) denotes an event whose coordinates are t = 5, x = −3, y = 2,
z = 1016. Thus, we always put t first. All coordinates are measured in meters.

(3) It is often convenient to refer to the coordinates (t, x, y, z) as a whole, or to each
indifferently. That is why we give them the alternative names (x0, x1, x2, x3). These
superscripts are not exponents, but just labels, called indices. Thus (x3)2 denotes the
square of coordinate 3 (which is z), not the square of the cube of x. Generically, the
coordinates x0, x1, x2, and x3 are referred to as xα . A Greek index (e.g. α, β, μ, ν) will
be assumed to take a value from the set (0, 1, 2, 3). If α is not given a value, then xα is
any of the four coordinates.

(4) There are occasions when we want to distinguish between t on the one hand and
(x, y, z) on the other. We use Latin indices to refer to the spatial coordinates alone.
Thus a Latin index (e.g. a, b, i, j, k, l) will be assumed to take a value from the set
(1, 2, 3). If i is not given a value, then xi is any of the three spatial coordinates. Our
conventions on the use of Greek and Latin indices are by no means universally used by
physicists. Some books reverse them, using Latin for {0, 1, 2, 3} and Greek for {1, 2, 3};
others use a, b, c, . . . for one set and i, j, k for the other. Students should always check
the conventions used in the work they are reading.

1.5 Const ruc t ion of the coord inates used by
another observer

Since any observer is simply a coordinate system for spacetime, and since all observers
look at the same events (the same spacetime), it should be possible to draw the coordinate
lines of one observer on the spacetime diagram drawn by another observer. To do this we
have to make use of the postulates of SR.

Suppose an observer O uses the coordinates t, x as above, and that another observer Ō,
with coordinates t̄, x̄, is moving with velocity v in the x direction relative to O. Where do
the coordinate axes for t̄ and x̄ go in the spacetime diagram of O?

t̄ axis: This is the locus of events at constant x̄ = 0 (and ȳ = z̄ = 0, too, but we shall
ignore them here), which is the locus of the origin of Ō’s spatial coordinates. This is Ō’s
world line, and it looks like that shown in Fig. 1.2.

x̄ axis: To locate this we make a construction designed to determine the locus of events
at t̄ = 0, i.e. those that Ō measures to be simultaneous with the event t̄ = x̄ = 0.

Consider the picture in Ō’s spacetime diagram, shown in Fig. 1.3. The events on the x̄
axis all have the following property: A light ray emitted at event E from x̄ = 0 at, say, time
t̄ = −a will reach the x̄ axis at x̄ = a (we call this event P); if reflected, it will return to the
point x̄ = 0 at t̄ = +a, called event R. The x̄ axis can be defined, therefore, as the locus of
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7 1.5 Construction of the coordinates used by another observer
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t

t

x

Tangent of this
angle is υ

�Figure 1.2 The time-axis of a frame whose velocity is v.

t

x

a

a

–a

�

�Figure 1.3 Light reflected at a, as measured by Ō.

events that reflect light rays in such a manner that they return to the t̄ axis at +a if they left
it at −a, for any a. Now look at this in the spacetime diagram of O, Fig. 1.4.

We know where the t̄ axis lies, since we constructed it in Fig. 1.2. The events of emis-
sion and reception, t̄ = −a and t̄ = +a, are shown in Fig. 1.4. Since a is arbitrary, it does
not matter where along the negative t̄ axis we place event E , so no assumption need yet
be made about the calibration of the t̄ axis relative to the t axis. All that matters for the
moment is that the event R on the t̄ axis must be as far from the origin as event E . Having
drawn them in Fig. 1.4, we next draw in the same light beam as before, emitted from E ,
and traveling on a 45◦ line in this diagram. The reflected light beam must arrive at R,
so it is the 45◦ line with negative slope through R. The intersection of these two light
beams must be the event of reflection P . This establishes the location of P in our dia-
gram. The line joining it with the origin – the dashed line – must be the x̄ axis: it does
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�Figure 1.4 The reflection in Fig. 1.3, as measured O.

tφ

φ

x

x

t

(a)

t

φ

φ x

x

t

(b)

�Figure 1.5 Spacetime diagrams of O (left) and Ō (right).

not coincide with the x axis. If you compare this diagram with the previous one, you
will see why: in both diagrams light moves on a 45◦ line, while the t and t̄ axes change
slope from one diagram to the other. This is the embodiment of the second fundamental
postulate of SR: that the light beam in question has speed c = 1 (and hence slope= 1)
with respect to every observer. When we apply this to these geometrical constructions we
immediately find that the events simultaneous to Ō (the line t̄ = 0, his x axis) are not simul-
taneous to O (are not parallel to the line t = 0, the x axis). This failure of simultaneity is
inescapable.

The following diagrams (Fig. 1.5) represent the same physical situation. The one on the
left is the spacetime diagram O, in which Ō moves to the right. The one on the right is
drawn from the point of view of Ō, in which O moves to the left. The four angles are all
equal to arc tan |v|, where |v| is the relative speed of O and Ō.
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9 1.6 Invariance of the interval
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1.6 Invar iance of the inte rva l

We have, of course, not quite finished the construction of Ō’s coordinates. We have the
position of his axes but not the length scale along them. We shall find this scale by proving
what is probably the most important theorem of SR, the invariance of the interval.

Consider two events on the world line of the same light beam, such as E and P
in Fig. 1.4. The differences (�t, �x, �y, �z) between the coordinates of E and P in
some frame O satisfy the relation (�x)2 + (�y)2 + (�z)2 − (�t)2 = 0, since the speed
of light is 1. But by the universality of the speed of light, the coordinate differences
between the same two events in the coordinates of Ō(�t̄, �x̄, �ȳ, �z̄) also satisfy
(�x̄)2 + (�ȳ)2 + (�z̄)2 − (�t̄)2 = 0. We shall define the interval between any two events
(not necessarily on the same light beam’s world line) that are separated by coordinate
increments (�t, �x, �y, �z) to be6

�s2 = −(�t)2 + (�x)2 + (�y)2 + (�z)2. (1.1)

It follows that if �s2 = 0 for two events using their coordinates in O, then �s̄2 = 0 for
the same two events using their coordinates in Ō. What does this imply about the relation
between the coordinates of the two frames? To answer this question, we shall assume that
the relation between the coordinates of O and Ō is linear and that we choose their origins
to coincide (i.e. that the events t̄ = x̄ = ȳ = z̄ = 0 and t = x = y = z = 0 are the same).
Then in the expression for �s̄2,

�s̄2 = −(�t̄)2 + (�x̄)2 + (�ȳ)2 + (�z̄)2,

the numbers (�t̄, �x̄, �ȳ, �z̄) are linear combinations of their unbarred counterparts,
which means that �s̄2 is a quadratic function of the unbarred coordinate increments. We
can therefore write

�s̄2 =
3∑

α=0

3∑
β=0

Mαβ (�xα)(�xβ ) (1.2)

for some numbers {Mαβ ; α, β = 0, . . . , 3}, which may be functions of v, the relative
velocity of the two frames. Note that we can suppose that Mαβ = Mβα for all α and β,
since only the sum Mαβ + Mβα ever appears in Eq. (1.2) when α �= β. Now we again
suppose that �s2 = 0, so that from Eq. (1.1) we have

�t = �r, �r = [(�x)2 + (�y)2 + (�z)2]1/2.

6 The student to whom this is new should probably regard the notation �s2 as a single symbol, not as the square
of a quantity �s. Since �s2 can be either positive or negative, it is not convenient to take its square root. Some
authors do, however, call �s2 the ‘squared interval’, reserving the name ‘interval’ for �s = √

(�s2). Note also
that the notation �s2 never means �(s2).
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(We have supposed �t > 0 for convenience.) Putting this into Eq. (1.2) gives

�s̄2 = M00(�r)2 + 2

(
3∑

i=1

M0i�xi

)
�r

+
3∑

i=1

3∑
j=1

Mij�xi�xj. (1.3)

But we have already observed that �s̄2 must vanish if �s2 does, and this must be true for
arbitrary {�xi, i = 1, 2, 3}. It is easy to show (see Exer. 8, § 1.14) that this implies

M0i = 0 i = 1, 2, 3 (1.4a)

and

Mij = −(M00)δij (i, j = 1, 2, 3), (1.4b)

where δij is the Kronecker delta, defined by

δij =
{

1 if i = j,

0 if i �= j.
(1.4c)

From this and Eq. (1.2) we conclude that

�s̄2 = M00[(�t)2 − (�x)2 − (�y)2 − (�z)2].

If we define a function

φ(v) = −M00,

then we have proved the following theorem: The universality of the speed of light implies
that the intervals �s2 and �s̄2 between any two events as computed by different observers
satisfy the relation

�s̄2 = φ(v)�s2. (1.5)

We shall now show that, in fact, φ(v) = 1, which is the statement that the interval is
independent of the observer. The proof of this has two parts. The first part shows that φ(v)
depends only on |v|. Consider a rod which is oriented perpendicular to the velocity v of Ō
relative to O. Suppose the rod is at rest in O, lying on the y axis. In the spacetime diagram
of O (Fig. 1.6), the world lines of its ends are drawn and the region between shaded. It is
easy to see that the square of its length is just the interval between the two events A and B
that are simultaneous in O (at t = 0) and occur at the ends of the rod. This is because, for
these events, (�x)AB = (�z)AB = (�t)AB = 0. Now comes the key point of the first part
of the proof: the events A and B are simultaneous as measured by Ō as well. The reason
is most easily seen by the construction shown in Fig. 1.7, which is the same spacetime
diagram as Fig. 1.6, but in which the world line of a clock in Ō is drawn. This line is
perpendicular to the y axis and parallel to the t − x plane, i.e. parallel to the t̄ axis shown
in Fig. 1.5(a).

Suppose this clock emits light rays at event P which reach events A and B. (Not every
clock can do this, so we have chosen the one clock in Ō which passes through the y axis
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