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Concentration and crowding effects on
protein stability from a coarse-grained
model

jason k. cheung, vincent k. shen, jeffrey
r. errington, and thomas m. truskett

Introduction

Most of what we know about protein folding comes from experiments

on polypeptides in dilute solutions [1–4] or from theoretical models of isolated

proteins in either explicit or implicit solvent [5–12]. However, neither biologi-

cal cells nor protein solutions encountered in biopharmaceutical development

generally classify as dilute. Instead, they are concentrated or “crowded” with

solutes such as proteins, sugars, salts, DNA, and fatty acids [13–15]. How does

this crowding affect native-state protein stability? Are all crowding agents cre-

ated equal? If not, can generic structural or chemical features forecast their

effects?

To investigate these and other related questions with computer simulations

requires models rich enough to capture three parts of the folding problem:

the intrinsic free energy of folding of a protein in solvent, the main structural

features of the native and denatured states, and the connection between protein

structure and effective protein–protein interactions. The model must also be

simple enough to allow for the efficient simulation of hundreds to thousands of

foldable protein molecules in solution, which precludes the use of atomistically

detailed descriptions of either the proteins or the solvent.

We recently developed a coarse-grained modeling strategy that satisfies these

criteria. It is not optimized to describe any specific protein solution. Rather, it

is a general tool for understanding experimental trends regarding how concen-

tration or crowding impact the thermodynamic stability of globular proteins.
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To date, the approach has been used to study how protein concentration affects

the folding transition [16], how solution demixing phase transitions (e.g., liquid–

liquid phase separation) couple to protein denaturation [17], and how surface

anisotropy of the native proteins relates to their unfolding and self-assembly

behaviors in solution [18]. In this chapter, we review the modeling strategy and

some key insights it has produced.

Coarse-grained modeling strategy

Intrinsic protein stability

A two-state protein molecule in a pure solvent has a temperature- and

pressure-dependent thermodynamic preference for either its native (folded)

or denatured (unfolded) form [19–24]. The free energy difference between

these states �G0
f quantifies the driving force for folding in the absence of

protein–protein or protein–solute interactions. It also determines the equilib-

rium probability (1+exp[�G0
f /kBT])−1 associated with observing the native state

in an infinitely dilute solution, where kB is the Boltzmann constant and T is the

temperature.

Interactions that influence this “intrinsic” stability of the native state include,

but are not limited to, intra-protein hydrogen bonding, electrostatics, disulfide

bonds, and London–van der Waals interactions, as well as effective forces due

to excluded volume, chain conformational entropy, and hydrophobic hydra-

tion [25]. Here, we focus exclusively on the last three, since they are relevant

not only to protein folding [26–29] but also to other self-assembly processes

in aqueous solutions [30–32]. Chain conformational entropy and intra-protein

excluded volume interactions favor the more expanded denatured state of a

protein, while the ability to bury hydrophobic residues in a largely water-free

core favors the compact native fold. Intrinsic stability characterizes how these

factors for a protein in the infinitely dilute limit balance at a given temperature

and pressure.

The coarse-grained modeling strategy we review here [16] calculates �G0
f

under the assumption that a foldable protein can be represented as a collapsible

heteropolymer. The effective inter-segment and segment–solvent interactions

of the heteropolymer are chosen to qualitatively reflect the aqueous-phase

solubilities of the amino acid residues in the protein sequence [33, 34].

One advantage of heteropolymer collapse (HPC) models is that they derive

from independently testable principles of polymer physics and hydration

thermodynamics. A second advantage is that their behaviors can often be

predicted by approximate analytical theories or elementary numerical tech-

niques, which allow them to be efficiently incorporated into multiscale
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Protein stability in concentrated and crowded solutions 3

simulation strategies such as the one discussed here. Although HPC theo-

ries are descriptive rather than quantitative in nature, the combination of

their simplicity and their ability to reproduce experimental folding trends

of globular proteins [34] makes them particularly attractive for use in model

calculations.

HPC theories often reflect a balance of structural detail and mathematical

complexity [9, 35–37]. In our preliminary studies, we use a basic, physically

insightful approach introduced by Dill and co-workers [34, 38]. This theory mod-

els each protein of Nr amino acid residues as a heteropolymer of Ns = Nr/1.4

hydrophobic and polar segments. As is explained in Ref. [38], the factor of 1.4

enters due to a lattice treatment of the protein in which the chain is parti-

tioned into cubic polymer segments. The amino acids in a globular protein

can be represented as occupying cubic volumes with an average edge length

of 0.53 nm [38], whereas the separation of α-carbons in an actual protein is

about 0.38 nm (0.53/0.38 ≈ 1.4). The inputs to the theory include temperature

T (and, more generally, pH and ionic strength [35]), the number of residues in

the protein sequence Nr, the fraction of those residues that are hydrophobic

� (e.g., based on their aqueous solubilities [33, 34]), and the free energy per

unit kBT associated with hydrating a hydrophobic polymer segment χ . A sim-

ple parameterization for χ is available that captures experimental trends for

the temperature-dependent partitioning of hydrophobic molecules between a

nonpolar condensed phase and liquid water at ambient pressure [16]. Although

in this chapter we focus exclusively on thermal effects, we have previously

introduced a statistical mechanical method for extending the parameterization

for χ to also account for hydrostatic pressure [39].

To compute �G0
f using this HPC model, one first constructs an imaginary two-

step thermodynamic path that reversibly connects the denatured (D) and native

(N) states [34]. In step 1, the denatured state with radius of gyration RD collapses

into a randomly condensed configuration with radius of gyration, RN. The the-

ory assumes that the fraction of solvent-exposed residues that are hydrophobic

in both the denatured and the randomly condensed states is �, the sequence

hydrophobicity of the protein. In step 2, the native state is formed from the ran-

domly condensed state via residue rearrangement at constant radius of gyration,

so that the fractional surface hydrophobicity of the protein changes from � to

�. By independently minimizing the free energies of the native and denatured

states in this analysis, HPC theory predicts the values of both RD/RN and �. The

intrinsic free energy of folding is the sum of the contributions from the two

steps along the imaginary folding path, �G0
f = �G0

1 +�G0
2. Approximate analyt-

ical solutions for this HPC theory describe cases where the hydrophobic residues

have uniform [34] or patchy [18] spatial distributions on the protein surface. We
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discuss below how these solutions can, in turn, be used to infer approximate

nondirectional and directional protein–protein interactions, respectively.

Non-directional protein–protein interactions

While intrinsic thermodynamic stability governs whether an isolated

protein favors the native or denatured state, protein–protein interactions

play a role in stabilizing or destabilizing the native state at finite protein

concentrations.

Protein–protein interactions reflect protein structure. Since HPC theories

provide only coarse information about structure, the effects we discuss here

are the most basic, generally pertaining to how protein size and surface chem-

istry couple to their interactions. We first examine the case where proteins

display a virtually uniform spatial distribution of solvent-exposed hydropho-

bic residues, so that protein–protein interactions are, to first approximation,

isotropic. We also limit our discussion to systems where the driving force of

proteins to desolvate their hydrophobic surface residues by burying them into

hydrophobic patches on neighboring proteins dominates the attractive part

of the effective protein–protein interaction. The repulsive contribution to the

inter-protein potential accounts for the volume that each protein statistically

excludes from the centers of mass of other protein molecules in the solution.

As should be expected, the structural differences between folded and unfolded

protein states translate into distinct native–native NN, native–denatured ND,

and denatured–denatured DD protein–protein interactions.
HPC theory correctly predicts that denatured proteins generally exclude

more volume to other proteins (RD > RN) as compared to their native-state
counterparts as shown in Fig. 1.1a [34]. Moreover, denatured proteins exhibit
a greater fractional surface hydrophobicity than folded molecules (� > �).
Mean-field approximations [16, 17] predict that the magnitudes of the average
“contact” attractions between two isotropic proteins scale as

εND = Nsχ(T)��kBT
12

(
fe(ρ∗

s )

[1 + ρ∗
s
−1/3]2 + fe(1)

[1 + ρ∗
s

1/3]2

)
(1.1)

εNN = Nsχ(T)fe(1)�2kBT
24

(1.2)

εDD = Nsχ(T)fe(ρ∗
s )�2kBT

24
(1.3)

where ρ∗
s is the effective polymer segment density, fe(ρ∗

s ) = 1 − fi(ρ∗
s ) is

the fraction of residues in the denatured state that are solvent exposed, and

fi(ρ∗
s ) = [1 − (4πρ∗

s /{3Ns})1/3]3 is the fraction of residues that are on the interior

of the protein. A detailed derivation of the above equations can be found in

Refs. [16, 18].
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Fig. 1.1 Comparison of the (a) radius of gyration of the denatured protein relative

to the native protein, RD/RN, and (b) the effective magnitude of the DD attraction

relative to the NN attraction, εDD/εNN, for proteins of Nr = 154 residues and

sequence hydrophobicity � = 0.400 (solid), 0.455 (dash), and 0.500 (dot).

Given (1.1–1.3) and � > �, it follows that contact attractions involving dena-

tured proteins will generally be stronger than those involving the native state

(Fig. 1.1b). This is why denaturation often leads to aggregation and precipitation

in protein solutions. Along these lines, attractions between proteins increase in

strength with the hydrophobic content of the underlying protein sequence �.
In our coarse-grained strategy, the interprotein exclusion diameters,

σDD/σNN ≈ RD/RN and σND/σNN ≈ (RN + RD)/2RN, and the contact energies of
(1.1–1.3), all of which are derived from HPC theory [34], serve as inputs into
an effective protein–protein potential Vij(r) that qualitatively captures many
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aspects of protein solution thermodynamics and phase behavior (see, e.g., Refs.
[40, 41]):

Vij(r) = ∞ r < σij

Vij(r) = εij

625

⎧⎨
⎩ 1

[( r
σij

)2 − 1]6 − 50

[( r
σij

)2 − 1]3

⎫⎬
⎭ r ≥ σij (1.4)

where ij corresponds to the type of interaction NN, ND, or DD.

Directional protein–protein interactions

In Dill and co-workers’ original development of this HPC theory,
they assume that there are no spatial correlations between solvent-exposed
hydrophobic residues in either the denatured or the native state [34]. One way
to relax this assumption is to allow for segregation of hydrophobic residues on
the surface of the native state. For example, consider the hypothetical scenario
where two symmetric “patches” form on the surfaces of native proteins during
folding. The patches are distinguishable because they have a different hydropho-
bic residue composition than the rest of the solvent-exposed “body.” As shown
in Fig. 1.2, the size of each patch is defined by the polar angle α. The fractional
patch hydrophobicity �p and body hydrophobicity �b are expressed as

�p = fph�

1 − cos α

�b = (1 − fph)�

cos α
(1.5)

Θ
p

α

Θp
Θb

Fig. 1.2 Schematic of two anisotropic native-state proteins. The patch (shaded) and

body (white) regions have different hydrophobic residue compositions. The size of

the patch is defined by the angle α. The hydrophobicities of the patch �p and body

�b are determined by (1.5). Since the dashed line connecting the protein centers

passes through a patch region on each molecule, these two proteins are currently

in a patch–patch alignment. Adapted from Ref. [18].

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88608-6 - Statistical Mechanics of Cellular Systems and Processes
Edited by Muhammad H. Zaman
Excerpt
More information

http://www.cambridge.org/9780521886086
http://www.cambridge.org
http://www.cambridge.org


Protein stability in concentrated and crowded solutions 7

where fph quantifies the fraction of the surface hydrophobic residues that

are sequestered into the patch regions on the native protein. Increasing fph

increases �p, which results in higher surface anisotropy and, as we see below,

stronger patch–patch attractions. Knowledge of native-state structure would,

in principle, allow one to formulate an approximate patch model for a given

protein [42], but predicting this structure directly from sequence information

using HPC theory is still not generally possible. In other words, fph, α, and patch

location, along with protein sequence, are still knowledge-based inputs for the

coarse-grained strategy.
The directional dependencies of the contact attractions of patchy proteins

are approximated as follows [18]:

εND = Nsχ(T)��mkBT
12

(
fe(ρ∗

s )

[1 + ρ∗
s
−1/3]2 + fe(1)

[1 + ρ∗
s

1/3]2

)
(1.6)

εNN = Nsχ(T)fe(1)�m�nkBT
24

(1.7)

εDD = Nsχ(T)fe(ρ∗
s )�2kBT

24
. (1.8)

Here, �m and �n denote the apparent surface hydrophobicities associated with

different orientational states of interacting native molecules m and n, respec-

tively. For example, to compute the value of �m for molecule m of a given pair

interaction, one only needs to know the orientation of molecule m relative to

that of the imaginary line connecting its center of mass to that of the other par-

ticipating protein. If this line passes through a patch on molecule m’s surface

(see Fig. 1.2), then �m = �p; otherwise �m = �b, and so on. Equations (1.6–1.8)

reduce to (1.1–1.3) for the isotropic (uniform surface hydrophobicity) case (i.e.,

�p = �b = �).

As an illustration, we examine below aqueous solutions of two model pro-

teins of molecular weight Ns = 110 (i.e., Nr = 154) and hydrophobic residue

composition � = 0.4, parameters typical for medium-sized, single-domain

globular proteins [43]. The difference between the two models is that their

native states display distinct surface residue distributions, which in turn lead

to different protein–protein interactions: “nondirectional” (i.e., no patches) and

“strongly directional” ( fph = 0.75, α = π/6). For simplicity, we refer to these

models by their names shown above in quotes, rather than by the fph and α

parameters that define them. As we discuss below, the behaviors of these two

model systems provide insights into the mechanisms for stability in several

experimental protein solutions.

Figure 1.3 shows the effect of native protein surface anisotropy on the

strength of protein–protein attractions. The patch–patch attractions for the
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Fig. 1.3 Comparison of the contact attraction εNN relative to kBT for (a) body–body

alignment and (b) patch–patch alignment of Nr = 154, � = 0.4 proteins with

strongly directional interactions (dash). The contact attraction for Nr = 154, � = 0.4

native proteins with nondirectional interactions (solid) is also shown.

strongly directional protein are more than an order of magnitude larger than the

other attractions. Pairs of directional proteins can desolvate a higher number of

hydrophobic residues by self-associating (as compared to the nondirectional pro-

teins), but only if they do so with their hydrophobic patches mutually aligned,

which in turn imposes an entropic penalty. This balance between favorable

hydrophobic interactions and unfavorable entropy yields the possibility of con-

tinuous equilibrium self-assembly transitions involving the native state [18].

Given the symmetric patch geometry of the native state model studied here, the

morphology of the self-assembled “clusters” would resemble linear polymeric

chains.

The interactions discussed above are similar in spirit to a “two-patch”

description that was recently introduced to model the native–native protein

interactions of the sickle cell variant of hemoglobin [44] and also to other

semi-empirical anisotropic potentials developed for native proteins [42, 45–50].
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However, the coarse-grained strategy described here differs significantly from

these earlier models in two ways: it explicitly accounts for the possibility of

protein denaturation, and it estimates the intrinsic properties of the native

and denatured states using a statistical mechanical theory for heteropolymer

collapse. This link to the polymeric aspect of the protein is crucial because

it allows our model to be used as a tool to investigate how native-state pro-

tein anisotropy affects folding equilibria, self-assembly, and the global phase

behavior of protein solutions.

Reducing protein stability to a classic chemical engineering problem

It is worth emphasizing that the coarse-grained model described above

represents an effective binary mixture of folded and unfolded proteins (the

aqueous solvent only entering through χ ) connected via the protein folding

“reaction.” Links between the intrinsic native-state stability of the proteins,

�G0
f , the physical parameters defining the protein sequence (Nr, �), the native-

state surface morphology (�, α, fph), the interactions of hydrophobic residues

with aqueous solvent χ , and the protein–protein interactions (εij, σij) are estab-

lished through the HPC model [16, 17]. As in experimental protein solutions,

the fraction of proteins in the native state generally depends on both temper-

ature and protein concentration. This fact, often neglected in other modeling

approaches which ignore the polymeric nature of proteins or protein–protein

interactions, arises because temperature affects the intrinsic stability of the

native state �G0
f , and both temperature and protein concentration influence the

local structural and energetic environments that native and denatured proteins

sample in solution.

In short, the coarse-grained approach frames the stability of concentrated

protein solutions in terms of a classic chemical engineering problem: mapping

out the equilibrium states of a reactive, phase-separating mixture [51]. In the

next section of this chapter, we discuss how advanced Monte Carlo methods

designed to efficiently solve the latter problem can also be used to address the

former.

Simulation methods

The properties of the coarse-grained protein model described above

can be readily studied using transition-matrix Monte Carlo (TMMC) simulation.

TMMC is a relatively new simulation technique that has emerged in recent years

as a highly efficient method for investigating the thermophysical properties of

fluids. It is useful for a variety of applications ranging from the precise calcula-

tion of thermodynamic properties of pure and multicomponent fluids in bulk
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and confinement [52–62], surface tension of pure fluids and mixtures [52, 63–65]

and Henry’s constants [66] to the investigation of wetting transitions [67, 68] and

adsorption isotherms [69, 70]. The basic goal of TMMC is to calculate the free

energy of a system along some order parameter path by determining the order

parameter probability distribution. To do this in a conventional simulation, a

histogram is constructed by simply counting the number of times the system

takes on, or visits, a given order parameter value. In a transition-matrix-based

approach, the distribution is determined by accumulating the transition proba-

bilities of the system moving from one order parameter value to another during

the course of a Monte Carlo simulation, and subsequently applying a detailed

balance condition over the explored region of order parameter space. To facili-

tate sufficient and uniform sampling of order parameter space, a self-adaptive

biasing scheme is often employed. The reader is referred to Refs. [52, 56–58,

63, 71–75] for further details. For this coarse-grained protein model, we use a

particular TMMC implementation designed for multicomponent systems [57].

To obtain thermodynamic and structural quantities of interest, we perform

TMMC simulations within the grand-canonical ensemble. Under these condi-

tions (fixed chemical potentials, volume, and temperature), an appropriate

choice of order parameter is the total number of molecules in the system. While

the order-parameter probability distribution is unique to the chemical poten-

tials used in the simulation, histogram reweighting can be used to determine the

distribution at other chemical potentials [76]. Because the coarse-grained pro-

tein model can be regarded as a binary mixture of native and denatured proteins

where the components can undergo a unimolecular chemical reaction (folding),

chemical equilibrium requires that the chemical potentials of the native and

denatured proteins be identical. Thus, only a single chemical potential needs

to be specified in a TMMC simulation of the protein solution. The free-energy

change of the reaction, that is the intrinsic free energy of folding �G0
f , enters

as an activity difference between the folded and unfolded proteins, a treatment

which implicitly assumes that the protein’s intermolecular and intramolecular

degrees of freedom are separable.

Although the main output of a TMMC simulation is the total protein num-

ber (concentration) distribution, other system properties can be also calculated.

This is done in a straightforward way by collecting isochoric averages during the

course of a simulation. Combining these statistics with the above-mentioned

histogram-reweighting technique, the fluid-phase properties of the coarse-

grained protein model can be determined over a wide range of concentrations

from a single TMMC simulation. In our studies, we calculate, along with other

properties, the following quantities: the overall fraction of folded proteins fN,

the fraction of clustered or aggregated proteins fclust, and the average fraction
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