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Introduction: Phenomena

1.1 Viscoelastic Phenomena

Most solid materials are described, for small strains, by Hooke’s law of linear elastic-
ity: stress σ is proportional to strain ε. In one dimension, Hooke’s law is as follows:

σ = Eε, (1.1)

with E as Young’s modulus. Hooke’s law for elastic materials can also be written in
terms of a compliance J :

ε = Jσ. (1.2)

Consequently, the elastic compliance J is the inverse of the modulus E:

J = 1
E

. (1.3)

In contrast to elastic materials, a viscous fluid under shear stress obeys σ =
ηdε/dt, with η as the viscosity. In reality, all materials deviate from Hooke’s law
in various ways, for example, by exhibiting, both viscous-like and elastic character-
istics. Viscoelastic materials are those for which the relationship between stress and
strain depends on time (Figure 1.1). Anelastic solids represent a subset of viscoelas-
tic materials: anelastic solids have a unique equilibrium configuration and ultimately
recover fully after the removal of a transient load.

The stiffness and strength of materials is often illustrated by a stress–strain
curve, which is obtained by applying a constant rate of strain to a bar of the mate-
rial. If the material is linearly elastic, the curve is a straight line with a slope propor-
tional to the elastic modulus (the heavy line in the right diagram in Figure 1.2). For
a sufficiently large stress (the yield stress σy), the material exhibits yield as shown
in Figure 1.2. This is a threshold phenomenon. A linearly viscoelastic material, by
contrast, gives rise to a curved stress–strain plot (the left diagram in Figure 1.2)
as demonstrated in §2.5. The reason for this rise is that during constant strain rate
deformation, both time and strain increase together. The viscoelastic material is sen-
sitive to time. Consequently, the curve on the left becomes steeper if the strain rate
is increased. The residual strain eventually recovers to zero in a viscoelastic solid
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2 Introduction: Phenomena

Figure 1.1. Droop with time (clock on left) of a viscoelastic pyramid.

(see below); a viscoelastic fluid undergoes a permanent residual strain. The elastic–
plastic material is not sensitive to time or rate, but it has a threshold stress: the yield
stress. There is always a residual strain εr after load removal if the yield stress has
been exceeded. When testing and describing viscoelastic materials, it is preferable to
apply a step strain or step stress in time rather than a ramp (constant rate of strain)
because the effect of time is then isolated from any nonlinearity. The response to
step strain is stress relaxation, and the response to step stress is creep.

Some phenomena in viscoelastic materials are:

(1) if the stress is held constant, the strain increases with time (creep);
(2) if the strain is held constant, the stress decreases with time (relaxation);
(3) the effective stiffness depends on the rate of application of the load;
(4) if cyclic loading is applied, hysteresis (a phase lag) occurs, leading to a dissipa-

tion of mechanical energy;
(5) acoustic waves experience attenuation;
(6) rebound of an object following an impact is less than 100 precent; and
(7) during rolling, frictional resistance occurs.

All materials exhibit some viscoelastic response. In common metals, such as
steel or aluminum, as well as in quartz, at room temperature and at small strain,
the behavior does not deviate much from the behavior of linearly elastic materials.
Synthetic polymers, wood, and human tissue, as well as metals, at high tempera-
ture display large viscoelastic effects. In some applications, even a small viscoelastic
response can be significant. To be complete, an analysis or design involving such
materials must incorporate their viscoelastic behavior.

Knowledge of the viscoelastic response of a material is based on measurement.
The mathematical formulation of viscoelasticity theory is presented in the following
chapters with the aim of enabling prediction of the material response to arbitrary
load histories. Even at present, it is not possible to calculate viscoelastic response
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Figure 1.2. Stress–strain plots for deformation
at constant strain rate followed by unloading.
The plot on the left shows the behavior of a lin-
early viscoelastic material. The plot on the right
shows the behavior of an ideal elastic–plastic
material.
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1.3 Transient Properties: Creep and Relaxation 3

from models based on atomic and molecular models alone [1], although consider-
able understanding has evolved regarding causal mechanisms for viscoelastic behav-
ior (see Chapter 8).

1.2 Motivations for Studying Viscoelasticity

The study of viscoelastic behavior is of interest in several contexts. First, materials
used for structural applications of practical interest may exhibit viscoelastic behav-
ior that has a profound influence on the performance of that material. Materials
used in engineering applications may exhibit viscoelastic behavior as an uninten-
tional side effect. In applications, one may deliberately make use of the viscoelas-
ticity of certain materials in the design process, to achieve a particular goal. Second,
the mathematics underlying viscoelasticity theory is of interest within the applied
mathematics community. Third, viscoelasticity is of interest in some branches of
materials science, metallurgy, and solid state physics because it is causally linked
to a variety of microphysical processes and can be used as an experimental probe
of those processes (Chapter 8). Fourth, the causal links between viscoelasticity and
microstructure are exploited in the use of viscoelastic tests as an inspection tool as
well as in the design of materials. Many applications of viscoelastic behavior are
discussed in Chapter 10.

1.3 Transient Properties: Creep and Relaxation

1.3.1 Viscoelastic Functions J (t), E(t)

Creep

Creep is a progressive deformation of a material under constant stress. In one di-
mension, suppose the history of stress σ as it depends on time t to be a step function
with the magnitude σ0, beginning at time zero:

σ (t) = σ0H(t). (1.4)

H(t) is the unit Heaviside step function defined as zero for t less than zero, one for
t greater than zero, and 1/2 for t = 0 (see Appendix §A.1.3). The strain ε(t) in a
viscoelastic material will increase with time. The ratio,

J (t) = ε(t)
σ0

, (1.5)

is called the creep compliance. In linearly viscoelastic materials, the creep compli-
ance is independent of stress level. The intercept of the creep curve on the strain
axis is ascribed by some authors to instantaneous elasticity. However, no load can
be physically applied instantaneously. If the loading curve is viewed as a mathemat-
ical step function, we remark that the region around zero time contains an infinite
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4 Introduction: Phenomena
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Figure 1.3. Creep and recovery. Stress σ and
strain ε versus time t .

domain on a logarithmic scale, a topic we will return to later. If the load is released
at a later time, the strain will exhibit recovery or a progressive decrease of defor-
mation. Strain in recovery may or may not approach zero, depending on the mate-
rial. The recovery phase is not included in Equations 1.4 and 1.5 but will be treated
in §2.2.

The creep response in Figure 1.3 is shown beginning at the same time as the
stress history, which is the cause. The corresponding functional form is J (t) =
j(t)H(t), with j(t) as a function defined over the entire time scale. This functional

t

t

relaxation recovery

cause

effect
elastic

viscoelastic

0

viscous

viscoelastic

elastic

viscous

ε

ε

σ
Figure 1.4. Relaxation and recovery.
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1.3 Transient Properties: Creep and Relaxation 5
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Figure 1.5. Regions of creep behavior.
Strain ε versus time t , for different load
levels.

form for J (t) follows from the physical concept of causality, that is, the effect does
not precede the cause.

Creep curves may exhibit three regions (Figure 1.5), primary creep in which
the curve is concave down, secondary creep in which deformation is proportional
to time, and tertiary creep in which deformation accelerates until creep rupture oc-
curs. Tertiary creep is always a manifestation of nonlinear viscoelasticity, and sec-
ondary creep is usually nonlinear as well. Although secondary creep is represented
by a straight line in a plot of strain versus time (constant strain rate), that straight
line has nothing whatever to do with linear viscoelasticity. Linear response involves
a linear relationship between cause and effect: stress and strain at a given time
in the case of creep. Specifically, data taken at different load levels may be com-
pared by considering isochronals or data at the same time. Data points at times
t1, t2, and t3 are illustrated in Figure 1.5. If the plot of stress versus strain at con-
stant time is a straight line, the material may be linear. Secondary creep almost
always entails nonlinear viscoelasticity. The nature of linear viscoelasticity and the
distinction between linear and nonlinear behavior are presented in detail in §2.12
and §6.2.

Plotting Creep Results

Has the creep leveled off? From the top graph in Figure 1.6 (0 to 10 seconds), one
might surmise that the creep strain is leveling off and is approaching an asymptotic
value. The data used here extend over a wider range of time than shown in the top
graph; the plot of the same data in the bottom graph on a scale 0 to 1,000 seconds
shows that the creep has not leveled off but continues to progressively longer times.
One might also surmise that there is an instantaneous elasticity corresponding to the
intercept at time zero. However, use of a linear time scale fails to show processes
that occur at short times. Comparing the two plots, it is evident that there is much
creep occurring near time zero. The data used in the plots are from a power law:
ε(t) = 10−3t1/6. Such creep is representative of some experimental results gathered
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6 Introduction: Phenomena
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over a broad range of time. Therefore, it is customary to plot creep and relaxation
results versus log time.

Relaxation

Stress relaxation is the gradual decrease of stress when the material is held at con-
stant strain. If we suppose the strain history to be a step function of magnitude ε0

beginning at time zero: ε(t) = ε0H(t), the stress σ (t) in a viscoelastic material will
decrease as shown in Figure 1.4. The ratio,

E(t) = σ (t)
ε0

, (1.6)

is called the relaxation modulus. In linear materials, it is independent of strain level,
so E(t) is a function of time alone. The symbol E for Young’s modulus as stiff-
ness in uniaxial tension and compression is used in subsequent sections because the
introductory presentations are restricted to one dimension.

Creep and relaxation can occur in shear or in volumetric deformation as well.
The relaxation function for shear stress is called G(t). For volumetric deformation,
the elastic bulk modulus is called B (also called K). A corresponding relaxation
function B(t) may be defined as above, but with the stress as a hydrostatic stress. A
similar distinction is made in the creep compliances, JG(t) for creep in shear, JE(t)
for creep in extension, and JB(t) for creep in volumetric deformation.
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1.3 Transient Properties: Creep and Relaxation 7

The relaxation curve is drawn as decreasing with time, and the creep curve is
drawn as increasing with time; it is natural to ask whether this must be so. To ad-
dress this question, let us consider only passive materials and perform a thought
experiment. A passive material is one without any external sources of energy; for a
passive mechanical system, the only energy stored in the material is strain energy,
and in a dynamical system, kinetic energy as well. An analytical definition of a pas-
sive material is given in §2.3. Let an initially unstrained specimen be deformed in
creep under dead-weight loading. A material that raises the weight can do so only
by performing positive work on the weight; this is impossible in a passive material.
So for passive materials J (t) is an increasing function.

A distinction may be made between aging and nonaging materials: in aging ma-
terials, properties change with time, typically time as measured following the forma-
tion or transformation of the material. Concrete, for example, is an aging material.
The discussion here is, for the most part, restricted to nonaging materials.

1.3.2 Solids and Liquids

Elastic solids constitute a special case for which the creep compliance is J (t) =
J0H(t), with J0 as a constant, which is the elastic compliance. Elastic materials ex-
hibit immediate recovery to zero strain following release of the load. Viscoelastic
materials that exhibit complete recovery after sufficient time following creep or re-
laxation are called anelastic materials. Viscous fluids constitute another special case
in which the creep compliance is J (t) = (1/η)tH(t), with η as the viscosity. Creep
deformation in viscous materials is unbounded.

In the modulus formulation, a viscoelastic solid is a material for which E(t)
tends to a finite, nonzero limit as time t increases to infinity; in a viscoelastic liquid,
E(t) tends to zero. In the compliance formulation, a viscoelastic solid is a material
for which J (t) tends to a finite limit as time t increases to infinity; in a viscoelastic
fluid, J (t) increases without bound as t increases.

The time scale extends from zero to infinity. In practice, creep or relaxation pro-
cedures in certain regions of the time scale are difficult to accomplish. For example,
the region 10−10 sec to 0.01 sec is effectively inaccessible to most kinds of transient
experiment because the load can be applied only so suddenly. Observation of the
behavior of materials at longer times is limited by the patience and ultimately by
the lifetime of the experimenter. In this vein, one may define [2] the dimensionless
Deborah number D:

D ≡ time of creep or relaxation
time of observation

. (1.7)

If D is large, we perceive a material to be a solid even if it ultimately relaxes
to zero stress. The difficulty in discriminating solids from liquids is a result of the
finite lifetime of the human experimenter. Longer-term observations are also possi-
ble, as described by the Biblical prophetess Deborah: The mountains flowed before
the Lord [3]. The original language may be translated as “flowed” [2], but some
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8 Introduction: Phenomena

Table 1.1. Material properties

Empty space: Quantum vacuum
Gases

Viscous liquids
Viscoelastic materials

Elastic solids

translations give “quaked” [RSV] or “melted” [KJV]. The flow of mountains is ex-
tremely slow, so that they appear solid to human observers, but are observed to
flow before God. There is also an intermediate time scale of interest to engineers:
we may wish that the materials used in structures behave as solids over the lifespan
of human civilizations, which is longer than that of an individual. Geologists infer
behavior of flowing rock over a time scale longer than that of human civilizations.
We will return to these topics in discussions of experimental methods and of appli-
cations.

Viscoelastic materials are considered in the broader context of physical proper-
ties as follows (Table 1.1). Elastic solids support both shear stress and hydrostatic
stress and their properties are independent of time or frequency. Viscoelastic ma-
terials exhibit time and frequency dependence. Viscous liquids support static hy-
drostatic stress; they generate shear stress only if the strain is changing with time.
Gases are also viscous but they are orders of magnitude more compressible than
liquids. Gases and liquids become indistinguishable at the critical point which cor-
responds to a particular temperature and pressure. In empty space, attractive force
between conducting or dielectric surfaces is known as the Casimir effect. Isotropic
elastic solids are describable by two elastic constants, for example, the shear and
bulk modulus. Liquids and gases are also describable by two constants, the viscosity
and the compressibility (inverse bulk modulus). By contrast, viscoelastic materials
require a function of time or frequency to describe the behavior. Therefore, a rich
set of physical phenomena can occur.

1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ

Suppose the stress σ (t) is varying (Figure 1.7) sinusoidally in time t , as follows:

σ (t) = σ0 sin(2πνt). (1.8)

The frequency (in cycles per second or Hertz, abbreviated Hz) is called ν or f .
The strain response of a linearly viscoelastic material is also sinusoidal in time, but
the response will lag the stress by a phase angle δ

ε(t) = ε0 sin(2πνt − δ). (1.9)

The period T of the waveform is the time required for one cycle: T = 1/ν. The
phase angle is related to the time lag �t between the sinusoids by δ = 2π(�t)/T .
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Figure 1.7. Stress and strain versus time
t (in arbitrary units) in dynamic loading
of a viscoelastic material.

To see this, the argument in Equation 1.9 may be written as

2πνt − δ = 2πνt − 2πνδ

2πν
= 2πν(t − δ

2πν
) = 2πν(t − �t). (1.10)

Therefore,

�t = δ

2πν
, (1.11)

with frequency as the inverse of period,

ν = 1
T

δ = 2π�t
T

. (1.12)

As a result of the phase lag between stress and strain, the dynamic stiffness can
be treated as a complex number E∗. “Dynamic,” in this context, refers to oscillatory
input, not to any inertial effects:

σ

ε0
= E∗ = E′ + i E′′. (1.13)

The single and double primes designate the real and imaginary parts; they do
not represent derivatives; i = √−1. The loss angle δ is a dimensionless measure
of the viscoelastic damping of the material. The dynamic functions E′, E′′, and δ

depend on frequency. The tangent of the loss angle is called the loss tangent: tanδ. In
an elastic solid, tanδ = 0. The relationship between the transient properties E(t) and
J (t) and the dynamic properties E′, E′′, and tanδ is developed in §3.2.2. Dynamic
viscoelastic behavior, in particular tanδ and its consequences, is at times referred to
as internal friction or as mechanical damping.
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10 Introduction: Phenomena

1.5 Demonstration of Viscoelastic Behavior

Several commonly available materials may be used to demonstrate viscoelastic be-
havior. For example, Silly Putty R©, sold as a toy, may be formed into a long rod
and hung from a support so that it is loaded under its own weight. It will creep
without limit, behaving as a liquid. It will also bounce like a rubber ball, behav-
ing nearly elastically at a sufficiently high strain rate. Another example is a foam
used for earplugs [4]. This foam can be compressed substantially and will recover
most of the deformation in a period of a minute or so; simple creep experiments
and demonstrations can also be performed with this material. As for the rate of de-
cay of vibration, an aluminum tuning fork can be used to demonstrate the free de-
cay of vibration. Following an impact, the fork is audible for many seconds, hence
for thousands of cycles, demonstrating the low loss tangent of aluminum. A simi-
larly shaped fork made of a material, such as a stiff plastic or wood (or a plastic
ruler mounted as a cantilever and set into vibration) with a higher tanδ, will damp
out its vibrations much more quickly. Sounds and waveforms for tuning forks of
various materials can be found on the Internet at http://silver.neep.wisc.
edu/˜lakes/Demo.html.

1.6 Historical Aspects

A scientific awareness of viscoelastic behavior dates at least to the late eighteenth
century. Coulomb [5] (1736–1806) reported studies of the torsional stiffness of wires
by a torsional vibration method [6]. He also discussed damping of vibration and
demonstrated experimentally that its principal cause was not air resistance but was a
characteristic of the wire. As for creep and relaxation [7], Vicat in 1834 [8] surveyed
the sagging of wires and of suspension bridges. Weber [9] and Kohlrausch [10] found
deviations from perfect elasticity in galvanometer suspensions. Upon the release
of torque on the galvanometer suspension, the instrument did not return to zero
immediately; instead it converged gradually. This creep recovery was referred to
as the ‘elastic after effect’; see also Zener [11]. Creep behavior was observed in silk
threads under load in 1841 [12].

Viscoelastic behavior has been studied by eminent figures, such as Boltzmann,
Coriolis, Gauss, and Maxwell [7]. Early mathematical modeling of relaxation pro-
cesses included a stretched exponential formalism (discussed in Chapter 2), which
was used to model creep in silk, glass fibers, and rubber. Maxwell [13] developed
a relaxation analysis of gas viscosity that is also applicable to viscoelasticity. The
integral representation of Boltzmann [14] for the stress–strain relationship forms
the basis of the linear theory of viscoelasticity as it is currently understood [15]. The
theory of integral equations and of functional analysis as developed by Volterra [16]
provides much of the mathematical underpinning of viscoelastic behavior.

As polymeric materials assumed technological importance, intensive study of
viscoelasticity began in the 1930s. Leaderman first suggested that an increase in
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