Principles of Pharmacogenetics and Pharmacogenomics

The study of pharmacogenetics and pharmacogenomics focuses on how our genes and complex gene systems influence our response to drugs. Recent progress in the science of clinical therapeutics has led to the discovery of new biomarkers that make it technically easier to identify groups of patients that are more or less likely to respond to individual therapies. The aim is to improve personalized medicine— not simply to prescribe the right medicine, but to deliver the right drug at the right dose at the right time. This textbook brings together contributions from leading experts to discuss the latest information on how human genetics has an impact on drug response phenotypes. It presents not only the basic principles of pharmacogenetics, but also clinically valuable examples that cover a broad range of specialties and therapeutic areas. The first section of the book outlines critical concepts in pharmacogenetics and pharmacogenomics, including genetic testing, genotyping technologies, and adverse drug effects. The next section discusses the legal, ethical, and social implications of pharmacogenomics. The second half of the book details many of the main therapeutic areas, including oncologic drugs, cardiovascular drugs, statins, drug-induced long-QT syndrome, diabetes drugs, respiratory drugs, gastrointestinal drugs, rheumatoid arthritis drugs, obstetric drugs, psychiatric drugs, pain and anesthesia drugs, HIV and antiretroviral drugs, pediatrics, and fetal and neonatal medicine. This textbook provides an introduction to pharmacogenetics and pharmacogenomics for health care professionals, medical students, pharmacy students, graduate students, and researchers in the biosciences.

Online resources for this book can be found at www.cambridge.org/altman.

Resources include:

- Link to the Pharmacogenomics Knowledgebase
- Study guides
- Images from the book
- Discussion questions
- Content updates

RUSS B. ALTMAN is Chairman of the Bioengineering Department and Professor of Bioengineering, Genetics, and Medicine at Stanford University. His primary research interests are in the application of computing technology to basic molecular biological problems of relevance to medicine. His group builds the PharmGKB (www.pharmgkb.org).

DAVID FLOCKHART is the Harry and Edith Gladstein Chair in Cancer Genomics and Professor of Medicine, Medical Genetics and Pharmacology at the Indiana University School of Medicine in Indianapolis. He is also the Director of the Division of Clinical Pharmacology. His research is focused on clinically relevant applications of pharmacogenetics and drug interactions.

DAVID B. GOLDSTEIN is the Richard and Pat Johnson Distinguished University Professor and Director of the Center for Human Genome Variation at Duke University. He is also Professor of Molecular Genetics and Microbiology at Duke. His principal interests include human genetic diversity, the genetics of disease, and pharmacogenetics.
Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xi</td>
</tr>
<tr>
<td>Russ B. Altman, David Flockhart, and David B. Goldstein</td>
<td></td>
</tr>
</tbody>
</table>

Part I: Critical Concepts

1. Introduction to Population Diversity and Genetic Testing
 Michael D. Caldwell, Ingrid Glurich, Kimberly Pillsbury, and James K. Burmester
 3

2. Genotyping Technologies
 Cristi R. King and Sharon Marsh
 12

3. Pharmacokinetics: Absorption, Distribution, Metabolism, Excretion
 Overview Chapter
 Terrence Blaschke
 21

4. Overview: Adverse Drug Reactions
 Matthew R. Nelson
 27

5. PharmGKB, a Centralized Resource for Pharmacogenomic Knowledge and Discovery
 Li Gong and Teri E. Klein
 38

6. DrugBank
 David S. Wishart
 55

7. Ethical Considerations for Pharmacogenomics: Privacy and Confidentiality
 Sandra Soo-Jin Lee
 66

8. Informed Consent in Pharmacogenomic Research and Treatment
 Mark A. Rothstein
 74

9. Legal Trends Driving the Clinical Translation of Pharmacogenomics
 Barbara J. Evans
 81

Part II: Therapeutic Areas

10. Oncologic Drugs
 Uchenna O. Njiaju and M. Eileen Dolan
 97
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Pharmacogenetics and Pharmacogenomics of Cardiovascular Disease</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Daniel Kurnik and C. Michael Stein</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Statin-Induced Muscle Toxicity</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Russell A. Wilke, Melissa Antonik, Elenita I. Kanin, QiPing Feng, and Ronald M. Krauss</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Genomics of the Drug-Induced Long-QT Syndrome</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Dan M. Roden, Prince J. Kannankeril, Stefan Kääb, and Dawood Darbar</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Pharmacogenetics of Diabetes</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Mark C. H. de Groot and Olaf H. Klungel</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Pharmacogenetics – Therapeutic Area – Respiratory</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Kelan Tantisira and Scott Weiss</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Pharmacogenomics Associated with Therapy for Acid-Related Disorders</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Takahisa Furuta</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Pharmacogenetics of Rheumatology: Focus on Rheumatoid Arthritis</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Robert M. Plenge, Yvonne C. Lee, Soumya Raychaudhuri, and Daniel H. Solomon</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Pharmacogenetics of Obstetric Therapeutics</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>David Haas and Jamie R. Reinerberger</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Pharmacogenomics of Psychiatric Drugs</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>David Mrazek</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Pain and Anesthesia</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Konrad Meissner and Evan D. Kharasch</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>HIV and Antiretroviral Therapy</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Amalio Telenti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jennifer A. Lowry and J. Steven Leeder</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Fetal and Neonatal Pharmacogenomics</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Yair Blumenfeld</td>
<td></td>
</tr>
</tbody>
</table>
Contributors

Russ B. Altman
Chairman
Department of Bioengineering
Stanford University
Stanford, CA

Melissa Antonik
Division of Endocrinology and Metabolism
Department of Medicine
Medical College of Wisconsin
Milwaukee, WI

Terrence Blaschke
Professor Emeritus
Stanford School of Medicine
Stanford University
Stanford, CA

Yair Blumenfeld
Division of Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
Stanford University
Stanford, CA

James K. Burmester
Marshfield Clinic, Research Foundation
Marshfield, WI

Michael D. Caldwell
Principal Investigator
Marshfield Clinic, Research Foundation
Marshfield, WI

Dawood Darbar
Division of Cardiovascular Medicine
Vanderbilt University School of Medicine
Nashville, TN

Mark C. H. de Groot
Heart and Lung Institute
University Hospital
Utrecht
The Netherlands

M. Eileen Dolan
Department of Medicine
Comprehensive Cancer Research Center
The University of Chicago
Chicago, IL

Barbara J. Evans
Health Law and Policy Institute
University of Houston Law Center
Houston, TX

QiPing Feng
Division of Clinical Pharmacology
Department of Medicine
Vanderbilt University Medical Center
Nashville, TN

David Flockhart
Harry and Edith Gladstein Chair in Cancer Genomics
Division of Clinical Pharmacology
Indiana University School of Medicine
Indianapolis, IN

Takahisa Furuta
Center for Clinical Research
Hamamatsu University School of Medicine
Hamamatsu
Japan

Ingrid Glurich
Marshfield Clinic, Research Foundation
Marshfield, WI

David B. Goldstein
The Richard and Pat Johnson Distinguished University Professor
Director, Center for Human Genome Variation
Duke University Medical Center
Durham, NC
Li Gong
Department of Genetics
Stanford University Medical Center
Stanford University
Stanford, CA

David Haas
Indiana University School of Medicine
Division of Clinical Pharmacology
Wishard Memorial Hospital
Indianapolis, IN

Stefan Kääb
Department of Medicine
Vanderbilt University School of Medicine
Nashville, TN

Elenita I. Kanin
University of Wisconsin Hospital and Clinics
Madison, WI

Prince J. Kannankeril
Department of Pediatrics
Vanderbilt University School of Medicine
Nashville, TN

Evan D. Kharasch
Russell D. and Mary B. Shelden Professor of Anesthesiology
Department of Anesthesiology
Washington University in St. Louis
St. Louis, MO

Cristi R. King
Faculty of Pharmacy and Pharmaceutical Sciences
University of Alberta
Edmonton, Alberta
Canada

Teri E. Klein
Department of Genetics
Stanford University Medical Center
Stanford University
Stanford, CA

Olaf H. Klungel
Division of Pharmacoepidemiology
Utrecht Institute for Pharmaceutical Sciences
Utrecht University
Utrecht
The Netherlands

Ronald M. Krauss
Senior Scientist and Director, Atherosclerosis Research
Children’s Hospital Oakland Research Institute
Oakland, CA

Daniel Kurnik
Departments of Medicine and Pharmacology
Division of Clinical Pharmacology
Vanderbilt University School of Medicine
Nashville, TN

Sandra Soo-Jin Lee
Stanford Center for Biomedical Ethics
Stanford University
Stanford, CA

Yvonne C. Lee
Division of Rheumatology, Immunology, and Allergy
Brigham and Women’s Hospital
Boston, MA

J. Steven Leeder
Division of Clinical Pharmacology and Medical Toxicology
Department of Pediatrics
Children’s Mercy Hospitals and Clinics
Kansas City, MO

Jennifer A. Lowry
Division of Clinical Pharmacology and Medical Toxicology
Department of Pediatrics
Children’s Mercy Hospitals and Clinics
Kansas City, MO

Sharon Marsh
Department of Internal Medicine
Washington University in St. Louis
St. Louis, MO

Konrad Meissner
Department of Anesthesiology and Intensive Care Medicine
Universitätsklinikum Greifswald
der Ernst-Moritz-Arndt-Universität Greifswald AöR Greifswald
Germany

David Mrazek
Chair of Department of Psychiatry and Psychology and Director of the SC Johnson Genomics of Addictions Program
Mayo Clinic
Rochester, MN

Matthew R. Nelson
Pharmacogenetics
GlaxoSmithKline
Research Triangle Park, NC

Uchenna O. Njiaju
Department of Medicine
Comprehensive Cancer Research Center
The University of Chicago
Chicago, IL
Contributors

Kimberly Pillsbury
Marshfield Clinic, Research Foundation
Marshfield, WI

Robert M. Plenge
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA

Soumya Raychaudhuri
Division of Rheumatology, Immunology, and Allergy
Brigham and Women’s Hospital
Boston, MA

Jamie Renbarger
Indiana University School of Medicine
Division of Pediatrics
Wishard Memorial Hospital
Indianapolis, IN

Dan M. Roden
Department of Medicine
Vanderbilt University School of Medicine
Nashville, TN

Mark A. Rothstein
Herbert E. Boehl Chair of Law and Medicine
Institute for Bioethics, Health Policy, and Law
University of Louisville School of Medicine
Louisville, KY

Daniel H. Solomon
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA

C. Michael Stein
Departments of Medicine and Pharmacology
Division of Clinical Pharmacology
Vanderbilt University School of Medicine
Nashville, TN

Kelan Tantisira
Channing Laboratory
Brigham and Women’s Hospital
Harvard Medical School
Cambridge, MA

Amalio Telenti
Institute of Microbiology
University Hospital Center
University of Lausanne
Lausanne
Switzerland

Scott Weiss
Channing Laboratory
Brigham and Women’s Hospital
Harvard Medical School
Cambridge, MA

Russell A. Wilke
Division of Clinical Pharmacology
Department of Medicine
Vanderbilt University Medical Center
Nashville, TN

David S. Wishart
Departments of Computing Science and Biological Sciences
University of Alberta
Edmonton, Alberta
Canada
Introduction

Health care is moving toward a more individualized approach that has been termed “personalized medicine.” The underlying causes for this transition are many; they include the ability to genotype and sequence DNA, the increasing emphasis on consumerism among patients, and changes in the pharmaceutical industry worldwide and particularly at the U.S. Food and Drug Administration (FDA) and its sister regulatory agencies around the world. Pharmacogenetics and pharmacogenomics both involve the study of how genetics exerts an impact on drug response phenotype. For our purposes, the term “pharmacogenetics” connotes single genes that dominate the effects on a drug response, whereas “pharmacogenomics” connotes systems of many genes that create complex drug response phenotypes. It is clear that pharmacogenetics and pharmacogenomics are the core elements of the future of personalized medicine.

The emergence of robust and effective patient advocacy groups over the past thirty years has led to organized demands by patients for medicines that are more effective and that have fewer side effects. This was fueled by the Institute of Medicine “To Err is Human” report of 1999, which estimated that more than 50,000 Americans die each year because of medical errors, in particular, involving prescription drugs. Health care organizations have registered the clinical and financial dangers inherent in medication errors, and more precise prescribing is now a central part of quality control and even part of the marketing campaigns for hospitals in the United States. The pharmaceutical industry is experiencing the death of the “blockbuster” model of drug development in which one dose of a single medication can be used to treat everyone, including men and women, people of all races, infants, adolescents, adults, and the elderly. The success of therapies that treat a carefully selected subset of the population, such as HerceptinTM in the treatment of breast cancer, demonstrates that focusing a therapy on a population with a better benefit-to-risk ratio need not incur economic calamity. Last, the inexorable progress of science within clinical therapeutics has led to the discovery of new biomarkers for therapeutic effect that make it technically easier to identify groups of patients who are more or less likely to respond to individual therapies. Measures of DNA sequence (both focused genotyping and full sequencing) are the biomarkers whose cost has dropped most precipitously, with an accuracy approaching perfection.

The revolution occurring in the use of biomarkers to assess the risks and benefits of drugs is not confined to new prescription medicines, but includes the entire therapeutic armamentarium. Both the FDA in the United States, through its efforts on age-old medicines such as warfarin and tamoxifen, and the National Institutes of Health, through its funding of basic research (e.g., the Pharmacogenetics Research Network), have shown that they expect all existing therapies to be evaluated for the potential of more targeted use. As a result, health care providers and administrators will rapidly need to understand the optimal selection and use of these new biomarkers to provide the best care possible. Consistent with this need, research and reimbursement agencies are stressing the importance of data on “comparative effectiveness” between existing medications – an emphasis that will inevitably involve the use of validated biomarkers that will soon be integrated into routine medical care.

Although the current focus of pharmacogenomic research is on biomarkers derived from inherited (germline) DNA, there is increasing interest in somatic biomarkers from tumors, proteomics, and metabolomics. The initial focus on DNA is natural: it is relatively stable and easier to handle than other more degradable biologic materials like RNA and protein. In addition, we have a detailed map of the human genome,
and sentinel examples of the use of DNA are already available as role models. These advantages are not enough to move this science into the clinic, however.

For genetic testing to realize its full potential to improve drug selection and dosing, we must integrate the science and communicate its clinical value within the curricula of pharmacy and medical schools. As part of this effort, we recognized the need for a book that presents not only the basic principles of pharmacogenetics, but also the clinically valuable examples that cover a broad range of clinical specialties and therapeutic areas. Our intended audience is medical and pharmacy students, as well as practicing professionals. This book represents our first attempt to create such a text. It represents the work of many scientists and practicing physicians in a wide range of medical specialties, and is designed to provide not only a broad overview of the science underlying this testing, but also a strong, practical element for clinical practice. We are grateful to all these contributors not only for the many hours of toil involved in creating this work, but also for their continued efforts to educate a new generation of health care professionals, not simply to prescribe the right medicine, but to deliver “the right drug at the right dose at the right time.”

Russ B. Altman, Dave Flockhart, and David B. Goldstein