
Cambridge University Press & Assessment
978-0-521-88508-9 — New Directions in Linear Acoustics and Vibration
Edited by Matthew Wright, Richard Weaver
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction

Matthew Wright and Richard Weaver

This book has some of its genesis in the, possibly apocryphal, story that at an acous-

tics conference in the late 1980s a certain distinguished professor, tiring of the pro-

ceedings, turned to the assembled researchers and announced

Listen! If what you’re doing isn’t nonlinear or transonic, then don’t bother! It’s all been

done!

Certainly it has become easy to think of linear acoustics as essentially completed.

After all, classic texts such as Morse and Feshbach (1953) give admirably thorough

expositions of very general techniques, particularly those based on Green’s func-

tions. Cases described by coordinate systems in which the governing equations are

separable are extensively tabulated and admit analytic solutions. The alternative is

to employ numerical methods, many of them also based on Green’s functions, which

work in arbitrarily complex geometries. There is perhaps a perception that notwith-

standing a host of important applied problems, there are no fundamental issues re-

maining in linear acoustics. Increased understanding of the richness and complexity

of nonlinear problems with the explosion of interest in chaos only serves to make

linear systems seem “done and dusted” in comparison.

And yet this picture is overly dismissive. A solution of a linear differential equa-

tion depends nonlinearly on its coefficients and the shape of the boundary. The

dependence is all the richer if those coefficients are random or if boundary reflec-

tions are defocusing. Developments in physics throughout the last four decades,

often equally applicable to both quantum and linear acoustic problems, but over-

whelmingly more often expressed in the language of the former, have explored this.

More than that they have provided a new way of thinking about such things. We

have been impressed at the significant new body of theory that can be used to ad-

dress problems in linear acoustics and vibration, although also disappointed at the

small amount of reported work that does so. This book is an attempt to bridge the

gap between theoreticians and practitioners, as well as the gap between quantum

and acoustic, a gap that is mostly terminological but should nevertheless not be un-

derestimated. Our hope is that acousticians and vibration engineers who wish to

see what can be done with these new tools will find in this book a comprehensible
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2 Introduction

introduction and that physicists may also learn what problems might usefully be

addressed.

So what is on offer? We would like to take the reader on a short guided tour of

the terrain. We begin with what is known as the semiclassical trace formula (Chap-

ter 1), which expresses the modal density of a closed, lossless enclosure (membrane

or cavity) in terms of its periodic orbits, closed internal ray paths that repeat indef-

initely. As a way to determine eigenvalues (let alone response to arbitrary excita-

tions) it cannot compete with the numerical techniques that have been refined for

use in engineering (such as finite elements) or physics (such as plane-wave decom-

position); its significance lies in the fact that it provides an explicit link between the

shape of an enclosure and its acoustic characteristics, both in an average sense (via

the Weyl series) and at the level of individual eigenvalues, and in a way that doesn’t

depend on separability.

This connection is important because for many shapes the periodic orbits are

unstable and the ray paths are chaotic, the implications of which are explored in

Chapter 2. It can be disconcerting to find chaos having such a profound influence on

linear systems. This is due to the nonlinearity of ray motion in the high-frequency

limit, and the study of the effects of this on the finite-frequency wave motion has

come to be known as quantum chaology or (despite linguistic objections) quantum

chaos. It used to be easy to imagine that almost all ordinary differential equations

had well-behaved, predictable solutions because almost all the ones in books did.

That misapprehension was shattered by the explosion of awareness about chaos. In

the same way it is easy to fall into the trap of thinking that modeshapes and natu-

ral frequencies are as simple and regular in arbitrary shapes as those of the simple

textbook examples used to teach the subject. They are not, and for very similar

reasons.

One of the consequences of chaotic ray motion is that eigenfunctions often re-

semble superpositions of Gaussian random waves, the properties of which are ex-

plored in more detail in Chapter 4. Those that do not are referred to as “scarred

modes”; Chapter 5 presents an ingenious formulation that allows the eigenfunc-

tions to be represented with impressive efficiency in a basis built out of deliberately

constructed scar functions. Of course acousticians rarely encounter truly lossless

systems in practice; so some of the implications of opening the enclosure are ex-

plored in Chapter 6. And in Chapter 7 the central result of the periodic orbit theory

is re-derived in a form suitable for elasticity so as to expand the range of possible

applications.

Before that, however, we introduce the second major theme of this book: ran-

dom matrix theory. The study of the statistics of the eigenvalues of ensembles of

matrices whose elements are random variables and exhibit a particular symme-

try began in nuclear physics as an exploration of the conjecture that a sufficiently

complex system might have properties statistically similar to those of a random

Hamiltonian. Modern computational capabilities have made it easier to test con-

jectures and confirm analytic results. For example, the fact that the normalized

spacings of the eigenvalues of a large Gaussian Orthogonal matrix are close to

the Rayleigh distribution (obeyed exactly by an ensemble of pairs of eigenvalues

of 2 × 2 Gaussian orthogonal matrices) can be shown using less than 10 lines of
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Introduction 3

MATLAB† and can be computed in a few seconds. Chapter 3 introduces the theory

that allows such predictions and, as its name implies, explores why such an approach

should be so effective in describing the behavior of the wave-bearing and vibrating

systems we are considering here.

Our third theme, complexity does not get a chapter to itself or even an index

entry. Instead it is embedded throughout the book in the richness of the behavior of

simple systems and the diversity of applications in the later chapters. Each reader

will make their own connections between the various topics here, but one striking

example is worth noting here: how in a multitude of contexts “the part contains the

whole.” Just as each cell of an organism contains the DNA of the whole being, a

few short periodic orbits contain information about a large part of the eigenstruc-

ture; in seismology and underwater acoustics a short part of a time history reveals

information about the whole system.

Subsequent chapters survey several applied topics related in varying degrees

to the earlier chapters. Inasmuch as multiple scattering plays such a recurrent and

important role in mesoscopics (the subject of Chapter 8), we also include a review

of the, often too obscure to the non-initiate, diagrammatic methods for the theory

of randomly scattered acoustics in Chapter 9. The surprising and highly applicable

results of the theory of time-reversed waves are explored in Chapter 10 with partic-

ular reference to the themes of this book, which have led to important applications

in ultrasonics.

Chapter 11 shows the relevance of ray chaos for long-range propagation in the

ocean, whereas Chapter 12 demonstrates applications in seismology. Chapter 13

shows how random matrix theory can be applied to structural acoustics and vibra-

tions, whereas Chapter 14 explains an alternative random matrix theory approach

to the problem of estimating the likely variation in response that results from the

inevitable small variations that arise in manufacturing.

It is impossible in a book of practical length to cover all the modern applications

of these ideas that we might have, and we apologize to those who have noted holes

in our coverage. Perhaps there will be a need for another book.

As editors we wish to thank the authors and the publishers for their patience

during the unfortunately long time it has taken to turn their contributions into this

book. We express our gratitude to all the publishers who granted permission for

the chapter authors to reuse figures from their published articles without payment,

and our greater gratitude to those who provided it as a matter of policy without

being asked. We have tried to attribute all reused figures; if we have inadvertently

failed to do so we would be grateful to be informed and will endeavor to correct the

† For the avoidance of doubt they are as follows:

n = 2000;

A = randn(n);

E = eig((A + A’)/2);

s = diff(E).7real(sqrt(27n 2 E(1:n21).ˆ2)/pi);
[N,x] = hist(s,40);

bar(x,N/n/(x(2) 2 x(1)))

hold on

plot(x,(pi/2)7x.7exp((2pi/4)7x.ˆ2),’r’,’LineWidth’,2)
hold off
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4 Introduction

oversight in future editions if there are any. We also wish to thank the organizers

of the 2005 Summer School on Chaotic and Random Wave Scattering at the Centro

International de Ciencias A. C. in Cuernavaca, at which the idea for this book was

born when we accidentally got separated from the rest of our party while exploring

the pyramids of Xochicalco and their notable acoustics.

Matthew Wright acknowledges the support provided by an EPSRC Advanced

Research Fellowship during this project and thanks his colleagues at ISVR and in

particular Chris Howls of the School of Mathematics for useful discussions and Car-

olyn and David for their tolerance and understanding. Richard Weaver thanks the

US National Science Foundation for support from grant 28096. Olivier Legrand and

Fabrice Mortessagne thank Valérie Doya for useful criticism and careful reading of

the manuscript. Niels Søndergaard thanks Gregor Tanner for valuable discussions.

Joseph Turner and Goutam Ghoshal gratefully acknowledge the financial support

of the US Department of Energy, the National Science Foundation, and the Fed-

eral Railroad Administration. Steven Tomsovic and Michael Brown thank Javier

Beron-Vera, Nicholas Cerruti, Katherine Hegewisch, Irina Rypina, and Ilya Udovy-

dchenkov for the benefit of many discussions relating to the material presented and

gratefully acknowledge support from the US National Science Foundation, grants

PHY-0555301 (ST) and CMG-0417425 (MB), and Code 321 of the Office of Naval

Research (MB).
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1 The Semiclassical Trace Formula

Matthew Wright

Institute of Sound and Vibration Research, University of Southampton, UK

1.1 Introduction

For a two-dimensional enclosure, such as a membrane or the cross section of an in-

finitely long duct, those with the very simplest shapes (circles, rectangles, spheres,

boxes, etc.) with simple uniform boundary conditions, the modes and natural fre-

quencies can be determined analytically. For any other shape they may be de-

termined numerically by a range of mature numerical techniques of which finite

element and boundary element analyses are the best known and the most widely

studied. Knowing how to calculate the modes and natural frequencies for any partic-

ular shape, however, is not the same as understanding how those modes and natural

frequencies depend on the shape. Suppose, for example, that we wish to improve the

design of a component by optimizing some quantity such as weight, while leaving its

natural frequencies unchanged. In the course of such an optimization changes will

be made to the shape, whereupon the process of calculating the modes and natural

frequencies must begin all over again; at best, part of the mesh can be re-used. Such

an analysis cannot tell us where effort can be most or least profitably concentrated.

It turns out that the shapes that can be analyzed are (for good reason) quite

untypical compared with arbitrary shapes. The situation mirrors the one that used

to prevail in the study of dynamical systems, where linear differential equations

were most widely studied because of their solubility, and the fact that other sys-

tems showed radically different qualitative behavior was, for a time, ignored. In

both cases the overlooked feature is chaos, but in the case of acoustic morphology

the phenomenon is known as quantum chaos. Despite its name, this phenomenon

can be exhibited by large-scale systems such as acoustical resonators, whose gov-

erning equations are entirely linear. It arises when a ray path is unstable to small

perturbations and displays strong sensitivity to initial conditions.

Several surveys (Berry 1987, Guhr et al. 1998, Galdi et al. 2005, Kuhl et al. 2005)

and books (Gutzwiller 1990, Ott 1993, Brack & Bhaduri 1997, Stöckmann 1999,

Richter 2000, Haake 2001, Nakamura & Harayama 2004, Reichl 2004, Cvitanović

et al. 2005) on aspects of this subject have become available in recent years, but these

are variously intended for physicists, mathematicians, and electronic engineers. The

theory of periodic orbits, and of quantum chaos, is applicable to a far greater range

of areas than just acoustics, and naturally these texts span that range.
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6 The Semiclassical Trace Formula

1.2 Introductory Examples

1.2.1 Modes in a Rectangular Enclosure

The rectangle is perhaps the simplest case to study because an explicit formula exists

for its natural frequencies. From here on we shall work with wavenumber rather

than frequency, and so we shall use the equation for the eigenwavenumbers of a

rectangle with sides a1, a2:

kn,m = π

�

n2

a2
1

+
m2

a2
2

�1/2

, (1.1)

where the indices n and m run 0, 1, 2, . . . for Neumann boundary conditions and

1, 2, 3, . . . for Dirichlet conditions. The spectral density of this system is defined as

ρ(k) =
�

n,m

δ(k 2 kn,m) (1.2)

and the modecount as

N(k) =
� k

0

ρ(k�) dk� =
�

n,m

H(k 2 kn,m), (1.3)

where H is the Heaviside function. We shall now show how alternative, series-form

expressions for ρ(k) and N(k) can be obtained.

The delta functions in (1.2) can be written as the limit of a Gaussian function

δ(k 2 kn,m) = lim
t³0

1

2
:

π t
e2(k2kn,m)2/4t . (1.4)

We can therefore write the spectral density function in the form

ρ(k) =
>

�

n=1

>
�

m=1

lim
t³0

1

2
:

π t
e

2
"

k2π
:

n2/a2
1+m2/a2

2

"2
/4t

. (1.5)

The Poisson formula for a double sum,

>
�

n=0

>
�

m=0

f (n, m) =
>

�

M1=2>

>
�

M2=2>

�� >

0

f (n1, n2)e2π i(M1n1+M2n2) dn1 dn2

+
1

2

>
�

M1=2>

� >

0

f (n1, 0)e2π iM1n1 dn1

+
1

2

>
�

M2=2>

� >

0

f (0, n2)e2π i M2n2 dn2

+
1

4
f (0, 0),

(1.6)

can be applied to (1.5). We shall take each term separately, denoting them F1, F2,

F3, F4.

The expression for F1 can be integrated by making the substitutions

n1 =
a1r

π
cos θ, n2 =

a2r

π
sin θ, dn1 dn2 =

a1a2

π2
r dr dθ, (1.7)
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1.2 Introductory Examples 7

giving

F1 =
>

�

M1=2>

>
�

M2=2>

� >

0

� π/2

0

lim
t³0

a1b1

π2

1

2
:

π t
e2(k2r)2/4t+2i(M1a1 cos θ+M2a2 sin θ)rr dr dθ.

(1.8)

After some manipulation this gives

F1 =
a1a2k

2π

>
�

M1=2>

>
�

M2=2>

J0(kLM1,M2
), (1.9)

where LM1,M2
= 2

�

M2
1 a2

2 + M2
2 a2

2 and J0 is a Bessel function of zero order.

For F2 we have

F2 = 2
1

2

>
�

M1=2>

lim
t³0

1

2
:

π t

� >

0

e2(k2πn1/a1)2/4t+2π iM1n1 dn1

= 2
1

2

>
�

M1=2>

lim
t³0

a1

2π
e2M1a1(ik22M1a1t)

�

1 + erf

�

k + 4iM1a1t

2
:

t

��

= 2
a1

2π

>
�

M1=2>

e2ikM1a1

= 2
a1

2π

>
�

M1=2>

cos(2kM1a1), (1.10)

and F3 is the same with all subscripts 1 changed to 2 throughout. It can be shown

that taking the sums on the left-hand side of (1.6) from 1 instead of 0, which would

correspond to Neumann, rather than Dirichlet, boundary conditions, would reverse

the sign of F2 and F3.

We therefore have

ρ(k) =
a1a2k

2π

>
�

M1,M2=2>

J0(kLM1,M2
) ±

�

i=1,2

>
�

M=2>

ai

2π
cos(2kMai ) +

δ(k)

4
(1.11)

for Dirichlet (Neumann), conditions. Figure 1.1 shows a series of ray paths drawn

in the rectangular domain, which reflect M1 and M2 times from the left and bottom

walls, respectively, before returning to their origin with the initial heading so as to

be able to repeat indefinitely. Such closed paths are called periodic orbits. Their

length is given by LM1,M2
. This is no coincidence, as will be seen. The term 2kMai

that forms the argument of the cosine in the second term can also be interpreted as

the length of a ray path traveling between two parallel sides.

Because ρ(k) is singular for all k = kn, it must be smoothed before evaluation.

In practice, we find it more convenient to work with N(k), its integral with respect

to k. Before evaluating this, however, we shall separate out the terms corresponding

to zero-length orbits as

ρ(k) =
a1a2

2π
k ±

a1 + a2

2π
+

δ(k)

4
, (1.12)
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8 The Semiclassical Trace Formula

a2

a1

(M1, M2) = (0, 0) (0, 2)(0, 1)

(1, 0)

(2, 0) (2, 1) (2, 2)

(1, 1) (1, 2)

Figure 1.1. Periodic orbits for a rectangular enclosure.

leaving the remainder

ρosc(k) =
a1a2k

2π

>
��

M1,M2=2>

J0(kLM1,M2
) ±

�

i=1,2

>
��

M=2>

ai

2π
cos(2kMai ), (1.13)

where the primes on the summations indicate that the terms in which all indices are

zero are omitted. The smooth components can be integrated to give

N(k) =
a1a2

4π
k2 3

a1 + a2

2π
+

1

4

=
A

4π
k2 3

L

4π
k +

1

4
,

which is the well-known formula for the average number of modes in a rectangu-

lar enclosure with area A and perimeter L (see, e.g., Morse & Ingard 1968). The

oscillating component can also be integrated to give

Nosc(k) =
a1a2k

2π

>
��

M1,M2=2>

J1(kLM1,M2
)

LM1,M2

±
�

i=1,2

>
��

Mi =2>

sin(2kMi ai )

4π M
, (1.14)

where the second term can be recognized as the Fourier series representation of a

sawtooth wave.

Partial sums of (1.14) plus N(k) are compared with the true modecount, calcu-

lated by evaluating (1.3) explicitly, in Figure 1.2.
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Figure 1.2. Partial sums of the semiclassical approximation to the modecount for a rectangu-
lar membrane with maximum values of Mi in all the summations of 0, 1, 4, and 20 respectively.
After Wright (2001). Copyright 2001, the Acoustical Society of America.

1.2.2 The Length Spectrum of a Circle

Rather than try to derive a similar formula for the circle we will, for now, conjecture

that such a formula exists and that it is of the form

ρ(k) j
�

PO

APO(k) cos(kLPO + φPO), (1.15)

where LPO is the length of a periodic orbit and the sum is over all such orbits. Define

the “length spectrum” R(L) as the Fourier transform of ρ(k). Then, if the conjecture

is correct it ought to display peaks at L = Lj . The periodic orbits in the circle are

shown in Figure 1.3, parameterized by v, the number of vertices, and w, the winding

number about the center. The length of each orbit is given by

Lvw = 2vR sin
πw

v
, (1.16)

where R is the radius of the circle, taken to be unity henceforth.

Because the eigenwavenumbers of the circular membrane are zeros of Bessel

functions, which can be found numerically, the length spectrum can be easily calcu-

lated as

R(L) =
� >

2>

�

m,n

δ(k 2 jmn)eikL dk =
�

m,n

ei jmn L. (1.17)
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10 The Semiclassical Trace Formula

(2, 1) (3, 1) (4, 1) (5, 1)

(4, 2) (5, 2) (6, 2) (7, 2)

(6, 3) (7, 3) (8, 3) (9, 3)

Figure 1.3. Periodic orbits for a circular domain. After Balian and Bloch (1972).

The absolute value of this is plotted in Figure 1.4. As expected from the preceding

conjecture, it shows peaks at values of L satisfying Equation (1.16) for integer v and

w, that is, 4, 3
:

3, 4
:

2, 10 sin π/5, and so on.

With this evidence we are ready to sketch the derivation of a formula like Equa-

tion (1.15) for any shape of membrane or cavity. First, however, we will find it help-

ful to review the quantum theory that gave rise to this result, and the analogy be-

tween quantum billiards and acoustical systems.

1.3 The Quantum–Acoustic Analogy

A widely studied problem in quantum physics is that of a scalar particle in a potential

field, which obeys Schrödinger’s equation:

2�
2

2m
'2ψn + V(r)ψn = Enψn, (1.18)

where 2π� = 6.6 × 10234 Js is Planck’s constant, m is the particle’s mass, V is the

potential at a point r, and En is the nth discrete energy level. The complex wave-

function ψn can then be interpreted so that |ψn(r)|2 dr is the probability of finding

a particle with energy En in the volume dr surrounding the point r. If the potential

takes the form of an infinite well, so that it is zero within a domain B and infinite

outside it, then the boundary condition will be ψn = 0 on ∂ B, and the wavefunc-

tions will be normalized such that
"

B
|ψn(r)|2 dr = 1 because the particle must exist
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