
CHAPTER ONE

Introduction and Preliminaries

When you set out on your journey to Ithaca,
pray that the road is long,
full of adventure, full of knowledge.

K. P. Cavafy, “Ithaca”

The current chapter consists of two parts. The first part provides a high-level introduction
to (computational) Complexity Theory. This introduction is much more detailed than the
laconic statements made in the preface, but is quite sparse when compared to the richness
of the field. In addition, the introduction contains several important comments regarding
the contents, approach, and conventions of the current book.

P

BPP RP

average-case

IP ZK
PCP

approximation

pseudorandomness

PH

NP coNP

NL
L lower bounds

PSPACE

The second part of this chapter provides the necessary preliminaries to the rest of
the book. It includes a discussion of computational tasks and computational models, as
well as natural complexity measures associated with the latter. More specifically, this part
recalls the basic notions and results of computability theory (including the definition of
Turing machines, some undecidability results, the notion of universal machines, and the
definition of oracle machines). In addition, this part presents the basic notions underlying
non-uniform models of computation (like Boolean circuits).

1.1. Introduction

This introduction consists of two parts: The first part refers to the area itself, whereas
the second part refers to the current book. The first part provides a brief overview of
Complexity Theory (Section 1.1.1) as well as some reflections about its characteristics
(Section 1.1.2). The second part describes the contents of this book (Section 1.1.3), the

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

INTRODUCTION AND PRELIMINARIES

considerations underlying the choice of topics as well as the way they are presented
(Section 1.1.4), and various notations and conventions (Section 1.1.5).

1.1.1. A Brief Overview of Complexity Theory

Out of the tough came forth sweetness1

Judges, 14:14

The following brief overview is intended to give a flavor of the questions addressed by
Complexity Theory. This overview is quite vague, and is merely meant as a teaser. Most
of the topics mentioned in it will be discussed at length in the various chapters of this
book.

Complexity Theory is concerned with the study of the intrinsic complexity of compu-
tational tasks. Its “final” goals include the determination of the complexity of any well-
defined task. Additional goals include obtaining an understanding of the relations between
various computational phenomena (e.g., relating one fact regarding computational com-
plexity to another). Indeed, we may say that the former type of goal is concerned with
absolute answers regarding specific computational phenomena, whereas the latter type is
concerned with questions regarding the relation between computational phenomena.

Interestingly, so far Complexity Theory has been more successful in coping with goals
of the latter (“relative”) type. In fact, the failure to resolve questions of the “absolute”
type led to the flourishing of methods for coping with questions of the “relative” type.
Musing for a moment, let us say that, in general, the difficulty of obtaining absolute
answers may naturally lead to seeking conditional answers, which may in turn reveal
interesting relations between phenomena. Furthermore, the lack of absolute understanding
of individual phenomena seems to facilitate the development of methods for relating
different phenomena. Anyhow, this is what happened in Complexity Theory.

Putting aside for a moment the frustration caused by the failure of obtaining absolute
answers, we must admit that there is something fascinating in the success of relating
different phenomena: In some sense, relations between phenomena are more revealing
than absolute statements about individual phenomena. Indeed, the first example that comes
to mind is the theory of NP-completeness. Let us consider this theory, for a moment, from
the perspective of these two types of goals.

Complexity Theory has failed to determine the intrinsic complexity of tasks such as
finding a satisfying assignment to a given (satisfiable) propositional formula or finding
a 3-coloring of a given (3-colorable) graph. But it has succeeded in establishing that
these two seemingly different computational tasks are in some sense the same (or, more
precisely, are computationally equivalent). We find this success amazing and exciting, and
hope that the reader shares these feelings. The same feeling of wonder and excitement is
generated by many of the other discoveries of Complexity Theory. Indeed, the reader is
invited to join a fast tour of some of the other questions and answers that make up the
field of Complexity Theory.

We will indeed start with the P versus NP Question. Our daily experience is that it is
harder to solve a problem than it is to check the correctness of a solution (e.g., think of
either a puzzle or a research problem). Is this experience merely a coincidence or does it
represent a fundamental fact of life (i.e., a property of the world)? Could you imagine a

1The quote is commonly interpreted as meaning that benefit arose out of misfortune.

2

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

1.1. INTRODUCTION

world in which solving any problem is not significantly harder than checking a solution to
it? Would the term “solving a problem” not lose its meaning in such a hypothetical (and
impossible, in our opinion) world? The denial of the plausibility of such a hypothetical
world (in which “solving” is not harder than “checking”) is what “P different from NP”
actually means, where P represents tasks that are efficiently solvable and NP represents
tasks for which solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the task of
proving theorems versus the task of verifying the validity of proofs. Indeed, finding proofs
is a special type of the aforementioned task of “solving a problem” (and verifying the
validity of proofs is a corresponding case of checking correctness). Again, “P different
from NP” means that there are theorems that are harder to prove than to be convinced of
their correctness when presented with a proof. This means that the notion of a “proof” is
meaningful; that is, proofs do help when one is seeking to be convinced of the correctness
of assertions. Here NP represents sets of assertions that can be efficiently verified with the
help of adequate proofs, and P represents sets of assertions that can be efficiently verified
from scratch (i.e., without proofs).

In light of the foregoing discussion it is clear that the P versus NP Question is a
fundamental scientific question of far-reaching consequences. The fact that this question
seems beyond our current reach led to the development of the theory of NP-completeness.
Loosely speaking, this theory identifies a set of computational problems that are as hard
as NP. That is, the fate of the P versus NP Question lies with each of these problems: If
any of these problems is easy to solve then so are all problems in NP. Thus, showing that
a problem is NP-complete provides evidence of its intractability (assuming, of course, “P
different than NP”). Indeed, demonstrating the NP-completeness of computational tasks
is a central tool in indicating hardness of natural computational problems, and it has
been used extensively both in computer science and in other disciplines. We note that
NP-completeness indicates not only the conjectured intractability of a problem but also its
“richness” in the sense that the problem is rich enough to “encode” any other problem in
NP. The use of the term “encoding” is justified by the exact meaning of NP-completeness,
which in turn establishes relations between different computational problems (without
referring to their “absolute” complexity).

The foregoing discussion of NP-completeness hints at the importance of representation,
since it referred to different problems that encode one another. Indeed, the importance of
representation is a central aspect of Complexity Theory. In general, Complexity Theory is
concerned with problems for which the solutions are implicit in the problem’s statement (or
rather in the instance). That is, the problem (or rather its instance) contains all necessary
information, and one merely needs to process this information in order to supply the
answer.2 Thus, Complexity Theory is concerned with manipulation of information, and
its transformation from one representation (in which the information is given) to another
representation (which is the one desired). Indeed, a solution to a computational problem
is merely a different representation of the information given, that is, a representation in
which the answer is explicit rather than implicit. For example, the answer to the question
of whether or not a given Boolean formula is satisfiable is implicit in the formula itself
(but the task is to make the answer explicit). Thus, Complexity Theory clarifies a central

2In contrast, in other disciplines, solving a problem may require gathering information that is not available in
the problem’s statement. This information may either be available from auxiliary (past) records or be obtained by
conducting new experiments.

3

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

INTRODUCTION AND PRELIMINARIES

issue regarding representation, that is, the distinction between what is explicit and what is
implicit in a representation. Furthermore, it even suggests a quantification of the level of
non-explicitness.

In general, Complexity Theory provides new viewpoints on various phenomena that
were considered also by past thinkers. Examples include the aforementioned concepts
of solutions, proofs, and representation as well as concepts like randomness, knowledge,
interaction, secrecy, and learning. We next discuss the latter concepts and the perspective
offered by Complexity Theory.

The concept of randomness has puzzled thinkers for ages. Their perspective can be
described as ontological: They asked “what is randomness” and wondered whether it
exists, at all (or is the world deterministic). The perspective of Complexity Theory is
behavioristic: It is based on defining objects as equivalent if they cannot be told apart
by any efficient procedure. That is, a coin toss is (defined to be) “random” (even if one
believes that the universe is deterministic) if it is infeasible to predict the coin’s outcome.
Likewise, a string (or a distribution of strings) is “random” if it is infeasible to distinguish
it from the uniform distribution (regardless of whether or not one can generate the latter).
Interestingly, randomness (or rather pseudorandomness) defined this way is efficiently
expandable; that is, under a reasonable complexity assumption (to be discussed next), short
pseudorandom strings can be deterministically expanded into long pseudorandom strings.
Indeed, it turns out that randomness is intimately related to intractability. Firstly, note that
the very definition of pseudorandomness refers to intractability (i.e., the infeasibility of
distinguishing a pseudorandomness object from a uniformly distributed object). Secondly,
as stated, a complexity assumption, which refers to the existence of functions that are
easy to evaluate but hard to invert (called one-way functions), implies the existence of
deterministic programs (called pseudorandom generators) that stretch short random seeds
into long pseudorandom sequences. In fact, it turns out that the existence of pseudorandom
generators is equivalent to the existence of one-way functions.

Complexity Theory offers its own perspective on the concept of knowledge (and dis-
tinguishes it from information). Specifically, Complexity Theory views knowledge as the
result of a hard computation. Thus, whatever can be efficiently done by anyone is not
considered knowledge. In particular, the result of an easy computation applied to publicly
available information is not considered knowledge. In contrast, the value of a hard-to-
compute function applied to publicly available information is knowledge, and if somebody
provides you with such a value then it has provided you with knowledge. This discussion
is related to the notion of zero-knowledge interactions, which are interactions in which no
knowledge is gained. Such interactions may still be useful, because they may convince
a party of the correctness of specific data that was provided beforehand. For example, a
zero-knowledge interactive proof may convince a party that a given graph is 3-colorable
without yielding any 3-coloring.

The foregoing paragraph has explicitly referred to interaction, viewing it as a vehicle
for gaining knowledge and/or gaining confidence. Let us highlight the latter application
by noting that it may be easier to verify an assertion when allowed to interact with a
prover rather than when reading a proof. Put differently, interaction with a good teacher
may be more beneficial than reading any book. We comment that the added power of
such interactive proofs is rooted in their being randomized (i.e., the verification proce-
dure is randomized), because if the verifier’s questions can be determined beforehand
then the prover may just provide the transcript of the interaction as a traditional written
proof.

4

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

1.1. INTRODUCTION

Another concept related to knowledge is that of secrecy: Knowledge is something that
one party may have while another party does not have (and cannot feasibly obtain by
itself) – thus, in some sense knowledge is a secret. In general, Complexity Theory is
related to cryptography, where the latter is broadly defined as the study of systems that
are easy to use but hard to abuse. Typically, such systems involve secrets, randomness,
and interaction as well as a complexity gap between the ease of proper usage and the
infeasibility of causing the system to deviate from its prescribed behavior. Thus, much of
cryptography is based on complexity theoretic assumptions and its results are typically
transformations of relatively simple computational primitives (e.g., one-way functions)
into more complex cryptographic applications (e.g., secure encryption schemes).

We have already mentioned the concept of learning when referring to learning from a
teacher versus learning from a book. Recall that Complexity Theory provides evidence to
the advantage of the former. This is in the context of gaining knowledge about publicly
available information. In contrast, computational learning theory is concerned with learn-
ing objects that are only partially available to the learner (i.e., reconstructing a function
based on its value at a few random locations or even at locations chosen by the learner).
Complexity Theory sheds light on the intrinsic limitations of learning (in this sense).

Complexity Theory deals with a variety of computational tasks. We have already
mentioned two fundamental types of tasks: searching for solutions (or rather “finding
solutions”) and making decisions (e.g., regarding the validity of assertions). We have
also hinted that in some cases these two types of tasks can be related. Now we consider
two additional types of tasks: counting the number of solutions and generating random
solutions. Clearly, both the latter tasks are at least as hard as finding arbitrary solutions to
the corresponding problem, but it turns out that for some natural problems they are
not significantly harder. Specifically, under some natural conditions on the problem,
approximately counting the number of solutions and generating an approximately random
solution is not significantly harder than finding an arbitrary solution.

Having mentioned the notion of approximation, we note that the study of the com-
plexity of finding “approximate solutions” is also of natural importance. One type of
approximation problems refers to an objective function defined on the set of potential
solutions: Rather than finding a solution that attains the optimal value, the approximation
task consists of finding a solution that attains an “almost optimal” value, where the notion
of “almost optimal” may be understood in different ways giving rise to different levels
of approximation. Interestingly, in many cases, even a very relaxed level of approxima-
tion is as difficult to obtain as solving the original (exact) search problem (i.e., finding
an approximate solution is as hard as finding an optimal solution). Surprisingly, these
hardness-of-approximation results are related to the study of probabilistically checkable
proofs, which are proofs that allow for ultra-fast probabilistic verification. Amazingly,
every proof can be efficiently transformed into one that allows for probabilistic verifica-
tion based on probing a constant number of bits (in the alleged proof). Turning back to
approximation problems, we note that in other cases a reasonable level of approximation
is easier to achieve than solving the original (exact) search problem.

Approximation is a natural relaxation of various computational problems. Another
natural relaxation is the study of average-case complexity, where the “average” is taken
over some “simple” distributions (representing a model of the problem’s instances that
may occur in practice). We stress that, although it was not stated explicitly, the entire
discussion so far has referred to “worst-case” analysis of algorithms. We mention that
worst-case complexity is a more robust notion than average-case complexity. For starters,

5

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

INTRODUCTION AND PRELIMINARIES

one avoids the controversial question of which instances are “important in practice” and
correspondingly the selection of the class of distributions for which average-case ana-
lysis is to be conducted. Nevertheless, a relatively robust theory of average-case com-
plexity has been suggested, albeit it is less developed than the theory of worst-case
complexity.

In view of the central role of randomness in Complexity Theory (as evident, say, in
the study of pseudorandomness, probabilistic proof systems, and cryptography), one may
wonder as to whether the randomness needed for the various applications can be obtained
in real life. One specific question, which received a lot of attention, is the possibility of
“purifying” randomness (or “extracting good randomness from bad sources”). That is, can
we use “defected” sources of randomness in order to implement almost perfect sources
of randomness? The answer depends, of course, on the model of such defected sources.
This study turned out to be related to Complexity Theory, where the most tight connec-
tion is between some type of randomness extractors and some type of pseudorandom
generators.

So far we have focused on the time complexity of computational tasks, while relying
on the natural association of efficiency with time. However, time is not the only resource
one should care about. Another important resource is space: the amount of (temporary)
memory consumed by the computation. The study of space complexity has uncovered
several fascinating phenomena, which seem to indicate a fundamental difference between
space complexity and time complexity. For example, in the context of space complexity,
verifying proofs of validity of assertions (of any specific type) has the same complexity
as verifying proofs of invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air tour of some
mountain tops, and dizziness is to be expected. Needless to say, the rest of the book offers
a totally different touring experience. We will climb some of these mountains by foot, step
by step, and will often stop to look around and reflect.

Absolute Results (aka. Lower Bounds). As stated up-front, absolute results are not
known for many of the “big questions” of Complexity Theory (most notably the P versus
NP Question). However, several highly non-trivial absolute results have been proved. For
example, it was shown that using negation can speed up the computation of monotone
functions (which do not require negation for their mere computation). In addition, many
promising techniques were introduced and employed with the aim of providing a low-level
analysis of the progress of computation. However, as stated in the preface, the focus of
this book is elsewhere.

1.1.2. Characteristics of Complexity Theory

We are successful because we use the right level of abstraction.
Avi Wigderson (1996)

Using the “right level of abstraction” seems to be a main characteristic of the theory of
computation at large. The right level of abstraction means abstracting away second-order
details, which tend to be context dependent, while using definitions that reflect the main
issues (rather than abstracting them away, too). Indeed, using the right level of abstraction
calls for an extensive exercising of good judgment, and one indication for having chosen
the right abstractions is the result of their study.

6

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

1.1. INTRODUCTION

One major choice, taken by the theory of computation at large, is the choice of a
model of computation and corresponding complexity measures and classes. The choice,
which is currently taken for granted, was to use a simple model that avoids both the
extreme of being too realistic (and thus too detailed) as well as the extreme of being too
abstract (and vague). On the one hand, the main model of computation (which is used in
Complexity Theory) does not try to mimic (or mirror) the actual operation of real-life
computers used at a specific historical time. Such a choice would have made it very hard
to develop Complexity Theory as we know it and to uncover the fundamental relations
discussed in this book: The mass of details would have obscured the view. On the other
hand, avoiding any reference to any concrete model (like in the case of recursive function
theory) does not encourage the introduction and study of natural measures of complexity.
Indeed, as we shall see in Section 1.2.3, the choice was (and is) to use a simple model of
computation (which does not mirror real-life computers), while avoiding any effects that
are specific to that model (by keeping an eye on a host of variants and alternative models).
The freedom from the specifics of the basic model is obtained by considering complexity
classes that are invariant under a change of model (as long as the alternative model is
“reasonable”).

Another major choice is the use of asymptotic analysis. Specifically, we consider the
complexity of an algorithm as a function of its input length, and study the asymptotic
behavior of this function. It turns out that structure that is hidden by concrete quantities
appears at the limit. Furthermore, depending on the case, we classify functions according
to different criteria. For example, in the case of time complexity we consider classes of
functions that are closed under multiplication, whereas in case of space complexity we
consider closure under addition. In each case, the choice is governed by the nature of the
complexity measure being considered. Indeed, one could have developed a theory without
using these conventions, but this would have resulted in a far more cumbersome theory.
For example, rather than saying that finding a satisfying assignment for a given formula is
polynomial-time reducible to deciding the satisfiability of some other formulae, one could
have stated the exact functional dependence of the complexity of the search problem on
the complexity of the decision problem.

Both the aforementioned choices are common to other branches of the theory of
computation. One aspect that makes Complexity Theory unique is its perspective on
the most basic question of the theory of computation, that is, the way it studies the
question of what can be efficiently computed. The perspective of Complexity Theory
is general in nature. This is reflected in its primary focus on the relevant notion of effi-
ciency (captured by corresponding resource bounds) rather than on specific computational
problems. In most cases, complexity theoretic studies do not refer to any specific com-
putational problems or refer to such problems merely as an illustration. Furthermore,
even when specific computational problems are studied, this study is (explicitly or at
least implicitly) aimed at understanding the computational limitations of certain resource
bounds.

The aforementioned general perspective seems linked to the significant role of con-
ceptual considerations in the field: The rigorous study of an intuitive notion of efficiency
must be initiated with an adequate choice of definitions. Since this study refers to any
possible (relevant) computation, the definitions cannot be derived by abstracting some
concrete reality (e.g., a specific algorithmic schema). Indeed, the definitions attempt to
capture any possible reality, which means that the choice of definitions is governed by
conceptual principles and not merely by empirical observations.

7

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

INTRODUCTION AND PRELIMINARIES

1.1.3. Contents of This Book

This book is intended to serve as an introduction to Computational Complexity Theory. It
consists of ten chapters and seven appendices, and can be used either as a textbook or for
self-study. The chapters constitute the core of this book and are written in a style adequate
for a textbook, whereas the appendices provide either relevant background or additional
perspective and are written in the style of a survey article.

1.1.3.1. Overall Organization of the Book
Section 1.2 and Chapter 2 are a prerequisite for the rest of the book. Technically speaking,
the notions and results that appear in these parts are extensively used in the rest of the book.
More importantly, the former parts are the conceptual framework that shapes the field and
provides a good perspective on the field’s questions and answers. Indeed, Section 1.2 and
Chapter 2 provide the very basic material that must be understood by anybody having an
interest in Complexity Theory.

In contrast, the rest of the book covers more advanced material, which means that none
of it can be claimed to be absolutely necessary for a basic understanding of Complexity
Theory. In particular, although some advanced chapters refer to material in other advanced
chapters, the relation between these chapters is not a fundamental one. Thus, one may
choose to read and/or teach an arbitrary subset of the advanced chapters and do so in
an arbitrary order, provided one is willing to follow the relevant references to some
parts of other chapters (see Figure 1.1). Needless to say, we recommend reading and/or
teaching all the advanced chapters, and doing so by following the order presented in this
book.

As illustrated by Figure 1.1, some chapters (i.e., Chapters 3, 6, and 10) lump together
topics that are usually presented separately. These decisions are related to our perspective
on the corresponding topics.

Turning to the appendices, we note that some of them (e.g., Appendix G and parts of
Appendices D and E) provide background information that is required in some of the
advanced chapters. In contrast, other appendices (e.g., Appendices B and C and other
parts of Appendices D and E) provide additional perspective that augments the advanced
chapters. (The function of Appendices A and F will be clarified in §1.1.3.2.)

1.1.3.2. Contents of the Specific Parts
The rest of this section provides a brief summary of the contents of the various chapters
and appendices. This summary is intended for the teacher and/or the expert, whereas
the student is referred to the more novice-friendly summaries that appear in the book’s
preface.

Section 1.2: Preliminaries. This section provides the relevant background on com-
putability theory, which is the basis for the rest of this book (as well as for Complexity
Theory at large). Most importantly, it contains a discussion of central notions such as
search and decision problems, algorithms that solve such problems, and their complex-
ity. In addition, this section presents non-uniform models of computation (e.g., Boolean
circuits).

Chapter 2: P, NP, and NP-completeness. This chapter presents the P-vs-NP Question
both in terms of search problems and in terms of decision problems. The second main

8

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

1.1. INTRODUCTION

6.1 6.2

7.1 7.2

in E

8.2 8.3 8.4 8.5

8.1 paragidm

de-ran. space
gen.
pur.

OWF

 case

10.1.1

prop.
test.

10.1.2

9.1 IP

9.2 ZK

PCP

9.3

average

10.2

rand. count.

7.1.3

5.2
L

5.4

4.1 advice

4.3 space
3.1

PHP/poly

5.3
PSPACE

5.1 general
3.2.3

3.2
4.2 TIME

5.2.4

(of opt.)
approx.

5.3.1

NL

(RL)
6.1.5

Figure 1.1: Dependencies among the advanced chapters. Solid arrows indicate the use of specific
results that are stated in the section to which the arrow points. Dashed lines (and arrows) indicate an
important conceptual connection; the wider the line, the tighter the connection. When relations are only
between subsections, their index is indicated.

topic of this chapter is the theory of NP-completeness. The chapter also provides a
treatment of the general notion of a (polynomial time) reduction, with special emphasis
on self-reducibility. Additional topics include the existence of problems in NP that are
neither NP-complete nor in P, optimal search algorithms, the class coNP, and promise
problems.

Chapter 3: Variations on P and NP. This chapter provides a treatment of non-uniform
polynomial time (P/poly) and of the Polynomial-time Hierarchy (PH). Each of the two
classes is defined in two equivalent ways (e.g., P/poly is defined both in terms of circuits
and in terms of “machines that take advice”). In addition, it is shown that if NP is contained
in P/poly then PH collapses to its second level (i.e., �2).

Chapter 4: More Resources, More Power? The focus of this chapter is on hierarchy
theorems, which assert that typically more resources allow for solving more problems.
These results depend on using bounding functions that can be computed without exceeding
the amount of resources that they specify, and otherwise gap theorems may apply.

Chapter 5: Space Complexity. Among the results presented in this chapter are a log-
space algorithm for testing connectivity of (undirected) graphs, a proof thatNL = coNL,

9

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

INTRODUCTION AND PRELIMINARIES

and complete problems forNL andPSPACE (under log-space and poly-time reductions,
respectively).

Chapter 6: Randomness and Counting. This chapter focuses on various randomized
complexity classes (i.e., BPP , RP , and ZPP) and the counting class #P . The results
presented in this chapter include BPP ⊂ P/poly and BPP ⊆ �2, the #P-completeness
of thePermanent, the connection between approximate counting and uniform generation
of solutions, and the randomized reductions of approximate counting to NP and of NP
to solving problems with unique solutions.

Chapter 7: The Bright Side of Hardness. This chapter deals with two conjectures that
are related to P �= NP . The first conjecture is that there are problems in E that are not
solvable by (non-uniform) families of small (say, polynomial-size) circuits, whereas the
second conjecture is equivalent to the notion of one-way functions. Most of this chapter is
devoted to “hardness amplification” results that convert these conjectures into tools that
can be used for non-trivial derandomizations of BPP (resp., for a host of cryptographic
applications).

Chapter 8: Pseudorandom Generators. The pivot of this chapter is the notion of com-
putational indistinguishability and corresponding notions of pseudorandomness. The def-
inition of general-purpose pseudorandom generators (running in polynomial time and
withstanding any polynomial-time distinguisher) is presented as a special case of a gen-
eral paradigm. The chapter also contains a presentation of other instantiations of the
latter paradigm, including generators aimed at derandomizing complexity classes such as
BPP , generators withstanding space-bounded distinguishers, and some special-purpose
generators.

Chapter 9: Probabilistic Proof Systems. This chapter provides a treatment of three types
of probabilistic proof systems: interactive proofs, zero-knowledge proofs, and probabilistic
checkable proofs. The results presented include IP = PSPACE , zero-knowledge proofs
for any NP-set, and the PCP Theorem. For the latter, only overviews of the two different
known proofs are provided.

Chapter 10: Relaxing the Requirements. This chapter provides a treatment of two
types of approximation problems and a theory of average-case (or rather typical-case)
complexity. The traditional type of approximation problem refers to search problems and
consists of a relaxation of standard optimization problems. The second type is known
as “property testing” and consists of a relaxation of standard decision problems. The
theory of average-case complexity involves several non-trivial definitional choices (e.g.,
an adequate choice of the class of distributions).

Appendix A: Glossary of Complexity Classes. The glossary provides self-contained
definitions of most complexity classes mentioned in the book.

Appendix B: On the Quest for Lower Bounds. The first part, devoted to Circuit Com-
plexity, reviews lower bounds for the size of (restricted) circuits that solve natural compu-
tational problems. The second part, devoted to Proof Complexity, reviews lower bounds
on the length of (restricted) propositional proofs of natural tautologies.

10

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88473-0 - Computational Complexity: A Conceptual Perspective
Oded Goldreich
Excerpt
More information

http://www.cambridge.org/052188473X
http://www.cambridge.org
http://www.cambridge.org

