
Chapter I

INTRODUCTION

I.1. The Main Question

The purpose of this book is to use the tools of mathematical logic to
study certain problems in foundations of mathematics. We are especially
interested in the question of which set existence axioms are needed to
prove the known theorems of mathematics.
The scope of this initial question is very broad, but we can narrow it
down somewhat by dividing mathematics into two parts. On the one hand
there is set-theoretic mathematics, and on the other hand there is what
we call “non-set-theoretic” or “ordinary” mathematics. By set-theoretic
mathematicswemean those branches of mathematics that were created by
the set-theoretic revolution which took place approximately a century ago.
We have in mind such branches as general topology, abstract functional
analysis, the study of uncountable discrete algebraic structures, and of
course abstract set theory itself.
We identify as ordinary or non-set-theoretic that body of mathemat-
ics which is prior to or independent of the introduction of abstract set-
theoretic concepts. We have in mind such branches as geometry, number
theory, calculus, differential equations, real and complex analysis, count-
able algebra, the topology of complete separable metric spaces, mathe-
matical logic, and computability theory.
The distinction between set-theoretic and ordinary mathematics cor-
responds roughly to the distinction between “uncountable mathematics”
and “countable mathematics”. This formulation is valid if we stipulate
that “countable mathematics” includes the study of possibly uncountable
complete separable metric spaces. (A metric space is said to be separable
if it has a countable dense subset.) Thus for instance the study of continu-
ous functions of a real variable is certainly part of ordinary mathematics,
even though it involves an uncountable algebraic structure, namely the
real number system. The point is that in ordinary mathematics, the real
line partakes of countability since it is always viewed as a separable metric
space, never as being endowed with the discrete topology.
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2 I. Introduction

In this book we want to restrict our attention to ordinary, non-set-
theoretic mathematics. The reason for this restriction is that the set exis-
tence axioms which are needed for set-theoretic mathematics are likely to
be much stronger than those which are needed for ordinary mathematics.
Thus our broad set existence question really consists of two subquestions
which have little to dowith each other. Furthermore, while nobody doubts
the importance of strong set existence axioms in set theory itself and in
set-theoretic mathematics generally, the role of set existence axioms in
ordinary mathematics is much more problematical and interesting.
We therefore formulate ourMain Question as follows: Which set exis-
tence axioms are needed to prove the theorems of ordinary, non-set-theoretic
mathematics?
In any investigation of the Main Question, there arises the problem
of choosing an appropriate language and appropriate set existence ax-
ioms. Since in ordinarymathematics the objects studied are almost always
countable or separable, it would seem appropriate to consider a language
in which countable objects occupy center stage. For this reason, we study
the Main Question in the context of the language of second order arith-
metic. This language is denoted L2 and will be described in the next
section. All of the set existence axioms which we consider in this book
will be expressed as formulas of the language L2.

I.2. Subsystems of Z2

In this section we define Z2, the formal system of second order arith-
metic. We also introduce the concept of a subsystem of Z2.
The language of second order arithmetic is a two-sorted language. This
means that there are two distinct sorts of variables which are intended
to range over two different kinds of object. Variables of the first sort
are known as number variables, are denoted by i, j, k,m, n, . . . , and are
intended to range over the set � = {0, 1, 2, . . . } of all natural numbers.
Variables of the second sort are known as set variables, are denoted by
X,Y,Z, . . . , and are intended to range over all subsets of �.
The terms and formulas of the language of second order arithmetic are
as follows. Numerical terms are number variables, the constant symbols
0 and 1, and t1 + t2 and t1 · t2 whenever t1 and t2 are numerical terms.
Here + and · are binary operation symbols intended to denote addition
and multiplication of natural numbers. (Numerical terms are intended
to denote natural numbers.) Atomic formulas are t1 = t2, t1 < t2, and
t1 ∈ X where t1 and t2 are numerical terms andX is any set variable. (The
intended meanings of these respective atomic formulas are that t1 equals
t2, t1 is less than t2, and t1 is an element of X .) Formulas are built up
from atomic formulas by means of propositional connectives ∧, ∨, ¬,→,

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88439-6 - Subsystems of Second Order Arithmetic, Second Edition
Stephen G. Simpson
Excerpt
More information

http://www.cambridge.org/9780521884396
http://www.cambridge.org
http://www.cambridge.org


I.2. Subsystems of Z2 3

↔ (and, or, not, implies, if and only if), number quantifiers ∀n, ∃n (for all
n, there exists n), and set quantifiers ∀X , ∃X (for all X , there exists X ).
A sentence is a formula with no free variables.

Definition I.2.1 (language of second order arithmetic). L2 is defined
to be the language of second order arithmetic as described above.

Inwriting terms and formulas of L2, we shall use parentheses and brack-
ets to indicate grouping, as is customary in mathematical logic textbooks.
We shall also use some obvious abbreviations. For instance, 2 + 2 = 4
stands for (1 + 1) + (1 + 1) = ((1 + 1) + 1) + 1, (m + n)2 /∈ X stands for
¬((m + n) · (m + n) ∈ X ), s ≤ t stands for s < t ∨ s = t, and ϕ ∧ � ∧ �
stands for (ϕ ∧ �) ∧ �.
The semantics of the language L2 are given by the following definition.

Definition I.2.2 (L2-structures). Amodel forL2, also called a structure
for L2 or an L2-structure, is an ordered 7-tuple

M = (|M |,SM ,+M, ·M , 0M, 1M,<M ),
where |M | is a set which serves as the range of the number variables, SM is
a set of subsets of |M | serving as the range of the set variables, +M and ·M
are binary operations on |M |, 0M and 1M are distinguished elements of
|M |, and <M is a binary relation on |M |. We always assume that the sets
|M | and SM are disjoint and nonempty. Formulas of L2 are interpreted
inM in the obvious way.

In discussing a particular model M as above, it is useful to consider
formulas with parameters from |M |∪SM . We make the following slightly
more general definition.

Definition I.2.3 (parameters). Let B be any subset of |M | ∪ SM . By
a formula with parameters from B we mean a formula of the extended
language L2(B). Here L2(B) consists of L2 augmented by new constant
symbols corresponding to the elements ofB. By a sentencewith parameters
from B we mean a sentence of L2(B), i.e., a formula of L2(B) which has
no free variables.
In the language L2(|M | ∪ SM ), constant symbols corresponding to
elements ofSM (respectively |M |) are treated syntactically as unquantified
set variables (respectively unquantified number variables). Sentences and
formulas with parameters from |M | ∪ SM are interpreted in M in the
obvious way. A set A ⊆ |M | is said to be definable over M allowing
parameters from B if there exists a formula ϕ(n) with parameters from B
and no free variables other than n such that

A = {a ∈ |M | : M |= ϕ(a)}.
HereM |= ϕ(a) means thatM satisfies ϕ(a), i.e., ϕ(a) is true inM .
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4 I. Introduction

We now discuss some specific L2-structures. The intended model for L2
is of course the model

(�,P(�),+, ·, 0, 1, <)
where � is the set of natural numbers, P(�) is the set of all subsets of �,
and +, ·, 0, 1, < are as usual. By an �-model we mean an L2-structure of
the form

(�,S,+, ·, 0, 1, <)
where ∅ �= S ⊆ P(�). Thus an �-model differs from the intended model
only by having a possibly smaller collection S of sets to serve as the range
of the set variables. We sometimes speak of the�-model S when we really
mean the�-model (�,S,+, ·, 0, 1, <). In some parts of this book we shall
be concerned with a special class of �-models known as �-models. This
class will be defined in §I.5.
We now present the formal system of second order arithmetic.

Definition I.2.4 (second order arithmetic). The axioms of second or-
der arithmetic consist of theuniversal closures of the followingL2-formulas:

(i) basic axioms:
n + 1 �= 0
m + 1 = n + 1→ m = n
m + 0 = m
m + (n + 1) = (m + n) + 1
m · 0 = 0
m · (n + 1) = (m · n) +m
¬m < 0
m < n + 1↔ (m < n ∨m = n)

(ii) induction axiom:

(0 ∈ X ∧ ∀n (n ∈ X → n + 1 ∈ X ))→ ∀n (n ∈ X )
(iii) comprehension scheme:

∃X ∀n (n ∈ X ↔ ϕ(n))
where ϕ(n) is any formula of L2 in which X does not occur freely.

Intuitively, the given instance of the comprehension scheme says that
there exists a set X = {n : ϕ(n)} = the set of all n such that ϕ(n) holds.
This set is said to be defined by the given formula ϕ(n). For example, if
ϕ(n) is the formula ∃m (m + m = n), then this instance of the compre-
hension scheme asserts the existence of the set of even numbers.
In the comprehension scheme, ϕ(n) may contain free variables in ad-
dition to n. These free variables may be referred to as parameters of this
instance of the comprehension scheme. Such terminology is in harmony
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I.2. Subsystems of Z2 5

with definition I.2.3 and the discussion following it. For example, taking
ϕ(n) to be the formula n /∈ Y , we have an instance of comprehension,

∀Y ∃X ∀n (n ∈ X ↔ n /∈ Y ),

asserting that for any given set Y there exists a set X = the complement
of Y . Here the variable Y plays the role of a parameter.
Note that an L2-structure M satisfies I.2.4(iii), the comprehension
scheme, if and only if SM contains all subsets of |M | which are defin-
able over M allowing parameters from |M | ∪ SM . In particular, the
comprehension scheme is valid in the intended model. Note also that the
basic axioms I.2.4(i) and the induction axiom I.2.4(ii) are valid in any
�-model. In fact, any �-model satisfies the full second order induction
scheme, i.e., the universal closure of

(ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n + 1)))→ ∀n ϕ(n),

where ϕ(n) is any formula of L2. In addition, the second order induction
scheme is valid in any model of I.2.4(ii) plus I.2.4(iii).
By second order arithmetic we mean the formal system in the language
L2 consisting of the axioms of second order arithmetic, together with all
formulas of L2 which are deducible from those axioms by means of the
usual logical axioms and rules of inference. The formal system of second
order arithmetic is also known as Z2, for obvious reasons, or Π1∞-CA0,
for reasons which will become clear in §I.5.
In general, a formal system is defined by specifying a language and some
axioms. Any formula of the given language which is logically deducible
from the given axioms is said to be a theorem of the given formal system.
At all times we assume the usual logical rules and axioms, including
equality axioms and the law of the excluded middle.
This book will be largely concerned with certain specific subsystems of
second order arithmetic and the formalization of ordinary mathematics
within those systems. By a subsystem of Z2 we mean of course a formal
system in the language L2 each of whose axioms is a theorem of Z2. When
introducing a new subsystem of Z2, we shall specify the axioms of the
system by writing down some formulas of L2. The axioms are then taken
to be the universal closures of those formulas.
If T is any subsystem of Z2, a model of T is any L2-structure satisfying
the axioms of T . By Gödel’s completeness theorem applied to the two-
sorted language L2, we have the following important principle: A given
L2-sentence � is a theorem of T if and only if all models of T satisfy �.
An �-model of T is of course any �-model which satisfies the axioms
of T , and similarly a �-model of T is any �-model satisfying the axioms
of T . Chapters VII, VIII, and IX of this book constitute a thorough
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6 I. Introduction

study of models of subsystems of Z2. Chapter VII is concerned with �-
models, chapter VIII is concerned with �-models other than �-models,
and chapter IX is concerned with models other than �-models.
All of the subsystems of Z2 which we shall consider consist of the basic
axioms I.2.4(i), the induction axiom I.2.4(ii), and some set existence ax-
ioms. The various subsystemswill differ from each other only with respect
to their set existence axioms. Recall from §I.1 that our Main Question
concerns the role of set existence axioms in ordinary mathematics. Thus,
a principal theme of this book will be the formal development of specific
portions of ordinary mathematics within specific subsystems of Z2. We
shall see that subsystems of Z2 provide a setting in which the Main Ques-
tion can be investigated in a precise and fruitful way. Although Z2 has
infinitely many subsystems, it will turn out that only a handful of them
are useful in our study of the Main Question.

Notes for §I.2. The formal systemZ2 of second order arithmetic was intro-
duced in Hilbert/Bernays [115] (in an equivalent form, using a somewhat
different language and axioms). The development of a portion of ordinary
mathematics within Z2 is outlined in Supplement IV of Hilbert/Bernays
[115]. The present bookmay be regarded as a continuation of the research
begun by Hilbert and Bernays.

I.3. The System ACA0

The previous section contained generalities about subsystems of Z2.
The purpose of this section is to introduce a particular subsystem of Z2
which is of central importance, namely ACA0.
In our designation ACA0, the acronym ACA stands for arithmetical
comprehension axiom. This is because ACA0 contains axioms asserting
the existence of any set which is arithmetically definable from given sets
(in a sense to be made precise below). The subscript 0 denotes restricted
induction. This means that ACA0 does not include the full second order
induction scheme (as defined in §I.2). We assume only the induction
axiom I.2.4(ii).
We now proceed to the definition of ACA0.

Definition I.3.1 (arithmetical formulas). A formula of L2, or more
generally a formula of L2(|M | ∪ SM ) where M is any L2-structure, is
said to be arithmetical if it contains no set quantifiers, i.e., all of the
quantifiers appearing in the formula are number quantifiers.
Note that arithmetical formulas of L2 may contain free set variables, as
well as free and bound number variables and number quantifiers. Arith-
metical formulas of L2(|M |∪SM )may additionally contain set parameters
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I.3. The System ACA0 7

and number parameters, i.e., constant symbols denoting fixed elements of
SM and |M | respectively.
Examples of arithmetical formulas of L2 are

∀n (n ∈ X → ∃m (m +m = n)),
asserting that all elements of the set X are even, and

∀m ∀k (n = m · k → (m = 1 ∨ k = 1)) ∧ n > 1 ∧ n ∈ X,
asserting that n is a prime number and is an element of X . An example
of a non-arithmetical formula is

∃Y ∀n (n ∈ X ↔ ∃i ∃j (i ∈ Y ∧ j ∈ Y ∧ i + n = j))
asserting that X is the set of differences of elements of some set Y .

Definition I.3.2 (arithmetical comprehension). The arithmetical com-
prehension scheme is the restriction of the comprehension scheme I.2.4(iii)
to arithmetical formulas ϕ(n). Thus we have the universal closure of

∃X ∀n (n ∈ X ↔ ϕ(n))
whenever ϕ(n) is a formula of L2 which is arithmetical and in which X
does not occur freely. ACA0 is the subsystem of Z2 whose axioms are the
arithmetical comprehension scheme, the induction axiom I.2.4(ii), and
the basic axioms I.2.4(i).

Note that an L2-structure

M = (|M |,SM ,+M, ·M , 0M, 1M,<M )
satisfies the arithmetical comprehension scheme if and only if SM contains
all subsets of |M | which are definable over M by arithmetical formulas
with parameters from |M | ∪ SM . Thus, a model of ACA0 is any such
L2-structure which in addition satisfies the induction axiom and the basic
axioms.
An easy consequence of the arithmetical comprehension scheme and
the induction axiom is the arithmetical induction scheme:

(ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n + 1)))→ ∀n ϕ(n)
for all L2-formulas ϕ(n) which are arithmetical. Thus anymodel of ACA0

is also a model of the arithmetical induction scheme. (Note however that
ACA0 does not include the second order induction scheme, as defined in
§I.2.)
Remark I.3.3 (first order arithmetic). We wish to remark that there is
a close relationship between ACA0 and first order arithmetic. Let L1 be
the language of first order arithmetic, i.e., L1 is just L2 with the set variables
omitted. First order arithmetic is the formal system Z1 whose language
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8 I. Introduction

is L1 and whose axioms are the basic axioms I.2.4(i) plus the first order
induction scheme:

(ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n + 1)))→ ∀n ϕ(n)
for all L1-formulasϕ(n). In the literature ofmathematical logic, first order
arithmetic is sometimes known as Peano arithmetic, PA. By the previous
paragraph, every theorem of Z1 is a theorem of ACA0. In model-theoretic
terms, this means that for any model (|M |,SM ,+M, ·M, 0M, 1M,<M ) of
ACA0, its first order part (|M |,+M , ·M, 0M, 1M,<M ) is a model of Z1. In
§IX.1 we shall prove a converse to this result: Given a model

(|M |,+M , ·M, 0M, 1M,<M ) (1)

of first order arithmetic, we can find SM ⊆ P(|M |) such that
(|M |,SM ,+M, ·M, 0M, 1M,<M )

is a model of ACA0. (Namely, we can take SM = Def(M ) = the set of all
A ⊆ |M | such thatA is definable over (1) allowing parameters from |M |.)
It follows that, for any L1-sentence �, � is a theorem of ACA0 if and only
if � is a theorem of Z1. In other words, ACA0 is a conservative extension
of first order arithmetic. This may also be expressed by saying that Z1, or
equivalently PA, is the first order part of ACA0. For details, see §IX.1.
Remark I.3.4 (�-models of ACA0). Assuming familiarity with some
basic concepts of recursive function theory, we can characterize the �-
models of ACA0 as follows. S ⊆ P(�) is an �-model of ACA0 if and only
if

(i) S �= ∅;
(ii) A ∈ S and B ∈ S imply A⊕ B ∈ S;
(iii) A ∈ S and B ≤T A imply B ∈ S;
(iv) A ∈ S implies TJ(A) ∈ S.
(This result is proved in §VIII.1.)
Here A⊕ B is the recursive join of A and B, defined by

A⊕ B = {2n : n ∈ A} ∪ {2n + 1: n ∈ B}.
B ≤T Ameans that B is Turing reducible toA, i.e., B is recursive in A, i.e.,
the characteristic function of B is computable assuming an oracle for the
characteristic function of A. TJ(A) denotes the Turing jump of A, i.e., the
complete recursively enumerable set relative to A.
In particular, ACA0 has a minimum (i.e., unique smallest) �-model,
namely

ARITH = {A ∈ P(�) : ∃n ∈ � (A ≤T TJ(n, ∅))},
where TJ(n,X ) is defined inductively by TJ(0, X ) = X , TJ(n + 1, X ) =
TJ(TJ(n,X )). More generally, given a set B ∈ P(�), there is a unique
smallest �-model of ACA0 containing B, consisting of all sets which are
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I.4. Mathematics within ACA0 9

arithmetical in B. (For A,B ∈ P(�), we say that A is arithmetical in B
if A ≤T TJ(n,B) for some n ∈ �. This is equivalent to saying that A is
definable in some or any �-model (�,S,+, ·, 0, 1, <), B ∈ S ⊆ P(�), by
an arithmetical formula with B as a parameter.)
Models of ACA0 are discussed further in §§VIII.1, IX.1, and IX.4. The
development of ordinary mathematics within ACA0 is discussed in §I.4
and in chapters II, III, and IV.

Notes for §I.3. By remark I.3.3, the system ACA0 is closely related to first
order arithmetic. First order arithmetic is one of the best known and
most studied formal systems in the literature of mathematical logic. See
for instance Hilbert/Bernays [115], Mendelson [185, chapter 3], Takeuti
[261, chapter 2], Shoenfield [222, chapter 8], Hájek/Pudlák [100], and
Kaye [137]. By remark I.3.4,�-models ofACA0 are closely related to basic
concepts of recursion theory such as relative recursiveness, the Turing
jump operator, and the arithmetical hierarchy. For an introduction to
these concepts, see for instance Rogers [208, chapters 13–15], Shoenfield
[222, chapter 7], Cutland [43], or Lerman [161, chapters I–III].

I.4. Mathematics within ACA0

The formal system ACA0 was introduced in the previous section. We
now outline the development of certain portions of ordinary mathematics
within ACA0. The material presented in this section will be restated and
greatly refined and extended in chapters II, III, and IV. The present
discussion is intended as a partial preview of those chapters.
IfX andY are set variables, we useX = Y andX ⊆ Y as abbreviations
for the formulas ∀n (n ∈ X ↔ n ∈ Y ) and ∀n (n ∈ X → n ∈ Y )
respectively.
Within ACA0, we define N to be the unique set X such that ∀n (n ∈ X ).
(The existence of this set follows fromarithmetical comprehension applied
to the formula ϕ(n) ≡ n = n.) Thus, in any model

M = (|M |,SM ,+M, ·M , 0M, 1M,<M )
of ACA0, N denotes |M |, the set of natural numbers in the sense of M ,
and we have |M | ∈ SM . We shall distinguish between N and �, reserving
� to denote the set of natural numbers in the sense of “the real world,”
i.e., the metatheory in which we are working, whatever that metatheory
might be.
Within ACA0, we define a numerical pairing function by

(m, n) = (m + n)2 +m.

Within ACA0 we can prove that, for allm, n, i, j ∈ N, (m, n) = (i, j) if and
only if m = i and n = j. Moreover, using arithmetical comprehension,
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10 I. Introduction

we can prove that for all sets X,Y ⊆ N, there exists a set X × Y ⊆ N
consisting of all (m, n) such thatm ∈ X and n ∈ Y . In particular we have
N × N ⊆ N.
For X,Y ⊆ N, a function f : X → Y is defined to be a set f ⊆ X × Y
such that for all m ∈ X there is exactly one n ∈ Y such that (m, n) ∈ f.
Form ∈ X , f(m) is defined to be the unique n such that (m, n) ∈ f. The
usual properties of such functions can be proved in ACA0. In particular,
we have primitive recursion. This means that, given f : X → Y and
g : N × X × Y → Y , there is a unique h : N × X → Y defined by
h(0, m) = f(m), h(n+1, m) = g(n,m, h(n,m)) for all n ∈ N andm ∈ X .
The existence of h is proved by arithmetical comprehension, and the
uniqueness of h is proved by arithmetical induction. (For details, see
§II.3.) In particular, we have the exponential function exp(m, n) = mn ,
defined by m0 = 1, mn+1 = mn ·m for all m, n ∈ N. The usual properties
of the exponential function can be proved in ACA0.
In developing ordinary mathematics within ACA0, our first major task
is to set up the number systems, i.e., the natural numbers, the integers, the
rational number system, and the real number system.
The natural number system is essentially already given to us by the lan-
guage and axiomsofACA0. Thus, withinACA0, a natural number is defined
to be an element of N, and the natural number system is defined to be the
structure N,+N, ·N, 0N, 1N, <N,=N, where +N : N × N → N is defined by
m+Nn = m+n, etc. (Thus for instance+N is the set of triples ((m, n), k) ∈
(N × N) × N such that m + n = k. The existence of this set follows
from arithmetical comprehension.) This means that, when we are work-
ing within any particular modelM = (|M |,SM ,+M, ·M , 0M, 1M,<M ) of
ACA0, a natural number is any element of |M |, and the role of the natural
number system is played by |M |,+M , ·M, 0M, 1M,<M,=M . (Here =M is
the identity relation on |M |.)
Basic properties of the natural number system, such as uniqueness of
prime power decomposition, can be proved in ACA0 using arithmetical
induction. (Here one can follow the usual development within first order
arithmetic, as presented in textbooks ofmathematical logic. Alternatively,
see chapter II.)
In order to define the set Z of integers within (any model of) ACA0, we
first use arithmetical comprehension to prove the existence of an equiv-
alence relation ≡Z⊆ (N × N) × (N × N) defined by (m, n) ≡Z (i, j) if
and only if m + j = n + i . We then use arithmetical comprehension
again, this time with ≡Z as a parameter, to prove the existence of the set
Z consisting of all (m, n) ∈ N × N such that that (m, n) is the minimum
element of its equivalence class with respect to ≡Z. (Here minimality
is taken with respect to <N, using the fact that N × N is a subset of
N. Thus Z consists of one element of each ≡Z-equivalence class.) De-
fine +Z : Z × Z → Z by letting (m, n) +Z (i, j) be the unique element
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