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Randomized algorithms have become a central part of the algorithms curriculum based
on their increasingly widespread use in modern applications.

This book presents a coherent and unified treatment of probabilistic techniques for
obtaining high probability estimates on the performance of randomized algorithms. It
covers the basic toolkit from the Chernoff-Hoeffding bounds to more sophisticated
techniques like martingales and isoperimetric inequalities, as well as some recent devel-
opments like Talagrand’s inequality, transportation cost inequalities and log-Sobolev in-
equalities. Along the way, variations on the basic theme are examined, such as Chernoff—
Hoeffding bounds in dependent settings. The authors emphasise comparative study of
the different methods, highlighting respective strengths and weaknesses in concrete
example applications.

The exposition is tailored to discrete settings sufficient for the analysis of algorithms,
avoiding unnecessary measure-theoretic details, thus making the book accessible to
computer scientists as well as probabilists and discrete mathematicians.
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Preface

The aim of this book is to provide a body of tools for establishing concentration
of measure that is accessible to researchers working in the design and analysis
of randomized algorithms.

Concentration of measure refers to the phenomenon that a function of a
large number of random variables tends to concentrate its values in a rela-
tively narrow range (under certain conditions of smoothness of the function
and under certain conditions of the dependence amongst the set of random
variables). Such a result is of obvious importance to the analysis of randomized
algorithms: for instance, the running time of such an algorithm can then be
guaranteed to be concentrated around a pre-computed value. More generally,
various other parameters measuring the performance of randomized algorithms
can be provided tight guarantees via such an analysis.

In a sense, the subject of concentration of measure lies at the core of modern
probability theory as embodied in the laws of large numbers, the central limit
theorem and, in particular, the theory of large deviations [26]. However, these
results are asymptotic: they refer to the limit as the number of variables n
goes to infinity, for example. In the analysis of algorithms, we typically require
quantitative estimates that are valid for finite (though large) values of n. The
earliest such results can be traced back to the work of Azuma, Chernoff and
Hoeffding in the 1950s. Subsequently, there have been steady advances, partic-
ularly in the classical setting of martingales. In the last couple of decades, these
methods have taken on renewed interest, driven by applications in algorithms
and optimisation. Also several new techniques have been developed.

Unfortunately, much of this material is scattered in the literature, and also
rather forbidding for someone entering the field from a computer science or
algorithms background. Often this is because the methods are couched in the
technical language of analysis and/or measure theory. Although this may be
strictly necessary to develop results in their full generality, it is not needed when

Xi
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xii Preface

the method is used in computer science applications (where the probability
spaces are often finite and discrete), and indeed may serve only as a distraction
or barrier.

Our main goal here is to give an exposition of the basic and more advanced
methods for measure concentration in a manner that is accessible to the re-
searcher in randomized algorithms and enables him or her to quickly start
putting them to work in his or her application.

Book Outline

The book falls naturally into two parts. The first part contains the core bread-
and-butter methods that we believe belong as an absolutely essential ingredient
in the toolkit of a researcher in randomized algorithms today. Chapters 1 and 2
start with the basic Chernoff-Hoeffding bound on the sum of bounded indepen-
dent random variables and give several applications. This topic is now covered
in other recent books, and we therefore give several examples not covered there
and refer the reader to these books, which can be read profitably together with
this one (see suggestions given later). In Chapter 3, we give four versions of the
Chernoff-Hoeffding bound in situations in which the random variables are not
independent — this often is the case in the analysis of algorithms. Chapter 4 is
a small interlude on probabilistic recurrences which can often give very quick
estimates of tail probabilities based only on expectations.

The next series of chapters, Chapters 5-8, is devoted to a powerful extension
of the Chernoff-Hoeffding bound to arbitrary functions of random variables
(rather than just the sum) and where the assumption of independence can be
relaxed somewhat. This is achieved via the concept of a martingale. These
methods are by now rightly perceived as being fundamental in algorithmic
applications and have begun to appear, albeit very scantily, in introductory
books such as [74] and, more thoroughly, in the more recent [72]. Our treatment
here is far more comprehensive and nuanced, and at the same time also very
accessible to the beginner. We offer a host of relevant examples in which the
various methods are seen in action.

Chapter 5 gives an introduction to the basic definition and theory of mar-
tingales leading to Azuma’s inequality. The concept of martingales, as found
in probability textbooks, poses quite a barrier to the computer scientist who
is unfamiliar with the language of filters, partitions and measurable sets from
measure theory. We are able to dispense with the measure-theoretic baggage
entirely and keep to very elementary discrete probability. Chapters 68 are
devoted to a set of nicely packaged inequalities based on martingales that are
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Preface xiii

deployed with a host of applications. One of the special features of our exposi-
tion is our introduction of a very useful concept in probability called coupling
and our demonstration of how it can be used to great advantage in working
with these inequalities.

Chapter 9 is another short interlude containing an introduction to some
recent specialised methods that were very successful in analysing certain key
problems in random graphs.

We end Part I with Chapter 10, which is an introduction to isoperimetric in-
equalities that are a common setting for results on the concentration of measure.
This lays the groundwork for the methods in Part II.

Part II of the book, Chapters 11-14, contains some more advanced tech-
niques and recent developments. Here we systematise and make accessible
some very useful tools that appear scattered in the literature and are couched
in terms quite unfamiliar to computer scientists. From this (for a computer
scientist) arcane body of work we distill out what is relevant and useful for
algorithmic applications, using many non-trivial examples showing how these
methods can be put to good use.

Chapter 11 is an introduction to Talagrand’s isoperimetric theory, a theory
developed in his 1995 epic, which proved a major landmark in the subject and
led to the resolution of some outstanding open problems. We give a statement
of the inequality that is simpler, at least conceptually, than the ones usually
found in the literature. Yet, the simpler statement is sufficient for all the known
applications, several of which are given in the book.

In Chapter 12, we give an introduction to an approach from information
theory, via the so-called transportation cost inequalities, which yields very
elegant proofs of the isoperimetric inequalities in Chapter 10. This approach, as
shown by Kati Marton, extends in an elegant way to prove Talagrand’s isoperi-
metric inequality, and we give an account of this in Chapter 13. In Chapter 14,
we give an introduction to another approach from information theory that leads
to concentration inequalities — the so-called entropy method or log-Sobolev
inequalities. This approach too yields short proofs of Talagrand’s inequality,
and we also revisit the method of bounded differences in a different light.

How to Use the Book

This book is, we hope, a self-contained, comprehensive and quite accessible
resource for any person with a typical computer science or mathematics back-
ground who is interested in applying concentration of measure methods in the
design and analysis of randomized algorithms.
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xiv Preface

This book can also be used in an advanced course in randomized algorithms
(or related courses) to supplement and complement some well-established
textbooks. For instance, we recommend using it for a course in the following
fields:

Randomized algorithms together with
e R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, Cambridge, 1995.
e M. Mitzenmacher and E. Upfal. Probability and Computing.
Cambridge University Press, Cambridge, 2005.
Probabilistic combinatorics together with the classic
e N. Alon and J. Spencer. The Probabilistic Method, second edition.
John Wiley, Hoboken, NJ, 2000.
Graph colouring together with
e M. Molloy and B. Reed. Graph Coloring and the Probabilistic
Method. Springer, New York, 2002.
Random graphs together with
e S.Janson, T. Luczak, and A. Rucinski. Random Graphs. John Wiley,
Hoboken, NJ, 2000.
Large-deviation theory together with
e F. den Hollander. Large Deviations. Fields Institute Monograph.
American Mathematical Society, Providence, RI, 2000.
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