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1
Chernoff-Hoeffding Bounds

1.1 What Is “Concentration of Measure”?

The basic idea of concentration of measure is well illustrated by the simplest of
random experiments, and one lying at the fountainhead of probability theory:
coin tossing. If we toss a fair coin once, the result is completely unpredictable —
it can be “heads” or “tails” with equal probability. Now suppose that we toss the
same coin a large number of times, say, a thousand times. The outcome is now
sharply predictable! Namely, the number of heads is “very likely to be around
500”. This apparent paradox, which is nevertheless familiar to everybody, is
an instance of the phenomenon of the concentration of measure — although
there are potentially a large number of possibilities, those that are likely to be
observed are concentrated in a very narrow range, hence sharply predictable.

In more sophisticated forms, the phenomenon of the concentration of mea-
sure underlies much of our physical world. As we know now, the world is made
up of microscopic particles that are governed by probabilistic laws — those of
quantum and statistical physics. The reason why the macroscopic properties
determined by these large ensembles of particles nevertheless appear deter-
ministic when viewed on our larger scales is precisely the concentration of
measure: the observed possibilities are concentrated into a very narrow range.

Given the obvious importance of the phenomenon, it is no surprise that large
parts of treatises on probability theory are devoted to its study. The various “laws
of large numbers” and the “central limit theorem” are some of the most central
results of modern probability theory.

In this book we use the phenomenon of concentration of measure in the
analysis of probabilistic algorithms. In analogy with the physical situation
described earlier, we can argue that the observable behaviour of randomized
algorithms is “almost deterministic”. In this way, we can obtain the satisfaction
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2 1 Chernoff-Hoeffding Bounds

of deterministic results, and at the same time retain the benefits of randomized
algorithms, namely their simplicity and efficiency.

In slightly more technical terms, the basic problem we want to study in this
book is this: Given a random variable X with mean E[ X ], what is the probability
that X deviates far from its expectation? Furthermore, we want to understand
under what conditions the random variable X stays almost constant or, put in a
different way, when large deviations from the mean are highly unlikely. This is
the case for the familiar example of repeated coin tosses, but, as we shall see,
it is a more general phenomenon.

There are several reasons why classical results from probability theory are
somewhat inadequate or inappropriate for studying these questions:

e First and foremost, the results in probability theory are asymptotic limit
laws applying in the infinite limit case. We are interested in laws that apply
in finite cases.

e The probability theory results are often qualitative: they ensure
convergence in the limit, but do not consider the rate of convergence. We
are interested in quantitative laws that determine the rate of convergence,
or at least good bounds on it.

e The laws of probability theory are classically stated under the assumption
of independence. This is a very natural and reasonable assumption in
probability theory, and it greatly simplifies the statement and proofs of the
results. However, in the analysis of randomized algorithms, the outcome of
which is the result of a complicated interaction of various processes,
independence is the exception rather than the rule. Hence, we are interested
in laws that are valid even without independence, or when certain known
types of dependences are obtained.

We shall now embark on the development of various tools and techniques that
meet these criteria.

1.2 The Binomial Distribution

Let us start with an analysis of the simple motivating example of coin tossing.
The number of “heads” or successes in repeated tosses of a fair coin is a
very important distribution because it models a very basic paradigm of the
probabilistic method, namely to repeat experiments to boost confidence.

Let us analyse the slightly more general case of the number of “heads”
in n trials with a coin of bias p, with 0 < p <1, i.e. Pr[Heads] = p and
Pr[Tails] = 1 — p. This is a random variable B(n, p) whose distribution is
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1.3 The Chernoff Bound 3

called the binomial distribution with parameters n and p:

Pr[B(n, p) =i] = (’Z),f‘q"—", 0<i<n. (1.1)

The general problem defined in the previous section now becomes as follows:
In the binomial case the expectationis E [ B(n, p)] = np; we want to get a bound
on the probability that the variable does not deviate too far from this expected
value. Are such large deviations unlikely for B(n, p)? A direct computation
of the probabilities Pr[B(n, p) > k] = Y., (7)p'q" " is far too unwieldy.
However, see Problem 1.2 for a neat trick that yields a good bound. We shall
now introduce a general method that successfully solves our problem and is

versatile enough to apply to many other problems we will encounter.

1.3 The Chernoff Bound

The random variable B(n, p) can be written as a sum X := )
introducing the indicator random variables X;, i € [n] defined by

ie[n] Xis by
¥ - {1 if the ith trial is a success,
i =

0 otherwise.

The basic Chernoff technique that we develop now applies in many situations
where such a decomposition as a sum is possible.

The trick is to consider the so-called moment-generating function of X,
defined as E[e*¥] where A > 0 is a parameter. By formal expansion of the
Taylor series, we see that

E[¢’X]=E [Z ?—:X'}

i>0
A ‘
=Y —E[X].
i!
i>0

This explains the name as the function E[¢**] is the exponential generating
function of all the moments of X — it “packs” all the information about the
moments of X into one function.

Now, for any A > 0, we have

Pr[X > m] = Pr[e** > M)

E[EAX]
6)‘”’

<

. (1.2)
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4 1 Chernoff-Hoeffding Bounds

The last step follows by Markov’s inequality: for any non-negative random
variable X, Pr[X > a] < E[X]/a.
Let us compute the moment-generating function for our example:

E[e"*] = E[¢* &1 %]
=E |:l—[ e)‘x"j|

=[] Ele"*] by independence

= (pe" +q)". (1.3)

Substituting this back into (1.2), and using the parametrisation m := (p + t)n
which leads to a convenient statement of the bound, we get

pe* +61)"

Pr[X > m] < < )

We can now pick A > 0 to minimise the value within the parentheses and by a
simple application of calculus, we arrive at the basic Chernoff bound:

Pr[X > (p + ] < ((#)W (#)q_)n

p+t

=exp(—(p+t)ln —(q—t)lnq;t) L (14

What shall we make of this mess? Certainly, this is not the most convenient
form of the bound for use in applications! In Section 1.6 we derive much simpler
and more intelligible formulae that can be used in applications. Now, we shall
pause for a while and take a short detour to make some remarks on (1.4). This
is for several reasons. First, it is the strongest form of the bound. Second, and
more importantly, this same bound appears in many other situations. This is no
accident for it is a very natural and insightful bound — when properly viewed!
For this, we need a certain concept from information theory.

Given two (discrete) probability distributions p := (p1, ..., py) and q :=
(41, - - -, gn) on a space of cardinality n, the relative entropy distance between
them, H(p, q), is defined by:!

pi
H(p,q) = Z—pi log q_

l

1 Note that when g is the uniform distribution, this is just the usual entropy of the distribution p
up to an additive term of log n.
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1.4 Heterogeneous Variables 5

The expression multiplying # in the exponent in (1.4) is exactly the relative
entropy distance of the distribution p + ¢, ¢ — ¢ from the distribution p, g on
the two-point space {1, 0}. So (1.4) seen from the statistician’s eye states: the
probability of getting the “observed” distribution {p + ¢, ¢ — ¢t} when the a
priori or hypothesis distribution is {p, g} falls exponentially in n times the
relative entropy distance between the two distributions.

By considering —X, we get the same bound symmetrically for Pr[X <

(p —nnl.

1.4 Heterogeneous Variables

As a first example of the versatility of the Chernoff technique, let us consider
the situation where the trials are heterogeneous: probabilities of success at
different trials need not be the same. In this case, Chvatal’s proof in Problem 1.2
is inapplicable, but the Chernoff method works with a simple modification. Let
p; be the probability of success at the ith trial. Then we can repeat the calculation
of the moment-generating function E[e*¥] exactly as in (1.3) except for the last
line to get

Ele*¥] = [ [(pie* + a0 (1.5)

Recall that the arithmetic—geometric mean inequality states that

1 n n 1/n
. Zai = (Hm)
i=1 i=1

for all a; < 0. Now employing the arithmetic—geometric mean inequality, we
get

Ele"*] = [ [(pie* +a1)

- (Z,-(pieA + qi))"

n
= (pe* +q)",

where p := )", p;/n and ¢ := 1 — p. This is the same as (1.3) with p taken
as the arithmetic mean of the p;’s. The rest of the proof is as before, and we
conclude that the basic Chernoff bound (1.4) holds.
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6 1 Chernoff-Hoeffding Bounds

1.5 The Hoeffding Extension

A further extension by the same basic technique is possible to heterogeneous
variables that need not even be discrete. Let X := Zi X;, where each X;,i €
[n], takes values in [0, 1] and has mean p;. To calculate the moment-generating
function ¢**, we need, as before, to compute each individual i, This is no
longer as simple as it was with the case where X; took only two values.

However, the following convexity argument gives a simple upper bound.
The graph of the function e** is convex and hence, in the interval [0, 1], lies
always below the straight line joining the endpoints (0, 1) and (1, ¢*). This line
has the equation y = ax + B where 8 = 1 and a = ¢* — 1. Thus

E[e"] < E[aX; + B]
= pie" +qi.
Thus we have

E[e"*] < [ [Ele"*] < [ [(pie” + a0

which is the same bound as in (1.5), and the rest of the proof is concluded as
before.

1.6 Useful Forms of the Bound

The following forms of the Chernoff-Hoeffding bound are most useful in
applications (see also Problem 1.6).

Theorem 1.1. Let X = Zie[n] X; where X;,i € [n], are independently dis-
tributed in [0, 1]. Then

e Forallt > 0,
Pr[X > E[X] +t],Pr[X < E[X]—1] < e ¥'/". (1.6)

e Fore > (),

Pr[X > (1 + €)E[X]] < exp (—Z—ZE[X]> ;

Pr[X < (1 — €)E[X]] <exp (—%E[X]) . 1.7)
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1.6 Useful Forms of the Bound 7

o Ift > 2¢E[X], then
Pr[X > ] <27". (1.8)

Proof. We shall manipulate the bound in (1.4). Set

1=+ 0m a1

+(g—1t)In .
q

We successively compute

p+t q—1

S P S

p q

f(H)=1n

and

1
(p+0g—1)
Now, f(0) =0 = f’(0), and furthermore f”(¢t) > 4 for all 0 < < g be-

cause xy < 1/4forany two non-negative reals summing to 1. Hence by Taylor’s
theorem with remainder,

[0 =

2
FO = fO+ F O+ /@)%, 0< <1

> 212

This gives, after simple manipulations, the bound (1.6).

Now consider g(x):= f(px). Then g'(x)= pf'(px) and g"(x)=
p*f"(px). Thus, g(0)=0=g'(0) and g"(x) = p*/(p + px)(q — px) =
p/(1 + x) > 2p/3x. Now by Taylor’s theorem, g(x) > px?/3. This gives the
upper tail in (1.7).

For the lower tail in (1.7), set h(x) := g(—x). Then h'(x) = —g'(—x) and
1'(x) = §'(~x). Thus h(0) = 0 = W'(0)and 1 (x) = p*/(p — px)(q + px) =
p. Thus by Taylor’s theorem, 2(x) > px?/2, and this gives the result.

For (1.8), see Problem 1.6. [ |

Often, we would apply the bounds given earlier toasum ), X; where we do not
know the exact values of the expectations E[ X; ] but only upper or lower bounds
on it. In such situations, one can nevertheless apply the Chernoff-Hoeffding
bounds with the known bounds instead, as you should verify in the following
exercise.
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8 1 Chernoff-Hoeffding Bounds

Exercise 1.1. In this exercise, we explore a very useful extension of the
Chernoff-Hoeffding bounds. Suppose X :=Y"_, X; as in Theorem 1.1, and
suppose (i < pu < pg. Show that

(a) Foranyt > (,
Pr(X > pug +t],Pr[X < pup —t] < e 2, (1.9

(b) For0 <e < 1,

&2
Pr[X > (14+e)un] <exp <_?HH> ,

2
Pr[X < (1 —e)ur] <exp <_%ML) .
These bounds are useful because often one only has a bound on the ex-
pectation. You may need to use the following useful and intuitively obvi-
ous fact that we prove in Section 7.4. Let X1, ..., X, be independent ran-
dom variables distributed in [0, 1] with E[X;] = p; for each i € [n]. Let
Yi,...,Y,and Zy, ..., Z, be independent random variables with E[Y;] = g;
and E[Z;] = r; for each i € [n]. Now suppose q; < p; <r; for each i € [n].
Then, if X :=) . X;, Y =) Yyand Z := ), Z;, forany t,

Pr[X > t] <Pr[Z >t], and Pr[X <t] <Pr[Y <t].

1.7 A Variance Bound

Finally, we give an application of the basic Chernoff technique to develop a
form of the bound in terms of the variances of the individual summands — a
form that can be considerably sharper than those derived earlier, and one which
will be especially useful for applications we encounter in later chapters.

Let us return to the basic Chernoff technique with X := X; +--- 4+ X, and
X; €[0, 1] for each i € [n]. Set u; := E[X;] and u := E[X] = >, u;. Then

Pr[X > u+1t]=Pr |:Z(X, — i) > t:|

L

= Pr[e* LiXimii) 5 oM

< E[e)L (X 7,1/,,‘)]/8117

for each A > 0. The last line follows again from Markov’s inequality.
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1.7 A Variance Bound 9

We shall now use the simple inequalities e < 1 + x + x2, for 0 < |x| < 1,
and ¢* > 1 + x. Now, if A max(u;, 1 — u;) < 1 for each i € [n], we have

E[e* ZiXimm)] = 1_[ E[*Xi—1)]
< [EL + 206G — ) + 22X — )]
=[Ja+»6?)

i

2.2
:e)»a’

where o is the variance of X; for each i € [n] and o2 is the variance of X.
Thus,

Pr[X > u+1] < ekz”z/e“,

for A satisfying A max(u;, 1 — ;) < 1foreachi € [n]. By calculus, take A :=
t/20% and we get the bound

—2
Pr(X > pu+1t] <exp (ﬁ) ,
o

for t < 202/ max; max(u;, 1 — ;).

Exercise 1.2. Check that for random variables distributed in [0, 1], this is of
the same form as the Chernoff-Hoeffding bound derived in the previous section
up to constant factors in the exponent. You may need to use the fact that for a
random variable distributed in the interval [a, D], the variance is bounded by
(b —a)*/4

The following bound is often referred to as Bernstein’s inequality:

Theorem 1.2 (Bernstein’s inequality). Let the random variables X1, ..., X,
be independent with X; — E[X;] < b for eachi € [n]. Let X := ), X, and let
o2 =", o7 be the variance of X. Then, for any t > 0,

2
Pr[X > E[X]+¢t] < exp <—m) :

Exercise 1.3. Check that for random variables in [0, 1] and t < 202 /b, this is
roughly the same order bound as we derived earlier.
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10 1 Chernoff-Hoeffding Bounds

In typical applications, the ‘error’ term bt/302 will be negligible. Sup-
pose that the random variables X, ..., X,, have the same bounded distribu-
tion with positive variance ¢, so 0> = nc?. Then for t = o(n), this bound is
exp (—(1 4 o(1))t?/20%), which is consistent with the central limit theorem
assertion that in the asymptotic limit, X — E[X] is normal with mean 0 and
variance o2

Exercise 1.4. Let X := Zi X; where the X;,i € [n], are i.i.d. with Pr[X; =
1] = p for each i € [n] for some p € [0, 1]. Compute the variance of X and
apply and compare the two bounds as well as the basic Chernoff-Hoeffding
bound. Check that when p = 1/2, all these bounds are roughly the same.

1.8 Pointers to the Literature

The original technique is from Chernoff [19] although the idea of using the
moment-generating function to derive tail bounds is attributed to Bernstein. The
extension to continuous variables is due to Hoeffding [43]. Our presentation
was much influenced by [65]. The quick derivation in Problems 1.2 and 1.3 is
due to Chvatal [22].

1.9 Problems

Problem 1.1. A set of n balls is drawn by sampling with replacement from an
urn containing N balls, M of which are red. Give a sharp concentration result
for the number of red balls in the sample drawn. \V4

Problem 1.2. In this problem, we outline a simple proof of the Chernoff bound
due to Chvatal.

(a) Argue that for all x > 1, we have
PrlB , >kl < i n—i z—k'
r[B(n, p) =z k] < i§>0 (l.>pq x

(b) Now use the binomial theorem and thereafter calculus to optimise the
value of x. v

Problem 1.3 (hypergeometric distribution). A set of n balls is drawn by sam-
pling without replacement from an urn containing N balls, M of which are
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