
THREAD ALGEBRA AND RISK ASSESSMENT SERVICES

JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

Abstract. Threads as contained in a thread algebra emerge from the behavioral abstraction
from programs in an appropriate program algebra. Threads may make use of services such as
stacks, and a thread using a single stack is called a pushdown thread. Equivalence of pushdown
threads is decidable. Using this decidability result, an alternative to Cohen’s impossibility result on
virus detection is discussed and some results on risk assessment services are proved.

§1. Introduction. This paper is about thread algebra [1, 5]. Threads are
processes tailored to describe sequential program behaviour and emerge from
the behavioral abstraction of sequential programs. A basic thread models a
finite program behaviour to be controlled by some execution environment:
upon each action (e.g., a request for some service), a reply true or false
from the environment determines further execution. Any execution trace
of a basic thread ends either in the (successful) termination state or in the
deadlock state. Both these states are modeled as special thread constants.
Regular threads extend basic threads by comprising loop behaviour, and are
reminiscent of flowcharts [14, 12]. Threads may make use of services, i.e.,
devices that control (part of) their execution by consuming actions, providing
the appropriate reply, and suppressing observable activity. Regular threads
using the service of a single stack are called pushdown threads. Apart from
the distinction between deadlock and termination, pushdown threads are
comparable to pushdown automata or pushdown processes as described by
Stirling [17] or Burkart and Steffen [9].
First, we recall fromour companion paper [2] that equivalence of pushdown
threads is decidable, and we provide a sketch of our proof. Then we elaborate
on Cohen’s impossibility result on virus detection [10] (in that 1984 paper, the
term computer viruswas coined). Whereas Cohen showed that a test predicate
that decides whether a program executes (and spreads) a virus cannot exist,
we proposed in [8] a more modest test that can be used to forecast whether
the execution of a thread has no security hazard. This is decidable for regular
threads (as argued in [8]), and also for shrat-safe pushdown threads (as argued
in this paper). In our approach, a security hazard ismodeled as the occurrence

Logic Colloquium ’05

Edited by C. Dimitracopoulos, L. Newelski, D. Normann, and J. Steel
Lecture Notes in Logic, 28
c© 2006, Association for Symbolic Logic 1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

2 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

of a certain action in a thread. We define a service SHRAT (security hazard
risk assessment tool) that provides the replies to such tests. The idea is as
follows: a security hazard is modeled by an action risk and the security
hazard risk test as sh.ok. In case SHRAT replies true to

if sh.ok then P else Q,

P will not execute risk and execution continues with P. In the other case
(reply false),Q will be executed instead becauseP would execute risk (there
is no security hazard risk assessment of Q). A major point is whether P itself
may or may not execute sh.ok tests. If P is regular, this is not a problem and
we prove that SHRAT is correct. In the case that P is a pushdown thread,
correctness only follows if P is shrat-safe, i.e., contains no occurrences of both
sh.ok and risk (this is a decidable property).
Our approach offers an alternative to that of Cohen in his well-known
paper [10] which shows the impossibility of a test action that reacts on two
arguments P and Q at the same time. More precisely, Cohen considers a
decision procedure D (a predicate on program texts) that determines whether
a program executes (and spreads) a virus. Then Cohen’s impossibility result
is established by the program C defined by

C = if ¬D(C) then P else Q,

where P executes a virus, and Q is virus-free.

§2. Threads and services. In this section we recall the definitions of basic
threads and regular threads. Furthermorewe discuss services thatmay be used
by a thread, and we consider the use-operator, which defines how a thread
uses a service.
2.1. Threads. Basic thread algebra [5]1, BTA, is tailored for the description

of sequential program behaviour. Based on a finite set of actions A, it has the
following constants and operators:

• the termination constant S,
• the deadlock or inaction constant D,
• for each a ∈ A, a binary postconditional composition operator � a � .

We use action prefixing a ◦ P as an abbreviation for P � a � P and take ◦ to
bind strongest.
The operational intuition behind thread algebra is that each action repre-
sents a command which is to be processed by the execution environment of
a thread. More specifically, an action is taken as a command for a service
offered by the environment. The processing of a command may involve a
change of state of this environment. At completion of the processing of the
command, the service concerned produces a reply value true or false to the

1In [4], basic thread algebra is introduced under the name basic polarized process algebra.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 3

thread under execution. The thread P � a � Q will then proceed as P if the
processing of a yielded the reply true indicating successful processing, and it
will proceed as Q if the processing of a yielded the reply false.
BTA can be equipped with a partial order and an approximation operator

in the following way:

1. � is the partial ordering on BTA generated by the clauses
(a) for all P ∈ BTA, D � P, and
(b) for all P1, P2, Q1, Q2 ∈ BTA, a ∈ A,

P1 � Q1 & P2 � Q2 ⇒ P1 � a � P2 � Q1 � a �Q2.

2. � : N × BTA → BTA is the approximation operator determined by the
equations
(a) for all P ∈ BTA, �(0, P) = D,
(b) for all n ∈ N, �(n + 1,S) = S, �(n + 1,D) = D, and
(c) for all P,Q ∈ BTA, n ∈ N,

�(n + 1, P � a �Q) = �(n, P)� a � �(n,Q).

We further write �n(P) instead of �(n, P).
The operator � finitely approximates every thread in BTA. That is, for all

P ∈ BTA,

∃n ∈ N �0(P) � �1(P) � · · · � �n(P) = �n+1(P) = · · · = P.

Every thread in BTA is finite in the sense that there is a finite upper bound to
the number of consecutive actions it can perform. Following themetric theory
of [11] in the form developed as the basis of the introduction of processes in
[3], BTA has a completion BTA∞ which comprises also the infinite threads.
Standard properties of the completion technique yield thatwemay takeBTA∞

as the cpo consisting of all so-called projective sequences. That is,

BTA∞ = {(Pn)n∈N | ∀n ∈ N (Pn ∈ BTA & �n(Pn+1) = Pn)}

with

(Pn)n∈N � (Qn)n∈N ⇔ ∀n ∈ N Pn � Qn
and

(Pn)n∈N = (Qn)n∈N ⇔ ∀n ∈ N Pn = Qn.

For a detailed account of this construction see [1]. In this cpo structure,
finite linear recursive specifications represent continuous operators having
as unique fixed points regular threads, i.e., threads which can only reach
finitely many states. A finite linear recursive specification over BTA is a set of
equations

Xi = ti(X)

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

4 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

for i ∈ I with I some finite index set and all ti(X) of the form S, D, or
Xil � ai � Xir for il , ir ∈ I .

Example 2.1.1. We define the regular threads

1. a ◦ b ◦ D,
2. a ◦ b ◦ S and
3. (a ◦ b)∞ (this informal notation is explained below)

as the fixed points for X1 in the specifications

1. X1 = a ◦ X2, X2 = b ◦ X3, X3 = D,
2. X1 = a ◦ X2, X2 = b ◦ X3, X3 = S,
3. X1 = a ◦ X2, X2 = b ◦ X1, respectively.

Both a ◦ b ◦ D and a ◦ b ◦ S are finite threads; (a ◦ b)∞ is the infinite thread
corresponding to the projective sequence (Pn)n∈N with P0 = D, P1 = a ◦ D
andPn+2 = a ◦(b ◦Pn). Observe that a ◦b ◦D � a ◦b ◦S, a ◦b ◦D � (a ◦b)∞,
but a ◦ b ◦ S 	� (a ◦ b)∞.

Convention 2.1.2. In reasoning with finite linear recursive specifications,
we shall from now on identify variables and their fixed points. For example,
we say that P is the regular thread defined by P = a ◦P instead of stating that
P equals the fixed point for X in X = a ◦ X .

2.2. Services. A service is a component of an execution architecture for
threads that can be used to determine the reply to an action. In [6] various
services (called state machines in that paper) were considered, as well as their
possible role in thread execution. A service is a pair 〈Σ, F 〉 consisting of a
set Σ of so-called co-actions and a reply function F . The reply function F
of a service 〈Σ, F 〉 is a mapping that gives for each sequence of co-actions
in Σ+ the reply produced by the service. This reply is a boolean value true
or false.

Example 2.2.1 (Stack). One of the services that will occur in what follows
is the stack S = 〈Σ, F 〉 with Σ = {push:i , topeq:i , empty, pop | i ∈ I } for
some finite set I , where push:i pushes i onto the stack and yields reply true,
the action topeq:i tests whether i is on top of the stack, empty tests whether
the stack is empty, and pop pops the stack if it is non-empty with reply true
and yields the reply false otherwise (leaving the stack empty). By S(α) we
denote a stack with contents α ∈ I ∗ with the leftmost element of α on top in
case α 	= � with � the empty stack contents. In Example 3.1.1 we return to
the use of a stack as a service.

In order to provide a specific description of the interaction between a thread
and a service, we will use for actions the general notation c.a where c is the
so-called channel or focus and a is a co-action. For example, we write s.pop
to denote the action which pops a stack via channel s.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 5

For a service S = 〈Σ, F 〉 and a finite thread P, we define P using the service
S via channel c, notation P/c S, by the following rules:

S/c S = S,
D/c S = D,

(P � c′.a �Q)/c S = (P/c S)� c′.a � (Q/c S) if c′ 	= c,
(P � c.a �Q)/c S = P/c S ′ if a ∈ Σ and F (a) = true,
(P � c.a �Q)/c S = Q/c S ′ if a ∈ Σ and F (a) = false,
(P � c.a �Q)/c S = D if a 	∈ Σ,

where S ′ = 〈Σ, F ′〉 with F ′(�) = F (a�) for all co-action sequences � ∈ Σ+.
Note that actions that use a service S are not observable. The use operator is
expanded to infinite threads P by stipulating

P/c S = (�n(P)/c S)n∈N.

As a consequence, P/c S = D if for every n, �n(P)/c S = D.

Example 2.2.2. We consider again the threads a ◦ b ◦ D, a ◦ b ◦ S and
(a ◦b)∞ from Example 2.1.1 but now in the versions c.a◦c.b◦D, c.a◦c.b◦S
and (c.a ◦ c.b)∞ for some channel c and service S = 〈{a, b}, F 〉. Then
(c.a ◦ c.b ◦D)/c S = D and (c.a ◦ c.b ◦ S)/c S = S, but (c.a ◦ c.b)∞/c S = D.

§3. Pushdown threads and decidable equivalence. In this sectionwe consider
pushdown threads, i.e., regular threads that use a stack. Then, we recall from
our paper [2] that equivalence of pushdown threads is decidable and sketch a
proof of this fact.
3.1. Pushdown threads. In the next example we show that the use of services
may turn regular threads into non-regular ones.

Example 3.1.1. Let {a, b, s.push:1, s.pop} ⊆ A, where the last two actions
refer to the stack S defined in Example 2.2.1 with I = {1}. By the defining
equations for the use operator it follows that for any thread P and � ∈ {1}∗,

(s.push:1 ◦ P)/s S(�) = P/s S(1�).

Furthermore, it easily follows that

(P � s.pop � S)/s S(�) =

{
S if � = � (the empty sequence),
P/s S(�) if � = 1�.

Now consider the regular thread Q defined by 2

Q = (s.push:1 ◦Q)� a �R,

R = b ◦R � s.pop � S.

2Note that a linear recursive specification of Q requires (at least) five equations.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

6 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

Then for all � ∈ {1}∗,
Q/s S(�) = ((s.push:1 ◦Q)� a �R)/s S(�)

= (Q/s S(1�))� a � (R/s S(�)),

R/s S(1�) = b ◦R/s S(�),
R/s S(�) = S.

It is not hard to see that Q/s S(�) is an infinite thread with the property
that for all n ∈ N, a trace of n+1 a-actions produced by n positive and one
negative reply on a is followed by n b-actions and S. This yields an non-
regular thread: if Q/s S(�) were regular, it would be a fixed point of some
finite linear recursive specification, saywith k equations. But specifying a trace
containing k b-actions followed by S already requires k+1 linear equations
X1 = b ◦X2, . . . , Xk = b ◦Xk+1, Xk+1 = S, which contradicts the assumption.
So Q/s S(�) is not regular.

We call a regular thread that uses a stack as described in Example 2.2.1
a pushdown thread. In what follows we assume that pushdown threads are
given with help of a distinguished identifier from a finite linear recursive
specificationF and a stack over some fixed alphabet. The equations inF may
contain actions that address the stack via the use-application /s .
3.2. Decidable equivalence. From our companion paper [2] we quote the
following result:

Theorem 3.2.1. Equivalence of pushdown threads is decidable.
This theorem follows from a reduction to the dpda-equivalence problem
whose decidability was proved by Sénizergues [15, 16]. Here we provide only
a sketch, a detailed proof can be found in [2].
The idea is to use a transformation from pushdown threads to dpda’s such
that the identity

P/s S(α) = Q/s S(�)

holds if and only if the identity

L(A, P′α′) = L(A, Q′� ′)

holds, where the latter identity expresses that for the derived dpda A, the
language accepted by ‘configuration’ P′α′ equals the one accepted by config-
uration Q′� ′. The transformation described in [2] consists of five steps and
uses the dpda-equivalence result as formulated by Stirling [18] because this is
closer to our setting:

1. Transform P/s S(α) andQ/s S(�) such that initially the stacks are non-
empty (also if one of α and � is the empty string), and such that upon
their termination the stack is empty. The reason for this step stems from
the fact that language acceptance for dpda’s is defined on configurations

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 7

of the formRα whereR is a ‘state’ and α is a non-empty stack contents.
A word w is in the accepted language iff the dpda in initial state R
empties the stack by performing the transitions whose labels form w.

2. Replace occurrences ofD by loops that fill the stack (e.g., replacePi = D
by Pi = s.push:j ◦ Pi for some j ∈ I). The reason for this step is that
D has no equivalent in the dpda-equivalence result.

3. Normalize infinite traces: replace each equation Pi = Pl � a � Pr by
Pi = S � b � (Pl � a � Pr) with b an action that occurs not in P and
Q. Here S is the thread that first empties the stack and then terminates
(S is also used in step 1). The reason for this step is that each infinite
trace becomes interlarded with exits b, and is thus characterized by finite
traces which in turn are subject to dpda language acceptance.

4. Construction of an associated pushdown automaton (pda). The specifi-
cations of the so far transformedP(α) andQ(�) admit a straightforward
definition of a pda whose transitions are deterministic. The only remain-
ing problem is that the �-transitions (that stem from stack actions) need
not pop the stack, as required by the decidability result in [18].

5. Construction of a dpda in which the �-transitions only pop the stack.
The pda thus obtained is transformed by changing its transition rules for
�. Those that do not pop the stack are either swallowed by an observable
transition and yield a new transition rule, or form a loop, in which
case they can be omitted. This step preserves language acceptance and
concludes the transformation.

We will exploit this decidability result by replacing certain equations in
the definition of the regular thread that underlies a pushdown thread, i.e. in
the definition of P when considering P/s S(α). For example, it is decidable
whether a pushdown thread is normed, i.e., has the option to terminate (to
end in S): let a linear recursive specification

F = {Pi = ti(�P) | i = 1, . . . , n}
be given (and thus a repertoire of stack actions and external actions). Replace
each equationPi = S ∈ F byPi = a◦Pi and overline all remaining identifiers.
Then Pk/s S(α) is normed ⇔ Pk/s S(α) 	= Pk/s S(α).

Remark 3.2.2. Interestingly, inclusion of pushdown threads is not decid-
able (although two pushdown threads are equivalent if they are included in
each other). This follows from a reduction to the halting problem for Minsky
machines — an approach also taken in Jančar et al. [13]. A detailed proof is
recorded in [2].

§4. Security hazard risk assessment. In this section we consider the pos-
sibility that a pushdown thread uses a service that supports forecasting of
certain future behaviour. In [7] various such services are studied (e.g., the

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

8 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

halting problem and “rational agents”) and in [8] we discuss a rather specific
case: a service SHRAT (security hazard risk assessment tool). In this paper
we provide a detailed construction of SHRAT for regular threads and a proof
of its correctness. Finally, we consider SHRAT for pushdown processes and
distinguish the case of shrat-safe threads.
4.1. A definition of SHRAT. We model a security hazard in a pushdown

thread P as the execution of an action risk. Furthermore, P may contain a
test action sh.ok that can use the service SHRAT to forecast whether risk
will be executed: SHRAT replies true to

Q � sh.ok � R

ifQ does not execute risk, and false ifQ does execute the action risk (and
thenR is executed instead). In order to model forecasting, we first define the
residual thread of a pushdown thread P as the thread that remains after zero
or more actions of P have been executed:

Definition 4.1.1. Let P be a pushdown thread. We write Q ∈ Res (P)
whenever Q is a residual thread of P :

• P ∈ Res (P),
• P ∈ Res (P � a � Q),
• Q ∈ Res (P � a � Q), and
• ifR ∈ Res (Q) and Q ∈ Res (P), thenR ∈ Res (P).

Of course, the very idea of a service SHRAT that supports forecasting of
the execution of future actions risk in a residual threadQ�sh.ok�R of P ,
thus

(Q � sh.ok � R)/sh SHRAT(1)

requires that SHRAT is aware of the specification of Q. So, a reply function
that only uses the current co-action and those processed before is in this case
not sufficient. It seems most natural to model that SHRAT “gets to know and
analyzes” Q’s specification upon the request sh.ok in the use-application (1)
above. We describe this change of state of SHRAT and the resulting reply in
the following definition.

Definition 4.1.2. Let a pushdown thread P be given by some specification
FP and let sh.ok be the only action in P with focus sh. Then the service
SHRAT is defined by the following two properties:

(1) for any residual thread Q � sh.ok � R of P ,

(Q � sh.ok � R)/sh SHRAT = (Q � sh.ok � R)/sh SHRAT(FP ,Q),

where SHRAT(FP ,Q) is the instance of SHRAT that has loaded FP
and analyzed Q, and

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

THREAD ALGEBRA AND RISK ASSESSMENT SERVICES 9

(2) (Q � sh.ok � R)/sh SHRAT(FP ,Q) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Q/sh SHRAT (thus reply true) if no risk-action

will be executed in Q/sh SHRAT,
R/sh SHRAT (thus reply false) if a risk-action

will be executed in Q/sh SHRAT.

The (instantiated) service SHRAT(FP ,Q) models a “security hazard risk
assessment” in the sense that if a security hazard in Q is modeled by the
execution of the action risk, the reply true to Q � sh.ok � R ensures that
in the residual thread Q/sh SHRAT no security hazard will occur (cf. [8]).
It can be the case that SHRAT(FP ,Q) replies true because SHRAT will

replyfalse to a futuresh.ok-test inQ/shSHRAT. For example, in the regular
thread P1 given and depicted below, the various sh.ok-tests are evaluated as
follows:

P1 = P2 � sh.ok � P8 (true)
P2 = P3 � a � P4
P3 = P5 � sh.ok � P6 (true)
P4 = P6 � sh.ok � P7 (false)

P5 = b ◦ P2
P6 = risk ◦ P1
P7 = c ◦ P8
P8 = S.

P1: 〈sh.ok〉
��� ���

P2: 〈 a 〉
��� ���

P3: 〈sh.ok〉
��� ���

P4: 〈sh.ok〉
��� ���

P5: [b] P6: [risk] P7: [c]

�
P8: S

//

// \\

�

�

where

and

[a]

�
P

≈ a ◦ P

〈 a 〉
��� ���

≈ Pl � a � Pr .

Pl Pr

Clearly, the thread T = P1/sh SHRAT satisfies T = b ◦ T � a � c ◦ S.
In the next section we discuss how to instantiate SHRAT for regular threads
in an appropriate way.
4.2. SHRAT for regular threads. Following Convention 2.1.2, we assume
that if a regular thread P1 is given, it is given by a linear recursive specification
FP1 that contains an equation P1 = t1(�P). Furthermore, we say that an
equation Pj = Pl � a � Pr in FP1 has a predecessor if Pj occurs in the right-
hand side of at least one equation. Finally, we restrict to specifications FP1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

10 JAN A. BERGSTRA, INGE BETHKE, AND ALBAN PONSE

with the property that if Pj = Pl � sh.ok� Pr ∈ FP1 , then l 	= r (otherwise,
the reply to sh.ok would be meaningless).
Starting from P1/sh SHRAT with the regular thread P1 specified in FP1 , we

provide an algorithm that upon each residual thread of the form

(Pm � sh.ok � Pj)/sh SHRAT

constructs an instantiated service SHRAT(FP1 , Pm) that gives the correct re-
ply. Typical for this algorithm is that SHRAT(FP1 , Pm) contains a copy of
FP1 in which all sh.ok actions are annotated with the correct reply. To
this end, FP1 is loaded into SHRAT and analyzed as follows: number each
equation that contains a risk-occurrence starting from 1. Then, for each
numbered equation label each predecessor equation with the next free number
until a connecting sh.ok-equation is found, or a loop occurs, or an equa-
tion without predecessors is found. In the case that some sh.ok-equation is
found and connects via its true-branch, its sh.ok-action is annotated false
(sh.okfalse); if it connects via its false-branch, the equation is labeled with
a fresh negative number (it may possibly lead to a risk-action, namely when
a false-annotation is added in a future inspection). Then this procedure
is repeated for equations labeled with a negative number, again instantiating
first occurrences of sh.ok-actions with false if their true-branch leads to
an action risk. Finally, all non-annotated sh.ok-actions are annotated true
because their true-branch does not lead to a risk-action.
In Figure 1, we illustrate how the annotation proceeds: first the two lowest

sh.ok actions are annotated false, and because of the↘ arrow, the equation
of the leftmost one is labeled with a fresh negative number. The combination
of the false-annotation and this label leads to the false-annotation of the
topmost sh.ok-action.
Construction of SHRAT(FP1 , Pm) for a regular thread P1. Let FP1 = {Pi =
ti(�P) | i = 1, . . . , n} be a linear specification of the regular thread P1. Upon
a residual thread

Pm � sh.ok � Pw,

the service SHRAT(FP1 , Pm) is constructed as follows: load FP1 in SHRAT.
We further call this copy FanP1 . Label each equation in F

an
P1
that contains risk

in the right-hand side with a number, starting from 1, say 1, . . . , k. If no
risk-actions occur in FanP1 , then apply step 3 below. In the other case, apply
step 1:
1. OnFanP1 apply the procedureEval

+(1), whereEval+(i) for i ≥ 1 is defined
as follows:

Eval+(i): If the equation labeled with number i has the form

(i) Pj = Pl � a � Pr,

then evaluate all Pj occurrences in the right-hand sides of all equations,

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88425-9 - Logic Colloquium 2005: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005
Edited by Costas Dimitracopoulos, Ludomir Newelski, Dag Normann and John R. Steel
Excerpt
More information

http://www.cambridge.org/052188425X
http://www.cambridge.org
http://www.cambridge.org

