
ABSTRACT ELEMENTARY CLASSES: SOME ANSWERS,
MORE QUESTIONS

JOHN T. BALDWIN

Abstract. We survey some of the recent work in the study of Abstract Elementary Classes
focusing on the categoricity spectrum and the introduction of certain conditions (amalgamation,
tameness, arbitrarily large models) which allow one to develop a workable theory. We repeat or
raise for the first time a number of questions; many now seem to be accessible.

Much late 19th and early 20th century work in logic was in a 2nd or-
der framework; infinitary logics in the modern sense were foreshadowed by
Schroeder and Pierce before being formalized in modern terms in Poland dur-
ing the late 20’s. First order logic was only singled out as the ‘natural’ language
to formalize mathematics as such authors as Tarski, Robinson, and Malcev
developed the fundamental tools and applied model theory in the study of
algebra. Serious work extending the model theory of the 50’s to various in-
finitary logics blossomed during the 1960’s and 70’s with substantial work on
logics such as L�1,� and L�1,�(Q). At the same time Shelah’s work on stable
theories completed the switch in focus in first order model theory from study
of the logic to the study of complete first order theories As Shelah in [44, 46]
sought to bring this same classification theory standpoint to infinitary logic,
he introduced a total switch to a semantic standpoint. Instead of studying
theories in a logic, one studies the class of models defined by a theory. He
abstracted (pardon the pun) the essential features of the class of models of
a first order theory partially ordered by the elementary submodel relation.
An abstract elementary class AEC (K ,≺K) is a class of models closed un-
der isomorphism and partially ordered under ≺K , where ≺K is required to
refine the substructure relation, that is closed under unions and satisfies two
additional conditions: if each element Mi of a chain satisfies Mi ≺K M
then M0 ≺K

⋃
i Mi ≺K M and M0 ≺K M2,M1 ≺K M2 and M0 ⊆ M1 im-

pliesM0 ≺K M1 (coherence axiom). Further there is a Löwnenheim-Skolem
number κ associated with K so that if A ⊆ M ∈ K , there is an M1 with
A ⊂M1 ≺K M and |M1| ≤ |A|+ κ.
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2 JOHN T. BALDWIN

In this paper we will review some of the reasons for considering AEC’s,
outline several major lines of study in the subject, and offer a series of prob-
lems whose solution would advance the various lines. The fundamental ideas
discussed here are due to Shelah. However, we explore in some detail areas
that have been developed in the very recent past by such authors as Grossberg,
Hyttinen, Kolesnikov, Lessmann, VanDieren, and Villaveces; generally speak-
ing these studies proceed by putting further model theoretic conditions on an
AEC and we will expound some of these conditions. In the closing pages we
give a short introduction to the mainline of Shelah’s research [52, 53, 51, 50].

Our survey focuses primarily on problems closely related to categoricity. We
have attempted to attribute both results and questions correctly. But many of
the questions are just writing out what people in the area are thinking about.
For expositional purposes, we frequently cite [1]; the default is that results
in that monograph are not new although the proofs may be. I thank Tapani
Hyttinen, the anonymous referee, and especially Rami Grossberg for useful
comments on this article.

Increased interest in nonelementary classes arose recently for several rea-
sons. First, the increased emphasis, signaled in [49, 54] and emphasized in
[21], on hypotheses such as amalgamation or tameness as fruitful conditions
to create a workable theory of AEC, has led to a number of new results. The
need for studying AEC became more clear for two reasons. On the one hand
the pursuit of specific problems in the first order setting has led to construc-
tions which can no longer be formalized by first order means. On the other,
the paradigm: study an interesting structure by studying its first order theory
has broken down in some significant cases because the first order theory is not
sufficiently nice.

The work of Kim and Pillay [31] showed that the essential distinction be-
tween stable and simple theories [45] lay in the fact that for a stable theory,
Lascar strong type equals strong type. Strong types are first order objects;
Lascar strong types are not. Analysis of this problem led to the introduction
of hyperimaginaries and other properly infinitary objects and ultimately to
compact abstract theories CATS [12]. In a slightly different direction, the
‘Hrushovski construction’ [28, 27] leads in nice cases (when the generic is
�-saturated) to the construction of first order theories with special properties.
However, in certain notable cases, the best that has so far been found is a
Robinson theory (in the search for a bad field [3, 5]) or even only a posi-
tive Robinson theory (in the search for a simple theory where strong type is
not equal to Lascar strong type [40]). Despite the terminology, a (positive)
Robinson theory, refers to the class of models of a first order theory which
omit certain types; it can be described only in infinitary logic.

The first order theory of the field of complex numbers with exponentiation
is intractable; the ring of integers and their order is first order definable.
But Zilber suggested in a sequence of papers [60, 59, 57, 58] the notion of

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88424-2 - Logic Colloquium 2004
Edited by Alessandro Andretta, Keith Kearnes and Domenico Zambella
Excerpt
More information

http://www.cambridge.org/0521884241
http://www.cambridge.org
http://www.cambridge.org


ABSTRACT ELEMENTARY CLASSES 3

considering the L�1,�(Q)-theory of (C,+, ·, exp). The intuition is that the
essential wildness will be contained by forcing the kernel of the exponential
map to always be exactly the standard integers. In his proof of categoricity
for quasiminimal excellent classes Zilber discovered a special case of Shelah’s
notion of excellence that is easy to describe. He works in a context where there
is a well-behaved notion of closure, cl which defines a combinatorial geometry.
The aim is to show that if X is isomorphic to Y , then cl(X ) is isomorphic
to cl(Y ). In general, this condition is non-trivial; it follows from excellence.
In this context, excellence means that for every n, if A = {a1, . . . , an} is an
independent set then for anya ∈ cl(A) the type ofa overZ =

⋃
i<n cl(A−{ai})

is determined by the type of a over a finite subset ofZ. Shelah works in amore
general situation, where combinatorial geometry is replaced by a ‘forking’-
like notion. Consequently his notion is harder to describe and we omit the
description here. Crucially, in both cases a condition (excellence) on countable
models has important consequences (e.g. amalgamation) in all cardinalities.

Various other attempts to formalize analytic structures (notably Banach
spaces [25, 26]) provide examples of ‘homogeneous model theory’ ([43, 13]
and many more); Banach spaces are also an example of CATS [11]. Strictly
speaking, the class of Banach spaces is not closed under unions of chains so
doesn’t form an AEC. But, Banach space model theory can be thought of
as the study not of Banach spaces, but of structures whose completion is a
Banach Space and this provides an interpretation of classes of Banach spaces
as AEC’s. Further mathematical examples include locally finite groups [19]
and some aspects of compact complex manifolds (Although here, the first
order theory is an attractive topic for model theorists (e.g. [39, 41]).).

Many, but not all, of these ‘infinitary’ formalizations can be captured in the
frameworkofAEC’s. (In particular, CATSare inherently different.) Thework
that I’ll describe here has a complementary motivation. Stability theory pro-
vided a very strong tool to classify first order theories and then for extremely
well-behaved theories (those below the ‘main gap’) to assign invariants to
models of the theories. This insight of Shelah spread beyond stable theories
with the realization that very different tools but some of the same heuristics
allowed the study of o-minimal theories. By these techniques, o-minimality
and stability, model theorists have learned much about the theories of both
the real and the complex numbers and many other algebraic structures. But
Shelah asks an in some ways more basic question. What are the properties
of first order logic that make stability theory work? To what extent can we
extend our results to wider classes, in particular to AEC?

Most known mathematical results are either extremely cardinal dependent:
about finite or countable structures or at most structures of cardinality the
continuum; or completely cardinal independent: about every structure sat-
isfying certain properties. Already first order model theory has discovered
problems that have an intimate relation between the cardinality of structures
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4 JOHN T. BALDWIN

and algebraic properties of the structures:

1. Stability spectrum and counting models
2. A general theory of independence
3. Decomposition theorems for general models

There are structural algebraic, not merely combinatorial features, which
are non-trivially cardinal dependent. (For example, the general theory of
independence is intimately related with the class of cardinals in which the
theory is stable and even for stable first order theories, stability in κ depends
on the cofinality of κ.)

As usual a class of models K with a distinguished notion of submodel
has joint embedding property (jep) if any two members of K have a common
extension and K has the amalgamation property (ap) if any two extensions of
a fixed modelM have a common extension (overM ).

If we were to take the fundamental analogy to be that an abstract elemen-
tary class represents a complete first order theory then we would add to the
definition that the class (K ,≺K) has the amalgamation and the joint embed-
ding property. But completeness is a bit much to ask even in L�1,� . Here
completeness (all models Karp equivalent) is not necessarily compatible with
Löwenheim number �. Some uncountable models do not have countable
Karp equivalent submodels. The standard first order proof of the theorem,
‘categoricity in power implies completeness’ is a triviality but it assumes both
the upwards and downwards Löwenheim-Skolem theorem for a set of sen-
tences. Even for a sentence of L�1,� in a countable language the reduction
for an arbitrary categorical sentence � to one which is complete and has es-
sentially the same spectrum is not at all trivial [44, 46]. It is substantially
easier if� is assumed to have arbitrarily large models ([1] VII.2) than without
that hypothesis ([1] VII.3). The difficult case is carried out in full in [44, 46];
the easier case is hinted at in [44, 46] but spelled out in the expository [3, 1].
In either case a notion of stability (counting the number of types) is used to
obtain even the completeness result.

Moreover, unlike the first order case, completeness does not immediately
yield the amalgamation property. The only known proof [46, 47] that a cat-
egorical sentence in L�1,� has the amalgamation property invokes the weak
continuum hypothesis and introduces the much more intricate notion of ex-
cellence. Moreover few models in every cardinal up to ℵ� is assumed; indeed,
categoricity in every cardinal up to ℵ� is essential to get eventual categoricity
[24, 1]. Similarly, although Zilber’s quasiminimal excellent classes do have the
amalgamation property the existing proof deduces the result from the proof
of excellence, which has non-trivial algebraic content (e.g. [57]).

We will discuss first AEC with arbitrarily large models and then move to a
harder case where that assumption is not made.
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ABSTRACT ELEMENTARY CLASSES 5

Question 1. Must the class of models of a sentence in L�1,� (or more
generally an AEC) that has arbitrarily large models and is categorical in a
sufficiently large cardinal have the amalgamation property (at least for suffi-
ciently large models). This is an interesting question even assuming the weak
GCH; the necessity of such an assumption presents a different set of problems.

Grossberg (e.g. [15]) has posed this question forAECand forL�1,� . For sen-
tences of L�1,� , Shelah’s result reported above gives a partial answer modulo
weak gch. He deduces excellence and thus amalgamation from categoricity
up to ℵ� . But although Grossberg’s question is on the ‘assume arbitrarily
large models side’, it is more demanding than Shelah’s result in asking that
categoricity in one cardinality suffice. Trying to obtain a proof (even for
L�1,�) from the arbitrarily large model assumption without passing through
excellence is a ‘warm-up’ strategy for the AEC version.

Shelah’s presentation theorem is a crucial tool for the study ofAEC. It asserts
that every AECK may be seen as the class of reducts of a collection of models
defined by a first order theory (in a language of size LS(K)) which omit a
specified collection of (at most 2LS(K)) types. Let us state a crucial corollary.
Fix a vocabulary �. For each pair of a first order theory and set of types Φ
(in a vocabulary �′ extending �), and each linear order I , EM (I,Φ) denotes
the reduct to � of the �′-structure which satisfies Φ. The presentation theorem
implies that for each K , there is a Φ such that EM ( ,Φ) is a functor into
K (which takes subordering to ≺K). A straightforward use of Ehrenfeucht-
Mostowski models over indiscernibles yields: If K has a model of cardinality
greater than �(2LS(K))+ then K has arbitrarily large models. In the vernacular,
we say the Hanf number for AEC with vocabulary of size at most κ and
Löwenheim-Skolem number at most κ is at most H (κ) = �(2κ)+ . We call
this function H as we use it to compute Hanf numbers. It might be more
appropriate to call it ER as it actually computes the bound for applying the
Erdos-Rado theorem to obtain indiscernibles.

Many of the ideas expounded here were presaged in earlier work such as
[37, 33] dealing with languagesLκ,� with strong hypotheses (e.g. compactness,
measurability) on the cardinal κ. The earliest result in this series was:

Theorem 2. [37] Let κ be strongly compact. If a sentence � ∈ Lκ,� is
categorical in �+ > �0 = �(2κ)+ then it is categorical in all cardinals greater
than �0.

In view of the set-theoretic requirements on the syntax of the underlying
logic, we don’t discuss this line but deal with the more general notion of AEC.

For most of the rest of this paper, we will assume K is an AEC with the
amalgamation property. It is then trivial to reduce to the study of AEC
with both the amalgamation and joint embedding properties. Under these
hypotheses, when K has arbitrarily large models, we are able to work inside
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6 JOHN T. BALDWIN

amonstermodelwhich behavesmuch like the first order situation but is weaker
in a significant way. We have amalgamation only over submodels, thus the
monster model is homogeneous only over submodels. The stronger condition,
assuming that there is a ‘monster model’ that is homogeneous over sets, gives
rise to the area known as homogeneous model theory. For the major literature
in this area consult such authors as Hyttinen, Lessmann, and Shelah.

Working within a model-homogeneous ‘monster model’ (i.e. in an AEC
with amalgamation), we define the Galois type of a over M to be the orbit
of a under automorphisms of the monster which fixM . We write S(M ) for
the collection of Galois types overM . Then we can define a modelM to be
κ-saturated if every Galois type over a submodel ofM with cardinality < κ
is realized inM . A somewhat more general definition (without assuming ap)
occurs in [48, 49].
We begin by discussing classes which have arbitrarily large models. Invoking

the presentation theorem, we are able to build Ehrenfeucht-Mostowskimodels
over sequences of order indiscernibles. As Shelah remarks in the introduction
to [52], this yields the non-definability of well-ordering and so gives us an
approximation to compactness. Most of these notes concern this case and
build on [49]. We return at the end to the much more difficult situation, where
one attempts to find information about AEC simply from the information
that it has one (or few models) in some specific cardinalities. We will sketch
some of Shelah’s extensive work on this subject; our emphasis on classes
with arbitrarily large models represents the extent of our understanding, not
importance.

Assuming K has arbitrarily large models, the proof that categoricity in �
implies stability in all cardinals smaller than � has the same general form as
in the first order case. But other arguments involving Galois types over mod-
els generated by order indiscernibles require significantly more complicated
analysis of the linear orders than in the first order case. This is in interest-
ing contrast with the Laskowski-Pillay study of ‘gross-models’ [34]; a model
is gross if every infinite definable subset of it has full cardinality. Morley’s
theorem can be proved in this context using the normal first order notion
of type. Thus, the categoricity implies stability is routine. Intriguingly, the
Laskowski-Pillay work was inspired by investigations of Moosa on the first
order theory of compact complex manifolds.

The fundamental test question for the study of AEC is:
Conjecture 3 (Shelah’s categoricity conjecture). There is a cardinal �(κ)

such that for all AEC with Löwenheim number at most κ, if K is categorical in
some cardinal greater than �(κ) then K is categorical in all � ≥ �(κ).

The best approximation to the categoricity conjecture takes �(κ) as the
‘second Hanf number’: H2 = H (H (LS(K))). The initial step in the analysis
[49] (see also [1]) requires the lifting to this setting of a clever integration of
Morley’s omitting types theorem and Morley’s two cardinal theorem.
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ABSTRACT ELEMENTARY CLASSES 7

Theorem 4. [49] Suppose K has the amalgamation property and arbitrarily
large models. Suppose K is �+-categorical with � > H2. Then, K is H2-
categorical and indeed categorical on the interval [H2, �

+].

The proof requires using the omitting types theorem twice. The second time
one names as many constants (H1) as required for the first use. Categoricity
on the interval is then proved by induction, making essential use of Theorem 7.
Theorem 4 leads to a natural question.

Question 5. Prove or disprove. SupposeK has the amalgamation property
and arbitrarily large models. SupposeK is �+-categorical with � > H1. Then,
K is H1-categorical.

In order to understand further progress on the categoricity transfer problem,
we introduce an important notion (first named in [21]; the cardinal parameters
were added in [4]).

Definition 6. The AEC K is (�, �)-(weakly) tame if for any (saturated)
model M of cardinality �, if p, q ∈ S(M ) (the Galois types over M ) are
distinct then there is a submodel N ofM with N ≤ � so that p � N �= q � N .

Of course any first order theory is tame; i.e. (ℵ0,∞)-tame. And by [46, 47],
it is consistent with ZFC that every categorical AEC defined by a sentence of
L�1,� is tame. But aside from the first order case (and homogeneous model
theory where again every class is tame), there is no example where (ℵ0,∞)-
tameness has been deduced from categoricity except as a corollary to the
Morley theorem for the class. (E.g. Zilber’s quasiminimal excellent classes
and categorical classes in L�1,� are each shown to be tame in [1]; but the
result is not needed for the transfer of categoricity proof given but only an
observation.)

Nontameness can arise in natural mathematical settings. An Abelian group
isℵ1-free if every countable subgroup is free. AnAbelian groupH isWhitehead
if every extension of Z byH is free. Shelah constructed (in ZFC) an Abelian
group of cardinality ℵ1 which is ℵ1-free but not a Whitehead group. (See
[14, Chapter VII.4].) Baldwin and Shelah [8] code this into an example of
nontameness. Essentially a point codes an abelian groupwhich is the right end
of a short exact sequence; every countable approximation to the group splits
but thewhole groupdoes not. Thus theAEC is not (ℵ0,ℵ1)-tame. Baldwin and
Shelah [8] also show that nontameness is essentially a distinct phenomena from
non-amalgamation by showing any AEC K which exemplifies a nontameness
property (satisfying a mild condition) can be transformed to one which does
satisfy amalgamation and still fails the tameness. But this transformation
destroys categoricity and even stability. In my view, the most significant
(nontrivial) sufficient condition for tameness is due to Shelah:
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8 JOHN T. BALDWIN

Theorem 7. [49] Suppose K has the amalgamation property and arbitrarily
large models. Suppose K is �-categorical with � > H1. For every κ with
H1 ≤ κ < �, K is (�, κ)-weakly tame for some � < H1.

The combination of Shelah’s downward categoricity argument and the
tameness argument gives the result for ‘tame’ instead of ‘weakly tame’ if
H1 is allowed to grow to H2. The argument for Theorem 7 in [49] is flawed.
A short and correct argument due to Hyttinen, correcting and elaborating
various exegises given separately by Baldwin and Shelah, appears in [1]. This
result poses several questions.

Question 8. Suppose K has the amalgamation property and arbitrarily
large models. Suppose K is �-categorical with � > H1.

1. Is there any way to reduce the upper bound on � in Theorem 7 (or find
a lower bound above LS(K))?

2. Is there any way to replace weakly tame by tame?
3. And most important, (compare 1.16 of [21]), can κ = � in Theorem 7?

A positive answer to Question 8.3 would yield a full solution of the cate-
goricity problem for AEC with amalgamation and arbitrarily large models.

Is there any way to weaken the categoricity hypothesis in Theorem 7 to
stability?

Question 9. Suppose K has the amalgamation property and arbitrarily
large models. Prove or disprove: If K is κ-stable with κ > H1 then K is
(weakly) (H1, κ)-tame.

In the light of Theorem 4 and Theorem 7, it is interesting to examine
Question 9 at the successor of the categoricity cardinal in the hypothesis of
Theorem 4. How much would it help to know stability in �++?

Shelah speaks rather loosely of locality in various places. We have broken
this notion into three precise concepts. Following [21], we have chosen tame as
the name of one of these. We call the others locality and compactness. There
is considerable to be learned about the relations among the parameterized
versions of these notions; the following survey just touchs on some of the
natural questions that arise. Essentially, they are a few of the many ways one
might make specific the general question, ‘Are there AECwhich are eventually
categorical without the many nice properties such as tameness, excellence,
locality of the known examples?’

Definition 10. 1. K has (κ, �)-local Galois types if for every continuous
increasing chainM =

⋃
i<κ Mi of members of K with |M | = � and for

any p, q ∈ S(M ): if p �Mi = q �Mi for every i then p = q.
2. Galois types are (κ, �)-compact in K if for every continuous increasing

chainM =
⋃
i<κ Mi of members ofK with |M | = � and every increasing

chain {pi : i < κ} of members S(Mi) there is a p ∈ S(M ) with p �
Mi = pi for every i .
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ABSTRACT ELEMENTARY CLASSES 9

The proof of Theorem 7 is very much about tameness rather than locality.

Question 11. Is there any way to replace (weakly) tame by local in Theo-
rem 7?

The constructions in [8] that create amalgamation destroy categoricity; can
this be avoided? More precisely,

Question 12. Find an AEC (in a countable language) which is categorical
in all uncountable powers, has the amalgamation property, and which is not
(ℵ0,∞)-tame (or (ℵ0,∞)-local).

Grossberg and Kolesnikov [17] recently completed an important analysis of
the relationship between excellence and tameness. They work in classes which
are posited to have an independence relation analogous to forking in the first
order case. They show in particular that if the class satisfies the extension
property for independence, the appropriate version of stationarity and the
forking has < �-character then (�, �+)-tameness and (�, �+)-locality follow.
Further, they show that ifK is�-excellent (under an extendeddefinition for this
context), then K is (�,∞)-tame. There is no simple test, such as failure of the
order property in the first order case, to generate awealth of examples of classes
satisfying these hypotheses. It is not even clear that eventual categoricity yields
the properties. But as with tameness, these hypotheses provide a platform on
which to develop a stability theory for AEC.

A positive answer to either Question 8.1 or Question 11 would seem to
require essentially new methods. The distinction between syntactic (given by
a set of formulas in some logic) and semantic or Galois types (given by the
ability to amalgamate embeddings or as orbits in a suitably homogeneous
model) leads to a quest for further examples.

Question 13. What are some AEC’s which are not basically given syntac-
tically? Which of the many examples of extended logics in [10] give rise to
AEC’s?

A few examples appear in [15, 7, 1], but there should bemanymore. Zilber’s
work on excellent classes raises several issues here [60, 59]. He phrases his
work for certain models (those satisfying the countable closure condition) in
a class defined in L�1,� . So the class could be described in L�1,�(Q); but
such a formulation is of no value for the proof. The hardest part of the
argument, the verification of excellence, is in the standard vein of algebraic
model theory. But here infinitary conditions are being interwoven with not
only algebraic but analytic arguments. Zilber’s model theoretic perspective
produces an intriguing group of conjectures about the complex numbers. In
particular, even a very simple case of showing the complex exponential field
is ‘strongly exponentially closed’ in the sense of [59], has only been answered
using Schanuel’s conjecture and Hadamard factorization [38].
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10 JOHN T. BALDWIN

In another direction, one might try to weaken the categoricity assumption
for proving tameness. The following version doesn’t shed much light since
we don’t have any clear way at hand to verify it (aside from categoricity).
Shelah called this notion rigid. I discuss this notion because a number of
central steps in the analysis of categoricity in [49], existence of non-splitting
extensions, (H1, �)-tameness, and unions of saturated models are saturated
are fundamentally about AEC which are epi.

Definition 14. The AEC K is epi if there is an EM-template Φ such that
the functor EM ( ,Φ) is an epimorphism from linear orders onto the models
of K .

For example, the core of the proof of Theorem 7 shows:
Corollary 15. If K is epi then K is (H1,∞)-tame.
Categoricity is used in the proof of Theorem 7 to get that the AEC is epi.

(Of course this terminology isn’t used.)
Grossberg and VanDieren [20] strengthen the hypothesis of Theorem 4 by

adding (�,∞)-tameness for some � < � with powerful results.
Theorem 16. [21] Suppose K has the amalgamation property and arbitrarily

large models. Suppose K is � and �+ categorical for some � > LS(K) and is
(�,∞)-tame for some � < �. Then K is categorical in all cardinals above �.

There are a number of variations on this result and on the elimination of
the (categorical in �)-hypothesis [36, 20, 7, 23, 55] to get ‘upwards categoricity
from a single cardinal’. We don’t go into this further here except to remark
that any full proof from these hypotheses involves an intensive investigation
of EM models to show that a union of a short chain of saturated models is
saturated [49, 1]. Natural extensions, which remain open as far as I know,
are to replace categoricity in a single successor cardinal by categoricity in a
regular or an arbitrary cardinal; a different idea is needed to replace the role
of two cardinal models.

The stability spectrum theorem is fundamental for the study of first order
theories; it is the essence of the classification of theories. But no similar result
is known for general abstract elementary classes. The stability spectrum of an
AEC K is the function from cardinals to cardinals which gives the supremum
of the cardinals of the number of Galois types over a model in K of fixed
cardinality.

Question 17. Is the stability spectra of an abstract elementary classes (even
in a countable languagewithLS(K) = �) one of a finite set of functions? Does
�-stable imply stable in all cardinals?

Baldwin, Kueker, and VanDieren [6] give a positive response to the last
question but only under the extremely strong hypotheses of both (ℵ0,∞)-
tameness and (ℵ0,∞)-locality. Grossberg and VanDieren earlier noted in [21]
(they state stronger hypotheses):
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