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Introduction

Lie groups were initially introduced as a tool to solve or simplify ordinary
and partial differential equations. The model for this application was
Galois’ use of finite groups to solve algebraic equations of degree two,
three, and four, and to show that the general polynomial equation of
degree greater than four could not be solved by radicals. In this chapter
we show how the structure of the finite group that leaves a quadratic,
cubic, or quartic equation invariant can be used to develop an algorithm
to solve that equation.

1.1 The program of Lie

Marius Sophus Lie (1842–1899) embarked on a program that is still not complete,
even after a century of active work. This program attempts to use the power of the
tool called group theory to solve, or at least simplify, ordinary differential equations.

Earlier in nineteenth century, Évariste Galois (1811–1832) had used group theory
to solve algebraic (polynomial) equations that were quadratic, cubic, and quartic.
In fact, he did more. He was able to prove that no closed form solution could be
constructed for the general quintic (or any higher degree) equation using only the
four standard operations of arithmetic (+, −, ×, ÷) as well as extraction of the nth
roots of a complex number.

Lie initiated his program on the basis of analogy. If finite groups were required
to decide on the solvability of finite-degree polynomial equations, then “infinite
groups” (i.e., groups depending continuously on one or more real or complex vari-
ables) would probably be involved in the treatment of ordinary and partial differen-
tial equations. Further, Lie knew that the structure of the polynomial’s invariance
(Galois) group not only determined whether the equation was solvable in closed
form, but also provided the algorithm for constructing the solution in the case
that the equation was solvable. He therefore felt that the structure of an ordinary
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2 Introduction

differential equation’s invariance group would determine whether or not the equa-
tion could be solved or simplified and, if so, the group’s structure would also provide
the algorithm for constructing the solution or simplification.

Lie therefore set about the program of computing the invariance group of ordinary
differential equations. He also began studying the structure of the children he begat,
which we now call Lie groups.

Lie groups come in two basic varieties: the simple and the solvable. Simple
groups have the property that they regenerate themselves under commutation.
Solvable groups do not, and contain a chain of subgroups, each of which is an
invariant subgroup of its predecessor.

Simple and solvable groups are the building blocks for all other Lie groups.
Semisimple Lie groups are direct products of simple Lie groups. Nonsemisimple Lie
groups are semidirect products of (semi)simple Lie groups with invariant subgroups
that are solvable.

Not surprisingly, solvable Lie groups are related to the integrability, or at least
simplification, of ordinary differential equations. However, simple Lie groups are
more rigidly constrained, and form such a beautiful subject of study in their own
right that much of the effort of mathematicians during the last century involved the
classification and complete enumeration of all simple Lie groups and the discussion
of their properties. Even today, there is no complete classification of solvable Lie
groups, and therefore nonsemisimple Lie groups.

Both simple and solvable Lie groups play an important role in the study of differ-
ential equations. As in Galois’ case of polynomial equations, differential equations
can be solved or simplified by quadrature if their invariance group is solvable.
On the other hand, most of the classical functions of mathematical physics are
matrix elements of simple Lie groups, in particular matrix representations. There
is a very rich connection between Lie groups and special functions that is still
evolving.

1.2 A result of Galois

In 1830 Galois developed machinery that allowed mathematicians to resolve ques-
tions that had eluded answers for 2000 years or longer. These questions included
the three famous challenges to ancient Greek geometers: whether by ruler and
compasses alone it was possible to

• square a circle,
• trisect an angle,
• double a cube.
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1.3 Group theory background 3

His work helped to resolve longstanding questions of an algebraic nature: whether
it was possible, using only the operations of arithmetic together with the operation
of constructing radicals, to solve

• cubic equations,
• quartic equations,
• quintic equations.

This branch of mathematics, now called Galois theory, continues to provide pow-
erful new results, such as supplying answers and solution methods to the following
questions.

• Can an algebraic expression be integrated in closed form?
• Under what conditions can errors in a binary code be corrected?

This beautiful machine, applied to a problem, provides important results. First, it
can determine whether a solution is possible or not under the conditions specified.
Second, if a solution is possible, it suggests the structure of the algorithm that can
be used to construct the solution in a finite number of well-defined steps.

Galois’ approach to the study of algebraic (polynomial) equations involved two
areas of mathematics, now called field theory and group theory. One useful state-
ment of Galois’ result is the following (Lang, 1984; Stewart, 1989).

Theorem A polynomial equation over the complex field is solvable by radicals
if and only if its Galois group G contains a chain of subgroups G = G0 ⊃ G1 ⊃
· · · ⊃ Gω = I with the properties:

(i) Gi+1 is an invariant subgroup of Gi ;
(ii) each factor group Gi/Gi+1 is commutative.

In the statement of this theorem the field theory niceties are contained in the term
“solvable by radicals.” This means that in addition to the four standard arithmetic
operations +, −, ×, ÷ one is allowed the operation of taking nth roots of complex
numbers.

The principal result of this theorem is stated in terms of the structure of the group
that permutes the roots of the polynomial equation among themselves. Determining
the structure of this group is a finite, and in fact very simple, process.

1.3 Group theory background

A group G is defined as follows. It consists of a set of operations G = {g1, g2, . . . },
called group operations, together with a combinatorial operation, ·, called group
multiplication, such that the following four axioms are satisfied.
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4 Introduction

(i) Closure: if gi ∈ G, g j ∈ G, then gi · g j ∈ G.
(ii) Associativity: for all gi ∈ G, g j ∈ G, gk ∈ G,

(gi · g j ) · gk = gi · (g j · gk)

(iii) Identity: there is a group operation, I (identity operator), with the property that

gi · I = gi = I · gi

(iv) Inverse: every group operation gi has an inverse (called g−1
i ):

gi · g−1
i = I = g−1

i · gi

The Galois group G of a general polynomial equation

(z − z1)(z − z2) · · · (z − zn) = 0

zn − I1zn−1 + I2zn−2 + · · · + (−1)n In = 0 (1.1)

is the group that permutes the roots z1, z2, . . . , zn among themselves and leaves the
equation invariant:

⎡
⎢⎢⎢⎣

z1

z2
...

zn

⎤
⎥⎥⎥⎦ −→

⎡
⎢⎢⎢⎣

zi1

zi2

...
zin

⎤
⎥⎥⎥⎦ (1.2)

This group, called the permutation group Pn or the symmetric group Sn , has n!
group operations. Each group operation is some permutation of the roots of the
polynomial; the group multiplication is composition of successive permutations.

The permutation group Sn has a particularly convenient representation in terms
of n × n matrices. These matrices have one nonzero element, +1, in each row
and each column. For example, the 6 = 3! 3 × 3 matrices for the permutation
representation of S3 are

I →
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ (123) →

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ (321) →

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦

(12) →
⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦ (23) →

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ (13) →

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦

(1.3)
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1.3 Group theory background 5

The symbol (123) means that the first root, z1, is replaced by z2, z2 is replaced by
z3, and z3 is replaced by z1 ⎡

⎣ z1

z2

z3

⎤
⎦ (123)−→

⎡
⎣ z2

z3

z1

⎤
⎦ (1.4)

The permutation matrix associated with this group operation carries out the same
permutation ⎡

⎣ z2

z3

z1

⎤
⎦ =

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦

⎡
⎣ z1

z2

z3

⎤
⎦ (1.5)

More generally, a matrix representation of a group is a mapping of each group
operation into an n × n matrix that preserves the group multiplication operation

gi · g j = gi · g j

↓ ↓ ↓ ↓
�(gi ) × �(g j ) = �(gi · g j )

(1.6)

Here · represents the multiplication operation in the group (i.e., composition of sub-
stitutions in Sn) and × represents the multiplication operation among the matrices
(i.e., matrix multiplication). The condition (1.6) that defines a matrix representa-
tion of a group, G → �(G), is that the product of matrices representing two group
operations (�(gi ) × �(g j )) is equal to the matrix representing the product of these
operations in the group (�(gi · g j )) for all group operations gi , g j ∈ G.

This permutation representation of S3 is 1:1, or a faithful representation of S3,
since knowledge of the 3 × 3 matrix uniquely identifies the original group operation
in S3.

A subgroup H of the group G is a subset of group operations in G that is closed
under the group multiplication in G.

Example The subset of operations I, (123), (321) forms a subgroup of S3. This
particular subgroup is denoted A3 (alternating group). It consists of those oper-
ations in S3 whose determinants, in the permutation representation, are +1. The
group S3 has three two-element subgroups:

S2(12) = {I, (12)}
S2(23) = {I, (23)}
S2(13) = {I, (13)}

as well as the subgroup consisting of the identity alone. The alternating subgroup
A3 ⊂ S3 and the three two-element subgroups S2(i j) of S3 are illustrated in Fig. 1.1.
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6 Introduction

S3

A3 S2(12) S2(13) S2(23)

I

Figure 1.1. Subgroups of S3.

The set of operations I, (123), (12) does not constitute a subgroup because products
of operations in this subset do not lie in this subset: (123) · (123) = (321), (123) ·
(12) = (23), etc. In fact, the two operations (123), (12) generate S3 by taking
products of various lengths in various order.

A group G is commutative, or abelian, if

gi · g j = g j · gi (1.7)

for all group operations gi , g j ∈ G.

Example S3 is not commutative, while A3 is. For S3 we have

(12)(23) = (321)
(123) �= (321)

(23)(12) = (123)
(1.8)

Two subgroups of G, H1 ⊂ G and H2 ⊂ G are conjugate if there is a group
element g ∈ G with the property

gH1g−1 = H2 (1.9)

Example The subgroups S2(12) and S2(13) are conjugate in S3 since

(23)S2(12)(23)−1 = (23) {I, (12)} (23)−1 = {I, (13)} = S2(13) (1.10)

On the other hand, the alternating group A3 ⊂ S3 is self-conjugate, since any
operation in G = S3 serves merely to permute the group operations in A3 among
themselves:

(23)A3(23)−1 = (23) {I, (123), (321)} (23)−1 = {I, (321), (123)} = A3 (1.11)

A subgroup H ⊂ G which is self-conjugate under all operations in G is called
an invariant subgroup of G, or normal subgroup of G.
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1.3 Group theory background 7

S3

A3 S2

I

Figure 1.2. Subgroups of S3, combining conjugate subgroups.

In constructing group-subgroup diagrams, it is customary to show only one of
the mutually conjugate subgroups. This simplifies Fig. 1.1 to Fig. 1.2.

A mapping f from a group G with group operations g1, g2, . . . and group multi-
plication · to a group H with group operations h1, h2, . . . and group multiplication
× is called a homomorphism if it preserves group multiplication:

gi · g j = gi · g j

↓ ↓ ↓ ↓
f (gi ) × f (g j ) = f (gi · g j )

(1.12)

The group H is called a homomorphic image of G. Several different group ele-
ments in G may map to a single group element in H . Every element hi ∈ H has
the same number of inverse images g j ∈ G. If each group element h ∈ H has a
unique inverse image g ∈ G (h1 = f (g1) and h2 = f (g2), h1 = h2 ⇒ g1 = g2) the
mapping f is an isomorphism.

Example The 3:1 mapping f of S3 onto S2 given by

S3
f−→ S2

I, (123), (321) −→ I
(12), (23), (31) −→ (12)

(1.13)

is a homomorphism.

Example The 1:1 mapping of S3 onto the six 3 × 3 matrices given in (1.3) is an
isomorphism.

Remark Homomorphisms of groups to matrix groups, such as that in (1.3), are
called matrix representations. The representation in (1.3) is 1:1 or faithful, since
the mapping is an isomorphism.

Remark Isomorphic groups are indistinguishable at the algebraic level. Thus,
when an isomorphism exists between a group and a matrix group, it is often
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8 Introduction

preferable to study the matrix representation of the group since the properties of
matrices are so well known and familiar. This is the approach we pursue in Chapter
3 when discussing Lie groups.

If H is a subgroup of G, it is possible to write every group element in G as a
product of an element h in the subgroup H with a group element in a “quotient,”
or coset (denoted G/H ). A coset is a subset of G. If the order of G is |G| (S3

has 3! = 6 group elements, so the order of S3 is 6), then the order of G/H is
|G/H | = |G|/|H |. For example, for subgroups H = A3 = {I, (123), (321)} and
H = S2(23) = {I, (23)} we have

G/H · H = G
{I, (12)} · {I, (123), (321)} = {I, (123), (321), (12), (13), (23)}

{I, (12), (321)} · {I, (23)} = {I, (23), (12), (123), (321), (13)}
(1.14)

The choice of the |G|/|H | group elements in the quotient space is not unique. For
the subgroup A3 we could equally well have chosen G/H = S3/A3 = {I, (13)}
or {I, (23)}; for S2(23) we could equally well have chosen G/H = S3/S2(23) =
{I, (123), (321)}.

In general, it is not possible to choose the group elements in G/H so that they
form a subgroup of G. However, if H is an invariant subgroup of G, it is always
possible to choose the group elements in the quotient space G/H in such a way
that they form a subgroup in G. This group is called the factor group, also denoted
G/H . Since A3 is an invariant subgroup of S3, the coset S3/A3 is a group, and
this group is isomorphic to S2. More generally, if H is an invariant subgroup of G,
then the group G is the direct product of the invariant subgroup H with the factor
group G/H : G = G/H × H .

1.4 Approach to solving polynomial equations

The general nth degree polynomial equation over the complex field can be expressed
in terms of the kth order symmetric functions Ik of the roots zi as follows:

(z − z1)(z − z2) · · · (z − zn) = zn − I1zn−1 + I2zn−2 − · · · + (−)n In = 0

I1 =
n∑

i=1

zi = z1 + z2 + · · · + zn

I2 =
n∑

i< j

zi z j = z1z2 + z1z3 + · · · + z1zn + z2z3 + · · · + zn−1zn

...
...

... (1.15)

In =
n∑

i< j<···<k

zi z j · · · zk = z1z2 · · · zn
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1.4 Approach to solving polynomial equations 9

The n functions Ik (k = 1, 2, . . . , n) of the n roots (z1, z2, . . . , zn) are symmetric:
this means that they are invariant under the Galois group Sn of this equation. Further,
any function f (z1, z2, . . . , zn) that is invariant under Sn can be written as a function
of the invariants I1, I2, . . . , In . The invariants are easily expressed in terms of
the roots (see Eq. (1.15)). The inverse step, that of expressing the roots in terms
of the invariants, or coefficients of the polynomial equation, is the problem of
solving the polynomial equation.

Galois’ theorem states that a polynomial equation over the complex field can be
solved if and only if its Galois group G contains a chain of subgroups (Lang, 1984;
Stewart, 1989)

G = G0 ⊃ G1 ⊃ · · · ⊃ Gω = I (1.16)

with the properties

(i) Gi+1 is an invariant subgroup of Gi ,
(ii) Gi/Gi+1 is commutative.

The procedure for solving polynomial equations is constructive. First, the last
group-subgroup pair in this chain is isolated: Gω−1 ⊃ Gω = I . The character
table for the commutative group Gω−1/Gω = Gω−1 is constructed. This lists
the |Gω−1|/|Gω| inequivalent one-dimensional representations of Gω−1. Linear
combinations of the roots zi are identified that transform under (i.e., are basis
functions for) the one-dimensional irreducible representations of Gω−1. These
functions are

(i) symmetric under Gω = I ,
(ii) not all symmetric under Gω−1.

Next, the next pair of groups Gω−2 ⊃ Gω−1 is isolated. Starting from the set of
functions in the previous step, one constructs from them functions that are

(i) symmetric under Gω−1,
(ii) not all symmetric under Gω−2.

This bootstrap procedure continues until the last group-subgroup pair G = G0 ⊃
G1 is treated. At this stage the last set of functions can be solved by radicals.
These solutions are then fed down the group-subgroup chain until the last pair
Gω−1 ⊃ Gω = I is reached. When this occurs, we obtain a linear relation between
the roots z1, z2, . . . , zn and functions of the invariants I1, I2, . . . , In .

This brief description will now be illustrated by using Galois theory to solve
quadratic, cubic, and quartic equations by radicals.
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10 Introduction

S2 = I, (12)

I

Figure 1.3. Group chain for the Galois group S2 of the general quadratic equation.

1.5 Solution of the quadratic equation

The general quadratic equation has the form

(z − r1)(z − r2) = z2 − I1z + I2 = 0

I1 = r1 + r2 (1.17)

I2 = r1r2

The Galois group is S2 with subgroup chain shown in Fig. 1.3.
The character table for the commutative group S2 is

I (12) Basis functions
�1 1 1 u1 = r1 + r2

�2 1 −1 u2 = r1 − r2

(1.18)

Linear combinations of the roots that transform under the one-dimensional irre-
ducible representations �1, �2 are[

u1

u2

]
=

[
1 1
1 −1

] [
r1

r2

]
=

[
r1 + r2

r1 − r2

]
(1.19)

That is, the function r1 − r2 is mapped into itself by the identity, and into its negative
by (12)

I−→ +(r1 − r2)
(r1 − r2)

}
(1.20)

(12)−→ (r2 − r1) = −(r1 − r2)

As a result, (r1 − r2) is not symmetric under the action of the group S2. It transforms
under the irreducible representation �2, not the identity representation �1.

Since the square (r1 − r2)2 is symmetric (transforms under the identity repre-
sentation of S2), it can be expressed in terms of the two invariants I1, I2 as follows

(r1 − r2)2 = r2
1 − 2r1r2 + r2

2

= r2
1 + 2r1r2 + r2

2 − 4r1r2 = I 2
1 − 4I2 = D (1.21)
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