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This unique book provides a meaningful resource for applied mathematics through Fourier
analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analy-
sis, the fast Fourier transform, and a powerful elementary theory of generalized functions,
including the use of weak limits. It then shows how these mathematical ideas can be
used to expedite the study of sampling theory, PDEs, wavelets, probability, diffraction, etc.
Unique features include a unified development of Fourier synthesis/analysis for functions
on R, T,, Z, and PPx; an unusually complete development of the Fourier transform cal-
culus (for finding Fourier transforms, Fourier series, and DFTs); memorable derivations of
the FFT; a balanced treatment of generalized functions that fosters mathematical under-
standing as well as practical working skills; a careful introduction to Shannon’s sampling
theorem and modern variations; a study of the wave equation, diffusion equation, and
diffraction equation by using the Fourier transform calculus, generalized functions, and
weak limits; an exceptionally efficient development of Daubechies’ compactly supported
orthogonal wavelets; generalized probability density functions with corresponding versions
of Bochner’s theorem and the central limit theorem; and a real-world application of Fourier
analysis to the study of musical tones. A valuable reference on Fourier analysis for a vari-
ety of scientific professionals, including Mathematicians, Physicists, Chemists, Geologists,
Electrical Engineers, Mechanical Engineers, and others.
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Mathematics: Source and

Substance

Profound study of nature is the most fertile source of mathematical
discoveries.

Joseph Fourier, The Analytical Study of Heat, p. 7

Mathematics is the science of patterns. The mathematician seeks
patterns in number, in space, in science, in computers, and in imagina-
tion. Mathematical theories explain the relations among patterns; func-
tions and maps, operators and morphisms bind one type of pattern to
another to yield lasting mathematical structures. Applications of mathe-
matics use these patterns to explain and predict natural phenomena that
fit the patterns. Patterns suggest other patterns, often yielding patterns
of patterns. In this way mathematics follows its own logic, beginning with
patterns from science and completing the portrait by adding all patterns
that derive from initial ones.

Lynn A. Steen, The science of patterns, Science 240(1988), 616.
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Preface

To the Student

This book is about one big idea: You can synthesize a variety of complicated func-
tions from pure sinusoids in much the same way that you produce a major chord
by striking nearby C, E, G keys on a piano. A geometric version of this idea forms
the basis for the ancient Hipparchus-Ptolemy model of planetary motion (Almagest,
2nd century; see Fig. 1.2). It was Joseph Fourier (Analytical Theory of Heat, 1815),
however, who developed modern methods for using trigonometric series and inte-
grals as he studied the flow of heat in solids. Today, Fourier analysis is a highly
evolved branch of mathematics with an incomparable range of applications and with
an impact that is second to none (see Appendix 1). If you are a student in one of
the mathematical, physical, or engineering sciences, you will almost certainly find
it necessary to learn the elements of this subject. My goal in writing this book is
to help you acquire a working knowledge of Fourier analysis early in your career.

If you have mastered the usual core courses in calculus and linear algebra, you
have the maturity to follow the presentation without undue difficulty. A few of the
proofs and more theoretical exercises require concepts (uniform continuity, uniform
convergence, . .. ) from an analysis or advanced calculus course. You may choose to
skip over the difficult steps in such arguments and simply accept the stated results.
The text has been designed so that you can do this without severely impacting
your ability to learn the important ideas in the subsequent chapters. In addition, T
will use a potpourri of notions from undergraduate courses in differential equations
[solve ¢/ (z) + ay(z) = 0, ¥/ (z) = zy(z), v"(z) + a*y(z) = 0,...], complex analysis
(Euler’s formula: e’ = cos 6+ sin #, arithmetic for complex numbers, ... ), number
theory (integer addition and multiplication modulo N, Euclid’s ged algorithm, ... ),
probability (random variable, mean, variance, ... ), physics (F = ma, conservation
of energy, Huygens’ principle, ...), signals and systems (LTI systems, low-pass
filters, the Nyquist rate, ... ), etc. You will have no trouble picking up these concepts
as they are introduced in the text and exercises.

If you wish, you can find additional information about almost any topic in
this book by consulting the annotated references at the end of the corresponding
chapter. You will often discover that I have abandoned a traditional presentation

X1
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xii Preface

in favor of one that is in keeping with my goal of making these ideas accessible
to undergraduates. For example, the usual presentation of the Schwartz theory
of distributions assumes some familiarity with the Lebesgue integral and with
a graduate-level functional analysis course. In contrast, my development of §,
I, ... in Chapter 7 uses only notions from elementary calculus. Once you master
this theory, you can use generalized functions to study sampling, PDEs, wavelets,
probability, diffraction, ... .

The exercises (541 of them) are my greatest gift to you! Read each chapter
carefully to acquire the basic concepts, and then solve as many problems as you
can. You may find it beneficial to organize an interdisciplinary study group, e.g.,
mathematician + physicist + electrical engineer. Some of the exercises provide
routine drill: You must learn to find convolution products, to use the FT calculus,
to do routine computations with generalized functions, etc. Some supply historical
perspective: You can play Gauss and discover the FFT, analyze Michelson and
Stratton’s analog supercomputer for summing Fourier series, etc. Some ask for
mathematical details: Give a sufficient condition for ..., given an example of ... |
show that, ... . Some involve your personal harmonic analyzers: Experimentally
determine the bandwidth of your eye, describe what would you hear if you replace
notes with frequencies Fy,Fa,... by notes with frequencies C/Fy1, C'/Fa, ... . Some
prepare you for computer projects: Compute 7 to 1000 digits, prepare a movie for
a vibrating string, generate the sound file for Risset’s endless glissando, etc. Some
will set you up to discover a pattern, formulate a conjecture, and prove a theorem.
(It’s quite a thrill when you get the hang of it!) T expect you to spend a lot of time
working exercises, but I want to help you work efficiently. Complicated results are
broken into simple steps so you can do (a), then (b), then (c), ... until you reach
the goal. I frequently supply hints that will lead you to a productive line of inquiry.
You will sharpen your problem-solving skills as you take this course.
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Synopsis  xiii

Synopsis

The chapters of the book are arranged as follows:

1

Fourier’s
Representation

l

2

Convolution

l

3

FT Calculus
R

|

4

FT Calculus
']Tpa Z) ]PN

l

7

Generalized
Functions

— PDEs

6 5
The FFT FT Operators
10 8
Wavelets Sampling
11
Musical
Tones

l

12
Probability

The mathematical core is given in Chapters 1-7 and selected applications are
developed in Chapters 8-12.

We present the basic themes of Fourier analysis in the first two chapters.
Chapter 1 opens with Fourier’s synthesis and analysis equations for functions on the
real line R, on the circle T, on the integers Z, and on the polygon Px. We discretize
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by sampling (obtaining functions on Z, Py from functions on R, T, ), we periodize by
summing translates (obtaining functions on T, Py from functions on R, Z), and we
informally derive the corresponding Poisson identities. We combine these mappings
to form the Fourier—Poisson cube, a structure that links the Fourier transforms,
Fourier series, and discrete Fourier transforms students encounter in their under-
graduate classes. We prove that these equations are valid when certain elementary
sufficient conditions are satisfied. We complete the presentation of basic themes by
describing the convolution product of functions on R, T, Z, and Py in Chapter 2.

Chapters 3 and 4 are devoted to the development of computational skills. We
introduce the Fourier transform calculus for functions on R by finding transforms
of the box, TI(z), the truncated exponential, e=* h(x), and the unit gaussian e~
We present the rules (linearity, translation, dilation, convolution, inversion, ...)
and use them to obtain transforms for a large class of functions on R. Various
methods are used to find Fourier series. In addition to direct integration (with
Kronecker’s rule), we present (and emphasize) Poisson’s formula, Eagle’s method,
and the use of elementary Laurent series (from calculus). Corresponding rules
facilitate the manipulation of the Fourier representations for functions on T, and Z.
An understanding of the Fourier transform calculus for functions on Py is essential
for anyone who wishes to use the FFT. We establish a few well-known DFT pairs
and develop the corresponding rules. We illustrate the power of this calculus by
deriving the Euler—-Maclaurin sum formula from elementary numerical analysis and
evaluating the Gauss sums from elementary number theory.

In Chapter 5 we use operators, i.e., function-to-function mappings, to organize
the multiplicity of specialized Fourier transform rules. We characterize the basic
symmetries of Fourier analysis and develop a deeper understanding of the Fourier
transform calculus. We also use the operator notation to facilitate a study of Sine,
Cosine, Hartley, and Hilbert transforms.

The subject of Chapter 6 is the FFT (which Gilbert Strang calls the most impor-
tant algorithm of the 20th century!). After describing the O(N?) scheme of Horner,
we use the DFT calculus to produce an N-point DFT with only O(N logy N) op-
erations. We use an elementary zipper identity to obtain a sparse factorization of
the DFT matrix and develop a corresponding algorithm (including the clever en-
hancements of Bracewell and Buneman) for fast machine computation. We briefly
introduce some of the more specialized DFT factorizations that can be obtained by
using Kronecker products.

An elementary exposition of generalized functions (the tempered distributions of
Schwartz) is given in Chapter 7, the heart of the book. We introduce the Dirac § [as
the second derivative of the ramp r(z) := max(x, 0)], the comb III; the reciprocal
“1/x”, the Fresnel function e“””Q, ... and carefully extend the FT calculus rules to
this new setting. We introduce generalized (weak) limits so that we can work with
infinite series, infinite products, ordinary derivatives, partial derivatives, ... .

Selected applications of Fourier analysis are given in the remaining chapters.
(You can find whole textbooks devoted to each of these topics.) Mathematical
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To the Instructor XV

models based on Fourier synthesis, analysis done with generalized functions, and
FFT computations are used to foster insight and understanding. You will experience
the enormous “leverage” Fourier analysis can give as you study this material!

Sampling theory, the mathematical basis for digital signal processing, is the focus
of Chapter 8. We present weak and strong versions of Shannon’s theorem together
with the clever generalization of Papoulis. Using these ideas (and characteristics
of the human ear) we develop the elements of computer music in Chapter 11. We
use additive synthesis and Chowning’s FM synthesis to generate samples for musical
tones, and we use spectrograms to visualize the structure of the corresponding sound
files.

Fourier analysis was invented to solve PDEs, the subject of Chapter 9. We for-
mulate mathematical models for the motion of a vibrating string, for the diffusion
of heat (Fourier’s work), and for Fresnel diffraction. (The Schrédinger equation
from quantum mechanics seems much less intimidating when interpreted within the
context of elementary optics!) With minimal effort, we solve these PDEs, establish
suitable conservation laws, and examine representative solutions. (The cover illus-
tration was produced by using the FFT to generate slices for the diffraction pattern
that results when two gaussian laser beams interfere.)

Chapter 10 is devoted to the study of wavelets, a relatively new branch of math-
ematics. We introduce the basic ideas using the piecewise constant functions asso-
ciated with the Haar wavelets. We then use the theory of generalized functions to
develop the compactly supported orthogonal wavelets created by I. Daubechies in
1988. Fourier analysis plays an essential role in the study of corresponding filter
banks that are used to process audio and image files.

We present the elements of probability theory in Chapter 12 using generalized
densities, e.g., f(z) := (1/2)[0(z + 1) + d(z — 1)] serves as the probability density
for a coin toss. We use Fourier analysis to find moments, convolution products,
characteristic functions, and to establish the uncertainty relation (for suitably reg-
ular probability densities on R). We then use the theory of generalized functions to
prove the central limit theorem, the foundation for modern statistics!

To the Instructor

This book is the result of my efforts to create a modern elementary introduction to
Fourier analysis for students from mathematics, science, and engineering. There is
more than enough material for a tight one-semester survey or for a leisurely two-
semester course that allocates more time to the applications. You can adjust the
level and the emphasis of the course to your students by the topics you cover and
by your assignment of homework exercises. You can use Chapters 1-4, 7, and 9 to
update a lackluster boundary value problems course. You can use Chapters 1-4, 7,
8, and 10 to give a serious introduction to sampling theory and wavelets. You can
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use selected portions of Chapters 24, 6, 8, and 11 (with composition exercises!)
for a fascinating elementary introduction to the mathematics of computer-generated
music. You can use the book for an undergraduate capstone course that emphasizes
group learning of the interdisciplinary topics and mastering of some of the more
difficult exercises. Finally, you can use Chapters 7-12 to give a graduate-level
introduction to generalized functions for scientists and engineers.

This book is not a traditional mathematics text. You will find a minimal amount
of jargon and note the absence of a logically complete theorem-proof presentation of
elementary harmonic analysis. Basic computational skills are developed for solving
real problems, not just for drill. There is a strong emphasis on the visualization of
equations, mappings, theorems, ... and on the interpretation of mathematical ideas
within the context of some application. In general, the presentation is informal,
but there are careful proofs for theorems that have strategic importance, and there
are a number of exercises that lead students to develop the implications of ideas
introduced in the text.

Be sure to cover one or more of the applications chapters. Students enjoy learning
about the essential role Fourier analysis plays in modern mathematics, science, and
engineering. You will find that it is much easier to develop and to maintain the
market for a course that emphasizes these applications.

When I teach this material I devote 24 lectures to the mathematical core (deleting
portions of Chapters 1, 5, and 6) and 18 lectures to the applications (deleting
portions of Chapters 10, 11, and 12). I also spend 3—4 hours per week conducting
informal problem sessions, giving individualized instruction, etc. I lecture from
transparencies and use a PC (with FOURIER) for visualization and sonification.
This is helpful for the material in Chapters 2, 5, 6, and 12 and essential for the
material in Chapters 9, 10, and 11. T use a laser with apertures on 35 mm slides
to show a variety of diffraction patterns when I introduce the topic of diffraction
in Chapter 9. This course is a great place to demonstrate the synergistic roles
of experimentation, mathematical modeling, and computer simulation in modern
science and engineering.

I have one word of caution. As you teach this material you will face the constant

temptation to prove too much too soon. My informal use of < cries out for the
precise statement and proof of some relevant sufficient condition. (In most cases
there is a corresponding exercise, with hints, for the student who would really like
to see the details.) For every hour that you spend presenting 19th-century advanced
calculus arguments, however, you will have one less hour for explaining the 20th-
century mathematics of generalized functions, sampling theory, wavelets, ... . You
must decide which of these alternatives will best serve your students.
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