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Fourier’s representation for
functions on R, Tp, Z, and PN

1.1 Synthesis and analysis equations

Introduction

In mathematics we often try to synthesize a rather arbitrary function f using a
suitable linear combination of certain elementary basis functions. For example, the
power functions 1, x, x2, . . . serve as such basis functions when we synthesize f using
the power series representation

f(x) = a0 + a1x + a2x
2 + · · · . (1)

The coefficient ak that specifies the amount of the basis function xk needed in the
recipe (1) for constructing f is given by the well-known Maclaurin formula

ak =
f (k)(0)

k!
, k = 0, 1, 2, . . .

from elementary calculus. Since the equations for a0, a1, a2, . . . can be used only
in cases where f, f ′, f ′′, . . . are defined at x = 0, we see that not all functions
can be synthesized in this way. The class of analytic functions that do have such
power series representations is a large and important one, however, and like Newton
[who with justifiable pride referred to the representation (1) as “my method”], you
have undoubtedly made use of such power series to evaluate functions, to construct
antiderivatives, to compute definite integrals, to solve differential equations, to jus-
tify discretization procedures of numerical analysis, etc.
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2 Fourier’s representation for functions

Fourier’s representation (developed a century and a half after Newton’s) uses as
basis functions the complex exponentials

e2πisx := cos(2πsx) + i · sin(2πsx), (2)

where s is a real frequency parameter that serves to specify the rate of oscillation,
and i2 = −1. When we graph this complex exponential, i.e., when we graph

u := Re e2πisx = cos(2πsx)

v := Im e2πisx = sin(2πsx)

as functions of the real variable x in x, u, v-space, we obtain a helix (a Slinky!)
that has the spacing 1/|s| between the coils. Projections of this helix on the planes
v = 0, u = 0, x = 0 give the sinusoids u = cos(2πsx), v = sin(2πsx), and the circle
u2 + v2 = 1, as shown in Fig. 1.1.

Figure 1.1. The helix u = cos(2πsx), v = sin(2πsx) in
x, u, v-space together with projections in the x, u, the x, v,
and the u, v planes.
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Synthesis and analysis equations 3

Functions on R

Fourier discovered that any suitably regular complex-valued function f defined on
the real line R can be synthesized by using the integral representation

f(x) =
∫ ∞

s=−∞
F (s)e2πisx ds, −∞ < x < ∞. (3)

Here F is also a complex-valued function defined on R, and we think of F (s)ds
as being the amount of the exponential e2πisx with frequency s that must be used
in the recipe (3) for f . At this point we are purposefully vague as to the exact
hypotheses that must be imposed on f to guarantee the existence of such a Fourier
representation. Roughly speaking, the Fourier representation (3) is possible in all
cases where f does not fluctuate too wildly and where the tails of f at ±∞ are not
too large. It is certainly not obvious that such functions can be represented in the
form (3) [nor is it obvious that sinx, cos x, ex, and many other functions can be
represented using the power series (1)]. At this point we are merely announcing that
this is, in fact, the case, and we encourage you to become familiar with equation (3)
along with analogous equations that will be introduced in the next few paragraphs.
Later on we will establish the validity of (3) after giving meaning to the intentionally
vague term suitably regular.

Fourier found that the auxiliary function F from the representation (3) can be
constructed by using the integral

F (s) =
∫ ∞

x=−∞
f(x)e−2πisx dx, −∞ < s < ∞. (4)

We refer to (3) as the synthesis equation and to (4) as the analysis equation for f .
The function F is said to be the Fourier transform of f . We cannot help but notice
the symmetry between (3) and (4), i.e., we can interchange f, F provided that we
also interchange +i and −i. Other less symmetric analysis-synthesis equations are
sometimes used for Fourier’s representation, see Ex. 1.4, but we prefer to use (3)–(4)
in this text. We will often display the graphs of f, F side by side, as illustrated in
Fig. 1.2. Our sketch corresponds to the case where both f and F are real valued.
In general, it is necessary to display the four graphs of Re f , Im f , Re F , and ImF.
You will find such displays in Chapter 3, where we develop an efficient calculus for
evaluating improper integrals having the form (3) or (4).

Figure 1.2. The graph of a function f on R and its Fourier transform F on R.
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4 Fourier’s representation for functions

Functions on Tp

We say that a function f defined on R is p-periodic, p > 0, when

f(x + p) = f(x), −∞ < x < ∞.

Fourier (like Euler, Lagrange, and D. Bernoulli before him) discovered that a suit-
ably regular p-periodic complex-valued function on R can be synthesized by using
the p-periodic complex exponentials from (2). We will routinely identify any p-
periodic function on R with a corresponding function defined on the circle Tp hav-
ing the circumference p as illustrated in Fig. 1.3. [To visualize the process, think of
wrapping the graph of f(x) versus x around a right circular cylinder just like the
paper label is wrapped around a can of soup!] Of course, separate graphs for Ref
and Im f must be given in cases where f is complex valued.

Figure 1.3. Identification of a p-periodic function f on R with
a corresponding function on the circle Tp having the circumfer-
ence p.

The complex exponential e2πisx will be p-periodic in the argument x, i.e.,

e2πis(x+p) = e2πisx, −∞ < x < ∞,

when
e2πisp = 1,

i.e., when
s = k/p for some k = 0, ±1, ±2, . . . .

In this way we see that the p-periodic exponentials from (2) are given by

e2πikx/p, k = 0, ±1, ±2, . . . ,

as shown in Fig. 1.4.
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Synthesis and analysis equations 5

Figure 1.4. Real and imaginary parts of the complex exponen-
tial e8πix/p as functions on R and as functions on Tp.

Fourier’s representation

f(x) =
∞∑

k=−∞
F [k]e2πikx/p, −∞ < x < ∞, (5)

for a p-periodic function f uses all of these complex exponentials. In this case
F is a complex-valued function defined on the integers Z (from the German word
Zahlen, for integers). We use brackets [ ] rather than parentheses ( ) to enclose the
independent variable k in order to remind ourselves that this argument is discrete.
We think of F [k] as being the amount of the exponential e2πikx/p that we must use
in the recipe (5) for f . We refer to (5) as the Fourier series for f and we say that
F [k] is the kth Fourier coefficient for f . You may be familiar with the alternative
representation

f(x) =
a0

2
+

∞∑
k=1

{ak cos(2πkx/p) + bk sin(2πkx/p)}

for a Fourier series. You can use Euler’s identity (2) to see that this representation
is equivalent to (5), see Ex. 1.16. From time to time we will work with such cos, sin
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6 Fourier’s representation for functions

series, e.g., this form may be preferable when f is real or when f is known to have
even or odd symmetry. For general purposes, however, we will use the compact
complex form (5).

Fourier found that the coefficients F [k] for the representation (5) can be con-
structed for a given function f by using the integrals

F [k] =
1
p

∫ p

x=0
f(x)e−2πikx/p dx, k = 0,±1,±2, . . . . (6)

[Before discovering the simple formula (6), Fourier made use of clumsy, mathemat-
ically suspect arguments based on power series to find these coefficients.] We refer
to (5) as the synthesis equation and to (6) as the analysis equation for the p-periodic
function f , and we say that F is the Fourier transform of f within this context. We
use small circles on line segments, i.e., lollipops, when we graph F (a function on
Z), and we often display the graphs of f, F side by side as illustrated in Fig. 1.5. Of
course, we must provide separate graphs for Re f , Im f , Re F , Im F in cases where
f, F are not real valued. You will find such displays in Chapter 4, where we develop
a calculus for evaluating integrals having the form (6).

Figure 1.5. The graph of a function f on Tp and its Fourier
transform F on Z.

Functions on Z

There is a Fourier representation for any suitably regular complex-valued function
f that is defined on the set of integers, Z. As expected, we synthesize f from the
complex exponential functions e2πisn on Z, with s being a real parameter. Now for
any real s and any integer m we find

e2πi(s+m)n = e2πisn, n = 0,±1,±2, . . .

(i.e., the exponentials e2πisn, e2πi(s±1)n, e2πi(s±2)n, . . . are indistinguishable when
n is constrained to take integer values). This being the case, we will synthesize f
using

e2πisn, 0 ≤ s < 1

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88340-5 - A First Course in Fourier Analysis
David W. Kammler
Excerpt
More information

http://www.cambridge.org/0521883407
http://www.cambridge.org
http://www.cambridge.org


Synthesis and analysis equations 7

or equivalently, using
e2πisn/p, 0 ≤ s < p,

where p is some fixed positive number. Figure 1.6 illustrates what happens when
we attempt to use some s > p. The high-frequency sinusoid takes on the identity or
alias of some corresponding low-frequency sinusoid. It is easy to see that e2πisn/p

oscillates slowly when s is near 0 or when s is near p. The choice s = p/2 gives the
most rapid oscillation with the complex exponential

e2πi(p/2)n/p = (−1)n

having the smallest possible period, 2.

Figure 1.6. The identical samples of e2πix/16 and e2πi17x/16 at
x = 0,±1,±2, . . . .

Fourier’s synthesis equation,

f [n] =
∫ p

s=0
F (s)e2πisn/p ds, (7)

for a suitably regular function f on Z, uses all of these complex exponentials on Z,
and the corresponding analysis equation is given by

F (s) =
1
p

∞∑
n=−∞

f [n]e−2πisn/p. (8)

We say that F is the Fourier transform of f and observe that this function is
p-periodic in s, i.e., that F is a complex-valued function on the circle Tp. Figure 1.7
illustrates such an f, F pair.
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8 Fourier’s representation for functions

Figure 1.7. The graph of a function f on Z and its Fourier
transform F on Tp.

We have chosen to include the parameter p > 0 for the representation (7) (instead
of working with the special case p = 1) in order to emphasize the duality that exists
between (5)–(6) and (7)–(8). Indeed, if we replace

i, x, k, f, F

in (5)–(6) by
−i, s, n, pF, f,

respectively, we obtain (7)–(8). Thus every Fourier representation of the form
(5)–(6) corresponds to a Fourier representation of the form (7)–(8), and vice versa.

Functions on PN

Let N be a positive integer, and let PN consist of N uniformly spaced points on the
circle TN as illustrated in Fig. 1.8. We will call this discrete circle a polygon even
in the degenerate cases where N = 1, 2.

Figure 1.8. The polygon P5.

The simplest Fourier representation [found by Gauss in the course of his study
of interpolation by trigonometric polynomials a few years before Fourier discovered
either (3)–(4) or (5)–(6)] occurs when f is a complex-valued N -periodic function
defined on Z. We will routinely identify such an N -periodic f with a corresponding
function that is defined on PN as illustrated in Fig. 1.9. Of course, we must provide
separate graphs for Re f , Im f when f is complex valued. Since f is completely
specified by the N function values f [n], n = 0, 1, . . . , N − 1, we will sometimes find
that it is convenient to use a complex N -vector

f = (f [0], f [1], . . . , f [N − 1])
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Synthesis and analysis equations 9

Figure 1.9. Identification of an N -periodic discrete function on
Z with a corresponding function on the polygon PN .

to represent this function. This is particularly useful when we wish to process f
numerically. You will observe that we always use n = 0, 1, . . . , N − 1 (not n =
1, 2, . . . , N) to index the components of f .

The complex exponential e2πisn (with s being a fixed real parameter) will be
N -periodic in the integer argument n, i.e.,

e2πis(n+N) = e2πisn for all n = 0, ±1, ±2, . . .

when
e2πisN = 1,

i.e., when s = k/N for some integer k. On the other hand, when m is an integer we
find

e2πikn/N = e2πi(k+mN)n/N for all n = 0, ±1, ±2, . . . ,

so the parameters

s =
k

N
, s =

k ± N

N
, s =

k ± 2N

N
, . . .

all give the same function. Thus we are left with precisely N distinct discrete
N -periodic complex exponentials

e2πikn/N , k = 0, 1, . . . , N − 1.

The complex exponentials with k = 1 or k = N − 1 make one complete oscillation
on PN , those with k = 2 or k = N − 2 make two complete oscillations, etc., as
illustrated in Fig. 1.10. The most rapid oscillation occurs when N is even and
k = N/2 with the corresponding complex exponential

e2πi(N/2)n/N = (−1)n

having the smallest possible period, 2.
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10 Fourier’s representation for functions

Figure 1.10. Complex exponentials e2πikn/31 on P31.

Fourier’s synthesis equation takes the form

f [n] =
N−1∑
k=0

F [k]e2πikn/N , n = 0, ±1, ±2, . . . (9)

within this setting. Again we regard F [k] as the amount of the discrete exponential
e2πikn/N that must be used in the recipe for f , we refer to (9) as the discrete
Fourier series for f , and we say that F [k] is the kth Fourier coefficient for f . The
corresponding analysis equation

F [k] =
1
N

N−1∑
n=0

f [n]e−2πikn/N , k = 0, 1, . . . , N − 1 (10)
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