
Part I

Preliminaries, Examples and Motivations
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1

Finite Markov chains

1.1 Preliminaries and notation

Let X be a finite set and denote by L(X) = {f : X → C} the vector
space of all complex-valued functions defined on X. Clearly dimL(X) =
|X|, where | · | denotes cardinality.

For x ∈ X we denote by δx the Dirac function centered at x, that is

δx(y) =

{
1 if y = x

0 if y �= x.

The set {δx : x ∈ X} is a natural basis for L(X) and if f ∈ L(X) then
f =

∑
x∈X f(x)δx.

The space L(X) is endowed with the scalar product defined by setting

〈f1, f2〉 =
∑
x∈X

f1(x)f2(x)

for f1, f2 ∈ L(X), and we set ‖f‖2 = 〈f, f〉. Note that the basis {δx :
x ∈ X} is orthonormal with respect to 〈·, ·〉. Sometimes we shall write
〈·, ·〉L(X) to emphasize the space where the scalar product is defined if
other spaces are also considered.

If Y ⊆ X, the symbol 1Y denotes the characteristic function of Y :

1Y (x) =

{
1 if x ∈ Y

0 if x �∈ Y ;

in particular, if Y = X we write 1 instead of 1X .
For Y1, Y2, . . . , Ym ⊆ X we write X = Y1

∐
Y2

∐
· · ·

∐
Ym to indicate

that the Yj ’s constitute a partition of X, that is X = Y1 ∪ Y2 ∪ · · · ∪ Ym

and Yi ∩ Yj = ∅ whenever i �= j. In other words the symbol
∐

denotes
a disjoint union. In particular, if we write Y

∐
Y ′ we implicitly assume

that Y ∩ Y ′ = ∅.
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4 Finite Markov chains

If A : L(X) → L(X) is a linear operator, setting a(x, y) = [Aδy](x)
for all x, y ∈ X, we have that

[Af ](x) =
∑
y∈X

a(x, y)f(y) (1.1)

for all f ∈ L(X) and we say that the matrix a = (a(x, y))x,y∈X , indexed
by X, represents the operator A.

If the linear operators A1, A2 : L(X) → L(X) are represented by
the matrices a1 and a2, respectively, then the composition A1 ◦ A2 is
represented by the corresponding product of matrices a = a1 · a2 that is

a(x, y) =
∑
z∈X

a1(x, z)a2(z, y).

For k ∈ N we denote by ak =
(
a(k)(x, y)

)
x,y∈X

the product of k copies
of a, namely

a(k)(x, y) =
∑
z∈X

a(k−1)(x, z)a(z, y).

We remark that (1.1) can be also interpreted as the product of the
matrix a with the column vector f = (f(x))x∈X .

Given a matrix a and a column or, respectively, a row vector f , we
denote by aT and by fT the transposed matrix (i.e. aT (x, y) = a(y, x)
for all x, y ∈ X) and the row, respectively column transposed vector.
This way we also denote by fT A the function given by

[fT A](y) =
∑
x∈X

f(x)a(x, y). (1.2)

With our notation, the identity operator is represented by the identity
matrix which may be expressed as I = (δx(y))x,y∈X . If X is a set of
cardinality |X| = n and k ≤ n, then a k-subset of X is a subset A ⊆ X

such that |A| = k.
If v1, v2, . . . , vm are vectors in a vector space V , then 〈v1, v2, . . . , vm〉

will denote their linear span.

1.2 Four basic examples

This section is an informal description of four examples of finite diffu-
sion processes. Their common feature is that their structure is rich in
symmetries so that one can treat them by methods and techniques from
finite harmonic analysis.
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1.2 Four basic examples 5

The main scope of this book is to study these examples in full detail
and present all the mathematical background.

Example 1.2.1 (The simple random walk on the discrete circle)
Let Cn denote a regular n-gon. We number the vertices consecutively
from 0 to n − 1: we regard these numbers as elements of Z/nZ, i.e.
mod n. This way, there is an edge connecting the jth with the (j + 1)st
for all j = 0, 1, . . . , n − 1. This is the discrete circle.

3 2

1

0n − 1

n − 2

Figure 1.1. The discrete circle Cn

Suppose that a person is randomly moving on the vertices of Cn ac-
cording to the following rule. The time is discrete (t = 0, 1, 2, . . .) and
at each instant of time there is a move.

At the beginning, that is at time t = 0, the random walker is in 0.
Suppose that at time t he is at position j. Then he tosses a fair coin

and he moves from j to either j +1 or to j −1 if the result is a head or a
tail, respectively. In other words, given that at time t he is in j, at time
t + 1 he can be at position j + 1 or j − 1 with the same probability 1/2.

j + 1j – 1

j

1
2

1
2

Figure 1.2. The equiprobable moves j �→ j − 1 and j �→ j + 1

Example 1.2.2 (The Ehrenfest diffusion model) The Ehrenfest dif-
fusion model consists of two urns numbered 0, 1 and n balls, numbered
1, 2, . . . , n. A configuration is a placement of the balls into the urns.
Therefore there are 2n configurations and each of them can be identi-
fied with the subset A of {1, 2, . . . , n} corresponding to the set of balls
contained in the urn 0. Note that there is no ordering inside the urns.
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6 Finite Markov chains

The initial configuration corresponds to the situation when all balls are
inside urn 0.

8

5

1 2 3 4

6 7

9

urn 0 urn 1

10

Figure 1.3. The initial configuration for the Ehrenfest urn model (n = 10)

Then, at each step, a ball is randomly chosen (each ball might be
chosen with probability 1/n) and it is moved to the other urn.

i5 i6

i1 i2 i3 i4 i7 i8 i9 i10

urn 0 urn 1

(a)

i5

i1 i2 i6 i4

urn 0

i3

i7 i8 i9 i10

urn 1

(b)

Figure 1.4. (a) A configuration at time t. (b) The configuration at time
t + 1 if the chosen ball is i3
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1.2 Four basic examples 7

Denoting by Qn the set of all subsets of {1, 2, . . . , n}, we can describe
this random process as follows. If we are in a configuration A ∈ Qn

then, at the next step, we are in a new configuration B ∈ Qn of the
form A

∐
{j} for some j /∈ A or A \ {j′} for some j′ ∈ A and each of

these configurations is chosen with probability 1/n (actually, to avoid a
parity problem, in our study of this model we shall make a slight change
in the definition of the mixing process).

Example 1.2.3 (The Bernoulli–Laplace diffusion model) The
Bernoulli–Laplace diffusion model consists of two urns numbered 0, 1
and 2n balls, numbered 1, 2, . . . , 2n. A configuration is a placement
of the balls into the two urns, n balls each. Therefore there are

(2n
n

)
configurations, each of them can be identified with an n-subset A of
{1, 2, . . . , 2n} corresponding to the set of balls contained in the urn 0.
The initial configuration corresponds to the situation when the balls
contained in urn 0 are 1, 2, . . . , n (clearly the balls n + 1, n + 2, . . . , 2n

are contained in the urn 1).

8

5

1 2 3 4

6 7

9

urn 0

10

18

15

11 12 13 14

16 17

19

urn 1

20

Figure 1.5. The initial configuration for the Bernoulli–Laplace urn model
(n = 10)

Then at each step two balls are randomly chosen, one in urn 0, the
other one in urn 1 and switched.

Denoting by Ωn the set of all n-subsets of {1, 2, . . . , 2n}, we can de-
scribe this random process as follows. If we are in a configuration A ∈ Ωn

then at the next step we are in a new configuration B ∈ Ωn of the form
A

∐
{i} \ {j} for some i /∈ A and j ∈ A and each of these configurations

is chosen with probability 1/n2.
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8 Finite Markov chains

i1

i5 i6 i7

i8 i9

i10

i2 i3 i4

urn 0

i11

i15 i16 i17

i18 i19

i20

i12 i13 i14

urn 1

(a)

i1

i5 i6 i7

i8 i9

i10

i2 i15 i4

urn 0

i11

i3 i16 i17

i18 i19

i20

i12 i13 i14

urn 1

(b)

Figure 1.6. (a) A configuration at time t. (b) The configuration at time
t + 1 if the chosen balls are i3 and i15

Example 1.2.4 (Random transpositions) Consider a deck of n cards
numbered from 1 to n. A configuration is a placement (permutation) of
the cards in a row on a table. Therefore there are n! configurations. The
initial configuration corresponds to the placement 1, 2, . . . , n.

1 2 3 n

Figure 1.7. The initial configuration of the deck

Then at each step both the left and the right hand independently
choose a random card. Note that the possibility is not excluded that
the same card is chosen by both hands: such an event may occur with
probability 1/n.
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1.2 Four basic examples 9

If we have chosen two distinct cards we switch them, otherwise we
leave the configuration unchanged.

i1 j i in

(a)

i1 j i in

(b)

Figure 1.8. (a) A card configuration at time t. (b) The card configuration
at time t + 1 if the chosen cards are i �= j

In other words, denoting by Tn = {{i, j} : i, j ∈ {1, 2, . . . , n}, i �= j}
the set of all unordered pairs of cards, with probability 1/n we leave the
configuration unchanged, while, with probability (n−1)/n we randomly
pick one of the n(n− 1)/2 elements in Tn. Altogether, at each step each
element t ∈ Tn can be chosen with probability 2/n2.

The following description is equivalent. Denote by Sn the symmetric
group of degree n and by Tn = {g ∈ Sn : ∃i �= j s.t. g(k) = k,∀k �=
i, j and g(i) = j} the set of all transpositions. Denote by 1Sn ∈ Sn the
identity element (1Sn(k) = k, ∀k ∈ {1, 2, . . . , n}). Each configuration,
say i = (i1, i2, . . . , in) corresponds to the element gi ∈ Sn defined by
gi(j) = ij for all j = 1, 2, . . . , n. We start at the identity 1Sn and, at
each step, we choose either a random element t ∈ Tn with probability
2/n2 or the identity t = 1Sn

with probability 1/n. This way, if at the
kth step we are in the configuration i then, at the (k + 1)st step we are
in the configuration t · i corresponding to the group element tgi.

In each of the above examples, we have described a diffusion model
with a deterministic initial configuration. For the discrete circle the ran-
dom walker is at position (vertex) 0; in the Ehrenfest model all balls are
in urn 0 (Figure 1.3); in the Bernoulli-Laplace model the balls 1, 2, . . . , n

are in urn 0 and the balls n + 1, n + 2, . . . , 2n in urn 1 (Figure 1.5);
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10 Finite Markov chains

finally for the random transpositions the cards 1, 2, . . . , n are placed in
increasing order (Figure 1.7).

For each model we address the following natural question: how long
(how many steps) does it take to mix things up? For instance, how
many random transpositions (Example 1.2.4) are needed to generate
a random permutation? It is indeed clear, even at an intuitive level,
that repeated random transpositions do mix the cards, that is that
after sufficiently many random transpositions, all configurations (i.e.
permutations) become equiprobable.

In 1981 Diaconis and Shahshahani gave a striking answer to the above
question: 1

2n log n transposition are necessary and sufficient to gener-
ate a random permutation. Moreover they discovered that this model
presents what is now called a cutoff phenomenon: the transition from
order to chaos is concentrated in a small neighborhood of 1

2n log n.
Subsequently Diaconis and Shahshahani studied the models in Exam-

ples 1.2.1, 1.2.2 and 1.2.3. They showed that in the last two examples
there is a cutoff phenomenon after k = 1

4n log n steps, while for the dis-
crete circle, the position of the random walker becomes random after
k = n2 steps, but no cutoff phenomenon occurs.

We shall first treat Examples 1.2.1 and 1.2.2 because they are sig-
nificantly simpler (they only require elementary finite abelian harmonic
analysis) and together they provide instances of absence and presence
of the cutoff phenomenon. They will be discussed in the next chapter,
while in the present one we continue by providing some probabilistic
background.

Example 1.2.3 will be discussed in the second part of the book. It is a
paradigmatic, but sufficiently simple, example of a problem on a homo-
geneous space on which there is a treatable set of spherical functions.

Example 1.2.4, which, historically, was the first to be analyzed, re-
quires a deep knowledge of the representation theory of the symmetric
group, a beautiful subject in mathematics on its own, which is a corner-
stone both in pure and in applied mathematics (see, for instance, the
book of Sternberg [212] for the applications to physics).

1.3 Markov chains

In this section we give the formal definition of a Markov chain in a sim-
plified setting. We begin with some basic notions of probability theory.

A probability measure (or distribution) on a finite set X is a function
ν : X → [0, 1] such that

∑
x∈X ν(x) = 1. It is called strict if ν(x) > 0
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1.3 Markov chains 11

for all x ∈ X. For a subset A ⊆ X the quantity ν(A) =
∑

x∈A ν(x) is
the probability of A. Clearly ν(A∪B) = ν(A)+ ν(B)− ν(A∩B) for all
A, B ⊆ X, ν(∅) = 0 and ν(X) = 1.

The subsets of X are usually called the events. We also say that (X, ν)
is a finite measure space.

Example 1.3.1 Let h, k be two positive integers and X = {r, b} be a
two-set. Define ν : X → [0, 1] by setting ν(r) = h

h+k and ν(b) = k
h+k . It

is immediate to check that (X, ν) is a probability space. It can be used
to modelize a single drawing from an urn containing h red balls and k

blue balls: ν(r) (resp. ν(b)) is the probability that the chosen ball is red
(resp. blue).

Given two events A, B ⊆ X, with ν(A) > 0, the conditional probability
of B assuming A is

ν(B|A) =
ν(A ∩ B)

ν(A)
.

It expresses the probability of the event B given that the event A has
occurred.

The following properties are obvious:

• ν(B|A) = 1 if A ⊆ B;
• ν(∅|A) = 0;
• ν(B1 ∪ B2|A) = ν(B1|A) + ν(B2|A) − ν(B1 ∩ B2|A);

for all A, B, B1, B2 ⊆ X with ν(A) > 0, and clearly ν(·|A) is a probabil-
ity measure on A.

Moreover, given elements A1, A2, . . . , An ⊆ X with ν(A1 ∩ A2 ∩ · · · ∩
An−1) > 0, we have the so-called Bayes sequential formula

ν(A1 ∩ A2 ∩ · · · ∩ An) = ν(A1)ν(A2|A1)ν(A3|A1 ∩ A2) (1.3)

· · · ν(An|A1 ∩ A2 ∩ · · · ∩ An−1).

Indeed:

ν(A1 ∩ A2 ∩ · · · ∩ An) = ν(An|A1 ∩ · · · ∩ An−1)ν(A1 ∩ · · · ∩ An−1)

= ν(An|A1 ∩ · · · ∩ An−1)ν(An−1|A1 ∩ · · · ∩ An−2)

· ν(A1 ∩ · · · ∩ An−2)

= · · · =

= ν(An|A1 ∩ · · · ∩ An−1)ν(An−1|A1 ∩ · · · ∩ An−2)

· ν(An−2|A1 ∩ · · · ∩ An−3) · · · ν(A2|A1)ν(A1).
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