
Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Introduction

1.1 What is a real-time system?

This book is about the design of certain kinds of reactive systems. A re-

active system interacts with its environment by reacting to inputs from the

environment with certain outputs. Usually, a reactive system is not sup-

posed to stop but should be continuously ready for such interactions. In the

real world there are plenty of reactive systems around. A vending machine

for drinks should be continuously ready for interacting with its customers.

When a customer inputs suitable coins and selects “coffee” the vending ma-

chine should output a cup of hot coffee. A traffic light should continuously

be ready to react when a pedestrian pushes the button indicating the wish

to cross the street. A cash machine of a bank should continuously be ready

to react to customers’ desire for extracting money from their bank account.

Reactive systems are seen in contrast to transformational systems, which

are supposed to compute a single input–output transformation that satisfies

a certain relation and then terminate. For example, such a system could

input two matrices and compute its product.

We wish to design reactive systems that interact in a well-defined relation

to the real, physical time. A real-time system is a reactive system which, for

certain inputs, has to compute the corresponding outputs within given time

bounds. An example of a real-time system is an airbag. When a car is forced

into an emergency braking its airbag has to unfold within 300 milliseconds to

protect the passenger’s head. Thus there is a tight upper time bound for the

reaction. However, there is also a lower time bound of 100 milliseconds. If

the airbag unfolds too early, it will deflate and thus lose its protective impact

before the passenger’s head sinks into it. This shows that both lower and

upper time bounds are important. The outputs of a real-time system may

depend on the behaviour of its inputs over time. For instance, a watchdog

1

www.cambridge.org/9780521883337
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Introduction

has to raise an alarm (output) if an input signal is absent for a period of

t seconds.

Real-time constraints often arise indirectly out of safety requirements. For

example, a gas burner should avoid a critical concentration of unburned gas

in the air because this could lead to an explosion. This is an untimed safety

requirement. To achieve it, a controller for a gas burner could react to a

flame failure by shutting down the gas valve for a sufficiently large period of

time so that the gas can evaporate during that period. This way the safety

requirement is reduced to a real-time constraint.

The gas burner is an example of a safety critical system: a malfunction of

such a system can cause loss of goods, money, or even life. Other examples

are the airbag in a car, traffic controllers, auto pilots, and patient monitors.

Real-time constraints are sometimes classified into hard and soft . Hard

constraints must be fulfilled without exception, whereas soft ones should not

be violated. For example, a car control system should meet the real-time

requirements for the air condition, but must meet the real-time constraints

for the airbag.

In constructing a real-time system the aim is to control a physically exist-

ing environment, the plant, in such a way that the controlled plant satisfies

all desired timing requirements: see Figure 1.1.

plant controller

sensors

actuators

Fig. 1.1. Real-time system

The controller is a digital computer that interacts with the plant through

sensors and actuators. By reading the sensor values the controller inputs

information about the current state of the plant. Based on this input the

controller can manipulate the state of the plant via the actuators. A precise

model of controller, sensors, and actuators has to take reaction times of

these components into account because they cannot work arbitrarily fast.

In many cases the plant is distributed over different physical locations.

Also the controller might be implemented on more than one machine. Then

one talks of distributed systems. For instance, a railway station consists of

many points and signals in the field together with several track sensors and

actuators. Often the controller is hidden to human beings. Such real-time

www.cambridge.org/9780521883337
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 What is a real-time system? 3

systems are called embedded systems. Examples of embedded systems range

from controllers in washing machines to airbags in cars.

When we model the plant in Figure 1.1 in more detail we arrive at hy-

brid systems. These are defined as reactive systems consisting of continuous

and discrete components. The continuous components are time-dependent

physical variables of the plant ranging over a continuous value set, like tem-

perature, pressure, position, or speed. The discrete component is the digital

controller that should influence the physical variables in a desired way. For

example, a heating system should keep the room temperature within cer-

tain bounds. Real-time systems are systems with at least one continuous

variable, that is time. Often real-time systems are obtained as abstractions

from the more detailed hybrid systems. For example, the exact position

of a train relative to a railroad crossing may be abstracted into the values

far away, near by, and crossing.

Figure 1.2 summarises the main classes of systems discussed above and

shows their containment relations: hybrid systems are a special class of

real-time systems, which in turn are a special class of reactive systems.

reactive systems interact with their environment

real-time systems have to compute outputs
within certain time intervals

hybrid systems work with both
discrete and continuous compo-
nents

Fig. 1.2. Classes of systems

Since real-time systems often appear in safety-critical applications, their

design requires a high degree of precision. Here, formal methods based on

mathematical models of the system under design are helpful. They allow

the designer to specify the system at different levels of abstraction and to

formally verify the consistency of these specifications before implementing

www.cambridge.org/9780521883337
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Introduction

them. In recent years significant advances have been made in the maturity

of formal methods that can be applied to real-time systems.

When considering formal methods for specifying and verifying systems

we have the reverse set of inclusions of Figure 1.2, as shown in Figure 1.3:

formal methods for hybrid systems can also be used to analyse real-time sys-

tems, and formal methods for real-time systems can also be used to analyse

reactive systems.

methods for hybrid systems

methods for real-time systems

methods for reactive systems

Fig. 1.3. Formal methods for systems classes

1.2 System properties

To describe real-time systems formally, we start by representing them by

a collection of time-dependent state variables or observables obs, which are

functions

obs : Time −→ D

where Time denotes the time domain and D is the data type of obs. Such

observables describe an infinite system behaviour, where the current data

values are recorded at each moment of time.

For example, a gas valve might be described using a Boolean, i.e. {0,1}-

valued observable

G : Time −→ {0, 1}

indicating whether gas is present or not, a railway track by an observable

Track : Time −→ {empty, appr, cross}

where appr means a train is approaching and cross means that it is crossing

the gate, and the current communication trace of a reactive system by an

observable

trace : Time −→ Comm∗

www.cambridge.org/9780521883337
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 System properties 5

where Comm∗ denotes the set of all finite sequences over a set Comm of

possible communications. Thus depending on the choice of observables we

can describe a real-time system at various levels of detail.

There are two main choices for time domain Time:

• discrete time: Time = N, the set of natural numbers, and

• continuous time: Time = R≥0, the set of non-negative real numbers.

A discrete-time model is appropriate for specifications which are close to

the level of implementation, where the time rate is already fixed. For higher

levels of specifications continuous time is well suited since the plant models

usually use continuous-state variables. Moreover, continuous-time models

avoid a too-early introduction of hardware considerations. Throughout this

book we shall use the continuous-time model and consider discrete time as

a special case.

To describe desirable properties of a real-time system, we constrain the

values of their observables over time, using formulas of a suitable logic. In

this introduction we simply take predicate logic involving the usual logical

connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction), =⇒ (implica-

tion), and ⇐⇒ (equivalence) as well as the quantifiers ∀ (for all) and ∃

(there exists). When expressing properties of real-time systems quantifica-

tion will typically range over time points, i.e. elements of the time domain

Time. Later in this book we introduce dedicated notations for specifying

real-time systems.

In the following we discuss some typical types of properties. For reactive

systems properties are often classified into safety and liveness properties.

For real-time systems these concepts can be refined.

Safety properties. Following L. Lamport, a safety property states that

something bad must never happen. The “bad thing” represents a

critical system state that should never occur, for instance a train

being inside a crossing with the gates open. Taking a Boolean ob-

servable C : Time −→ {0, 1}, where C(t) = 1 expresses that at

time t the system is in the critical state, this safety property can be

expressed by the formula

∀t ∈ Time • ¬C(t). (1.1)

Here C(t) abbreviates C(t) = 1 and thus ¬C(t) denotes that at time

t the system is not in the critical state. Thus for all time points it

is not the case that the system is in the critical state.

In general, a safety property is characterised as a property that

www.cambridge.org/9780521883337
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Introduction

can be falsified in bounded time. In case of (1.1) exhibiting a single

time point t0 with C(t0) suffices to show that (1.1) does not hold.

In the example, a crossing with permanently closed gates is safe,

but it is unacceptable for the waiting cars and pedestrians. Therefore

we need other types of properties.

Liveness properties. Safety properties state what may or may not occur,

but do not require that anything ever does happen. Liveness prop-

erties state what must occur. The simplest form of a liveness prop-

erty guarantees that something good eventually does happen. The

“good thing” represents a desirable system state, for instance the

gates being open for the road traffic. Taking a Boolean observable

G : Time −→ {0, 1}, where G(t) = 1 expresses that at time t the

system is in the good state, this liveness property can be expressed

by the formula

∃t ∈ Time • G(t). (1.2)

In other words, there exists a time point in which the system is in the

good state. Note that this property cannot be falsified in bounded

time. If for any time point t0 only ¬G(t) has been observed for

t ≤ t0, we cannot complain that (1.2) is violated because eventually

does not say how long it will take for the good state to occur.

Such liveness property is not strong enough in the context of real-

time systems. Here one would like to see a time bound when the

good state occurs. This brings us to the next kind of property.

Bounded response properties. A bounded response property states that

a desired system reaction to an input occurs within a time interval

[b, e] with lower bound b ∈ Time and upper bound e ∈ Time where

b ≤ e. For example, whenever a pedestrian at a traffic light pushes

the button to cross the road, the light for pedestrians should turn

green within a time interval of, say, [10, 15]. The need for an upper

bound is clear: the pedestrian wants to cross the road within a short

time (and not eventually). However, also a lower bound is needed

because the traffic light must not change from green to red instan-

taneously, but only after a yellow phase of, say, 10 seconds to allow

cars to slow down gently.

With P (t) representing the pushing of the button at time t and

G(t) representing a green traffic light for the pedestrians at time t,

we can express the desired property by the formula

∀t1 ∈ Time • (P (t1) =⇒ ∃t2 ∈ [t1 + 10, t1 + 15] • G(t2)). (1.3)

www.cambridge.org/9780521883337
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 Generalised railroad crossing 7

Note that this property can be falsified in bounded time. When

for some time point t1 with P (t1) we find out that during the time

interval [t1 +10, t1 +15] no green light for the pedestrians appeared,

property (1.3) is violated.

Duration properties. A duration property is more subtle. It requires that

for observation intervals [b, e] satisfying a certain condition A(b, e)

the accumulated time in which the system is in a certain critical

state has an upper bound u(b, e). For example, the leak state of a

gas burner, where gas escapes without a flame burning, should occur

at most 5% of the time of a whole day.

To measure the accumulated time t of a critical state C(t) in a

given interval [b, e] we use the integral notion of mathematical cal-

culus:
∫

e

b

C(t)dt.

Then the duration property can be expressed by a formula

∀b, e ∈ Time •

(

A(b, e) =⇒

∫

e

b

C(t)dt ≤ u(b, e)

)

. (1.4)

Again this property can be falsified in finite time. If we can point

out an interval [b, e] satisfying the condition A(b, e) where the value

of the integral is too high, property (1.4) is violated.

1.3 Generalised railroad crossing

This case study is due to C. Heitmeyer and N. Lynch [HL94]. It concerns a

railroad crossing with a physical layout as shown in Figure 1.4, for the case of

two tracks. In the safety-critical area “Cross” the road and the tracks inter-

sect. The gates (indicated by “Gate”) can move from fully “closed” (where

the angle is 0◦) to fully “open” (where the angle is 90◦). Moving the gates

up and down takes time. Sensors at the tracks will detect whether a train

is approaching the crossing, i.e. entering the area marked by “Approach”.

1.3.1 The problem

Given are two time parameters ξ1, ξ2 > 0 describing the reaction times

needed to open and close the gates, respectively. In the following problem

description time intervals are used that collect all time points in which at

least one train is in the area “Cross”. These are called occupancy intervals

and denoted by [τi, νi] where the subscripts i ∈ N enumerate their successive

www.cambridge.org/9780521883337
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Introduction

Cross
Approach

Approach
✛ ✛

✲ ✲

Gate

Gate

Fig. 1.4. Generalised railroad crossing

occurrences. As usual, a closed interval [τi, νi] is the set of all time points t

with τi ≤ t ≤ νi. Moreover, for a time point t let g(t) denote the angle of

the gates, ranging from 0 (closed) to 90 (open).

The task is to construct a controller that operates the gates of the railroad

crossing such that the following two properties hold for all time points t:

• Safety: t ∈
⋃

i∈N
[τi, νi] =⇒ g(t) = 0, i.e. the gates are closed inside all

occupancy intervals.

• Utility: t /∈
⋃

i∈N
[τi−ξ1, νi+ξ2] =⇒ g(t) = 90, i.e. outside the occupancy

intervals extended by the reaction times ξ1 and ξ2 the gates are open.

This problem statement is taken from the article of Heitmeyer and Lynch

[HL94]. Note that the safety and utility properties are consistent, i.e. the

gate is never required to be simultaneously open and closed. To see this,

take a time point t satisfying the precondition (the left-hand side of the

implication) of the utility property. Then in particular,

t /∈
⋃

i∈N

[τi, νi],

which implies that t does not satisfy the precondition of the safety property.

Thus never both g(t) = 0 and g(t) = 90 are required.

Note, however, that depending on the choice of the time parameters ξ1, ξ2

and the timing of the trains it may well be that in between two successive

trains there is not enough time to open the gate, i.e. two successive time

intervals

[τi − ξ1, νi + ξ2] and [τi+1 − ξ1, νi+1 + ξ2]

may overlap (see also Figure 1.5).

www.cambridge.org/9780521883337
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 Generalised railroad crossing 9

In the following we formalise and analyse this case study in terms of

predicate logic over suitable observables.

1.3.2 Formalisation

The railroad crossing can be described by two observables:

Track : Time −→ {empty, appr, cross} (state of the track)

g : Time −→ [0, 90] (angle of the gate).

Note that via the three values of the observable Track we have abstracted

from further details of the plant like the exact position of the train on the

track. The value empty expresses that no train is in the areas “Approach”

or “Cross”, the value appr expresses that a train is in the area “Approach”

and none is in “Cross”, and the value cross expresses that a train is in the

area “Cross”. The observable g ranges over all values of the gate angle in

the interval [0, 90]. We will use the following abbreviations:

E(t) stands for Track(t) = empty

A(t) stands for Track(t) = appr

Cr(t) stands for Track(t) = cross

O(t) stands for g(t) = 90

Cl(t) stands for g(t) = 0.

Requirements. With these observables and abbreviations we can specify

the requirements of the generalised railroad crossing in predicate logic. The

safety requirement is easy to specify:

Safety
def

⇐⇒ ∀t ∈ Time • Cr(t) =⇒ Cl(t) (1.5)

where
def

⇐⇒ means equivalence by definition. Thus whenever a train is in the

crossing the gates are closed. Note that this formula is logically equivalent

to the property Safety above because by the definition of Cr(t) we have

∀t ∈ Time • Cr(t) ⇐⇒ t ∈
⋃

i∈N

[τi, νi],

i.e. Cr(t) holds if and only if t is in one of the occupancy intervals.

Without the reaction times ξ1 and ξ2 of the gate the utility requirement

could simply be specified as

∀t ∈ Time • ¬Cr(t) =⇒ O(t).

www.cambridge.org/9780521883337
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88333-7 — Real-Time Systems
Ernst-Rüdiger Olderog , Henning Dierks 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Introduction

However, the property Utility refers to (the complements of) the intervals

[τi − ξ1, νi + ξ2], which are not directly expressible by a certain value of the

observable Track. In Figure 1.5 the occupancy intervals [τi, νi] and their

extensions to [τi − ξ1, νi + ξ2] are shown for i = 0, 1, 2. Only outside of the

latter intervals, in the areas exhibited by the thick line segments, are the

gates required to be open.

0

ξ1

τ0 ν0

ξ2 ξ1

τ1 ν1

ξ2 ξ1

τ2 ν2

ξ2

Fig. 1.5. Utility requirement

We specify this as follows. Consider a time point t. If in a suitable time

interval containing t there is no train in the crossing then O(t) should hold.

Calculations show that this interval is given by [t− ξ2, t + ξ1]. Thus ¬Cr(t̃)

should hold for all time points t̃ with t − ξ2 ≤ t̃ ≤ t + ξ1. This is expressed

by the following formula:

Utility
def

⇐⇒ ∀t ∈ Time • (1.6)

(∀t̃ ∈ Time • t − ξ2 ≤ t̃ ≤ t + ξ1 =⇒ ¬Cr(t̃))

=⇒ O(t).

Note the subtlety that t − ξ2 may be negative whereas t̃ ∈ Time is by defi-

nition non-negative. It can be shown that this formula Utility is equivalent

to the property Utility above (see Exercise 1.2).

For the generalised railroad crossing all functions Track and g are admissi-

ble that satisfy the two requirements above. These functions can be seen as

interpretations of the observables Track and g. They are presented as timing

diagrams. Figure 1.6 shows an admissible interpretation of Track and g.

Assumptions. In this case study Track is an input observable which can

be read but not influenced by the controller. By contrast, g is an output

observable since it can be influenced by the controller via actuators. The

correct behaviour of the controller often depends on some assumptions about

the input observables. Here we make the following assumptions about Track:

• Initially the track is empty: Init
def

⇐⇒ E(0).

www.cambridge.org/9780521883337
www.cambridge.org

