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Introduction

This book is devoted to the theory of J-contractive and J-inner mvf’s

(matrix valued functions) and a number of its applications, where J is an

m×m signature matrix, i.e., J is both unitary and self adjoint with respect

to the standard inner product in C
m . This theory plays a significant role

in a number of diverse problems in mathematical systems and networks,

control theory, stochastic processes, operator theory and classical analysis.

In particular, it is an essential ingredient in the study of direct and inverse

problems for canonical systems of integral and differential equations, since

the matrizant (fundamental solution) Ux(λ) = U(x, λ) of the canonical in-

tegral equation

u(x, λ) = u(0, λ) + iλ

∫ x

0
u(s, λ)dM(s)J, 0 ≤ x < d, (1.1)

based on a nondecreasing m × m mvf M(x) on the interval 0 ≤ x < d is an

entire mvf in the variable λ that is J-inner in the open upper half plane C+

for each point x ∈ [0, d):

(1) Ux(λ) is J-contractive in C+:

Ux(λ)∗JUx(λ) ≤ J for λ ∈ C+

and

(2) Ux(λ) is J-unitary on the real axis R:

Ux(λ)∗JUx(λ) = J for λ ∈ R.

Moreover, Ux(λ) is monotone in the variable x in the sense that

Ux2 (λ)∗JUx2 (λ) ≤ Ux1 (λ)∗JUx1 (λ) if 0 ≤ x1 ≤ x2 < d
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2 Introduction

and λ ∈ C+. These properties follow from the fact that the matrizant

Ux(λ) = U(x, λ) is a solution of the system (1.1) with U0(λ) = Im , i.e.,

U(x, λ) = Im + iλ

∫ x

0
U(s, λ)dM(s)J, 0 ≤ x < d,

and hence satisfies the identity

Ux2 (λ)JUx2 (ω)∗ − Ux1 (λ)JUx1 (ω)∗

= −i(λ − ω)

∫ x2

x1

Ux(λ)dM(x)Ux(ω)∗.

The family Ux(λ) is also continuous in the variable x and normalized by the

condition

Ux(0) = Im for 0 ≤ x < d.

The most commonly occuring signature matrices (except for J = ±Im) are

the matrices

jpq =

[
Ip 0

0 −Iq

]
, Jp =

[
0 −Ip

−Ip 0

]
and Jp =

[
0 −iIp

iIp 0

]
,

−jpq , −Jp and −Jp. The equivalences

[
ε∗ Iq

]
jpq

[
ε

Iq

]
≤ 0 ⇐⇒ ε∗ε ≤ Iq ;

[
ε∗ Ip

]
Jp

[
ε

Ip

]
≤ 0 ⇐⇒ ε + ε∗ ≥ 0

and
[
ε∗ Ip

]
Jp

[
ε

Ip

]
≤ 0 ⇐⇒

ε − ε∗

i
≥ 0

indicate a connection between the signature matrices jpq , Jp and Jp and the

classes

Sp×q
const = {ε ∈ C

p×q : ε∗ε ≤ Iq} of contractive p × q matrices;

Cp×p
const = {ε ∈ C

p×p : ε + ε∗ ≥ 0} of positive real p × p matrices;

iCp×p
const = {ε ∈ C

p×p : (ε − ε∗)/i ≥ 0} of positive imaginary

p × p matrices.

www.cambridge.org/9780521883009
www.cambridge.org


Cambridge University Press
978-0-521-88300-9 — J-Contractive Matrix Valued Functions and Related Topics
Damir Z. Arov , Harry Dym
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 3

Moreover, if an m × m matrix U is J-contractive, i.e., if

U∗JU ≤ J, (1.2)

then the inequality

[x∗ I]J
[x

I

]
≤ 0 (1.3)

implies that

[x∗ I]U∗JU
[x

I

]
≤ 0 (1.4)

and hence, the linear fractional transformation

TU [x] = (u11x + u12)(u21x + u22)
−1, (1.5)

based on the appropriate four block decomposition of U , maps a matrix x in

the class Fconst(J) of matrices that satisfy the condition (1.3) into Fconst(J),

if x is admissible, i.e., if det (u21x + u22) �= 0.

Conversely, if J �= ±Im and U is an m × m matrix with detU �= 0 such

that TU maps admissible matrices x ∈ Fconst(J) into Fconst(J), then

ρU is a J-contractive matrix for some ρ ∈ C \ {0}. (1.6)

Moreover, if TU also maps (admissible) matrices x that satisfy (1.3) with

equality into matrices with the same property, then the matrices ρU , con-

sidered in (1.6) are automatically J-unitary, i.e., (ρU)∗J(ρU) = J . These

characterizations of the classes of J-contractive and J-unitary matrices are

established in Chapter 2. The proofs are based on a number of results in the

geometry of the space C
m with indefinite inner product

[ξ, η] = η∗Jξ

defined by an m × m signature matrix J , which are also presented in

Chapter 2.

Analogous characterizations of the classes P(J) and U(J) of meromorphic

J-contractive and J-inner mvf’s in C+ are established in Chapter 4. These

characterizations are due to L. A. Simakova. They are not simple corollaries

of the corresponding algebraic results in Chapter 2: if the given m×m mvf

U(λ) is meromorphic in C+ with detU(λ) �≡ 0 in C+ and ρ(λ)U(λ) ∈ P(J),

then ρ(λ) must be a meromorphic function in C+. To obtain such character-

izations of mvf’s in the classes P(J) and U(J) requires a number of results

on inner-outer factorizations of scalar holomorphic functions in the Smirnov
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4 Introduction

class N+ in C+ and inner denominators of scalar meromorphic functions

in the Nevanlinna class N of functions with bounded characteristic in C+,

and the Smirnov maximum principle in the class N+. This material and

generalizations to p× q mvf’s in the classes N p×q
+ and N p×q with entries in

the classes N+ and N , respectively, is presented in Chapter 3. In particular,

the Smirnov maximum principle, inner-outer factorization and a number of

denominators for mvf’s f ∈ N p×q are discussed in this chapter. Thus, Chap-

ters 2 and 3 are devoted to topics in linear algebra and function theory for

scalar and matrix valued functions that are needed to study J-contractive

and J-inner mvf’s as well as the other problems considered in the remaining

chapters.

The sets P(J) and U(J) are multiplicative semigroups. In his fundamen-

tal paper [Po60] V. P. Potapov obtained a multiplicative representation for

mvf’s U ∈ P(J) with detU(λ) �≡ 0 that is a far reaching generalization of

the Blaschke-Riesz-Herglotz representation

u(λ) = b(λ) exp{iα + iβλ} exp

{
−

1

πi

∫ ∞

−∞

1 + µλ

µ − λ
dσ(µ)

}
(1.7)

of scalar holomorphic functions u(λ) in C+ with |u(λ)| ≤ 1. In formula (1.7)

b(λ) is a Blaschke product, α ∈ R, β ≥ 0 and σ(µ) is a bounded nondecreas-

ing function on R. To obtain his multiplicative representation, Potapov used

the factors that are now known as elementary Blaschke-Potapov factors. If

J �= ±Im , there are four kinds of such factors according to whether the

pole is in the open lower half plane C−, in C+, in R, or at ∞. He obtained

criteria for the convergence of infinite products of normalized elementary

factors that generalizes the Blaschke condition, using his theory of the J

modulus. The Potapov multiplicative representation of mvf’s U ∈ P(J)

with detU(λ) �≡ 0, leads to factorizations of U of the form

U(λ) = B(λ)U1(λ)U2(λ)U3(λ),

where B(λ) is a BP (Blaschke-Potapov) product of elementary factors, U1(λ)

and U3(λ) are entire J-inner mvf’s that admit a representation as a multi-

plicative integral that is a generalization of the second factor in (1.7), and

U2(λ) is a holomorphic, J-contractive invertible mvf in C+ that admits a

representation as a multiplicative integral that is a generalization of the

third factor in (1.7).
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Introduction 5

In view of Potapov’s theorem, every entire J-inner mvf U(λ) with U(0) =

Im admits a multiplicative integral representation

U(λ) =

d
�∫

0

exp{iλdM(x)J}, (1.8)

where M(x) is a nondecreasing m × m mvf on [0, d]. Moreover, M(x) may

be chosen so that M(x) is absolutely continuous on [0, d] with derivative

H(x) = M ′(x) ≥ 0 normalized by the condition traceH(x) = 1 a.e. on

[0, d]. But even under these last conditions, H(x) is not uniquely defined by

U(λ), in general.

Multiplicative integrals were introduced in the theory of integral and

differential equations by Volterra. In particular, the matrizant Ux(λ) of

the integral equation (1.1) may be written in the form of a multiplicative

integral.

Ux(λ) =

x
�∫

0

exp{iλdM(s)J}, 0 ≤ x < d, (1.9)

and if d < ∞ and M(x) is bounded on [0, d], then formula (1.8) coincides

with formula (1.9) with x = d, and U(λ) = Ud(λ) is the monodromy matrix

of the system (1.1). Thus, in view of Potapov’s theorem, every entire mvf

U ∈ U(J) with U(0) = Im may by interpreted as the monodromy matrix of

a system of the form (1.1) on [0, d].

A number of Potapov’s results on finite and infinite BP products and on

the multiplicative representation of mvf’s in P(J) are presented in Chapter

4, sometimes without proof.

The problem of describing all normalized m × m mvf’s H(x) ≥ 0 in a

differential system of the form

d

dx
u(x, λ) = iλu(x, λ)H(x)J a.e. on [0, d] (1.10)

with a given monodromy matrix Ud(λ) = U(λ) (U ∈ E ∩ U(J) and U(0) =

Im) is one of a number of inverse problems for systems of the form (1.10).

The system (1.10) arises by applying the Fourier-Laplace transform

u(x, λ) =

∫ ∞

0
eiλtv(x, t)dt
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6 Introduction

to the solution v(x, t) of the Cauchy problem

∂v

∂x
(x, t) = −

∂v

∂t
(x, t)H(x)J, 0 ≤ x ≤ d, 0 ≤ t < ∞, (1.11)

v(x, 0) = 0.

Since u(x, λ) = u(0, λ)Ux(λ), 0 ≤ x ≤ d, the monodromy matrix Ud(λ) is the

transfer function of the system with distributed parameters on the interval

[0, d] specified by H(x); with input v(0, t), output v(d, t) and state v(x, t) at

time t. Thus, the inverse monodromy problem is the problem of recovering

the distributed parameters H(x), 0 ≤ x ≤ d, described by the evolution

equation (1.11) from the transfer function of this system.

Potapov’s theorem establishes the existence of a solution of the inverse

monodromy problem. The uniqueness of the solution is established only

under some extra conditions on U(λ) or H(x).

If J = ±Im the Brodskii-Kisilevskii condition

type {U(λ)} = type {det U(λ)}

on the exponential type of the entire mvf U(λ) is necessary and sufficient

for uniqueness. If J �= ±Im , then the problem is much more complicated,

even for m = 2.

A fundamental theorem of L. de Branges states that every entire J1-inner

2 × 2 mvf U(λ) with U(0) = I2 and the extra symmetry properties

U(−λ) = U(λ) and detU(λ) = 1

is the monodromy matrix of exactly one canonical differential system of the

form (1.10) with J = J1 and with real, normalized Hamiltonian H(x) ≥ 0

a.e. on [0, d].

The Brodskii-Kisilevskii criteria was obtained in the sixties as a criteria

for the unicellularity of a simple dissipative Volterra operator with a given

characteristic mvf U(λ).

Characteristic functions of nonselfadjoint (and nonunitary) operators were

introduced in the 1940’s by M. S. Livsic, who showed that these functions

define the operator up to unitary equivalence under the assumption of sim-

plicity and that they are J-contractive in C+ (in the open unit disc D,

respectively). Moreover, he discovered that to each invariant subspace of

the operator there corresponds a divisor of the characteristic function and,

to an ordered chain of invariant subspaces, there corresponds a triangular
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Introduction 7

representation of the operator that generates a multiplicative representation

of the characteristic function of the operator. Livsic also proposed a trian-

gular model of the operator based on the multiplicative representation of

the characteristic function. This was one of the main motivations for the

development of the theory of multiplicative representations of J-contractive

mvf’s by V. P. Potapov.

L. de Branges obtained his uniqueness theorem and a number of other

results in harmonic analysis, by consideration of the reproducing kernel

Hilbert spaces of entire vvf’s (vector valued functions) with reproducing

kernels Kω(λ) defined by the entire J-inner 2×2 mvf’s U(λ) by the formula

Kω(λ) =
J − U(λ)JU(ω)∗

ρω(λ)
, where ρω(λ) = −2πi(λ − ω).

The theory of RKHS’s (reproducing kernel Hilbert spaces) with kernels of

this form (and others) was developed by him, partially in collaboration with

J. Rovnyak for m × m mvf’s U ∈ P(J) for m ≥ 2 and even for operator

valued functions U(λ).

A number of results on the spaces H(U) for U ∈ P(J), and for the de

Branges spaces B(E) are discussed in Chapter 5. In particular it is shown that

if U ∈ P(J) and detU(λ) �≡ 0, then the vvf’s f in the corresponding RKHS

H(U) are meromorphic in C \ R with bounded Nevanlinna characteristic in

both C+ and C−. Thus, every vvf f ∈ H(U) has nontangential boundary

values

f+(µ) = lim
ν↓0

f(µ + iν) and lim
ν↓0

f(µ − iν) = f−(µ) a.e. on R.

Moreover,

U ∈ U(J) ⇐⇒ f+(µ) = f−(µ) a.e. on R for every f ∈ H(U).

Connsequently, every f ∈ H(U) may be be identified with its boundary

values if U ∈ U(J).

The space H(U) is Rα invariant with respect to the generalized backwards

shift operator Rα that is defined by the formula

(Rαf)(λ) =
f(λ) − f(α)

λ − α
, λ �= α,

for points λ and α in the domain of holomorphy of U(λ).

The subclasses US(J), UrR(J), UrsR(J), UℓR(J) and UℓsR(J) of singular,

right regular, right strongly regular, left regular and left strongly regular
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8 Introduction

J-inner mvf’s are introduced in Chapter 4 and are characterized in terms of

the properties of the boundary values of vvf’s from H(U) in Chapter 5: if

U ∈ U(J), then

U ∈ UrsR(J) ⇐⇒ H(U) ⊂ Lm
2 ,

U ∈ UrR(J) ⇐⇒ H(U) ∩ Lm
2 is dense in H(U),

U ∈ US(J) ⇐⇒ H(U) ∩ Lm
2 = {0}.

Moreover, if U ∈ U(J), then the transposed mvf U τ ∈ U(J) and

U ∈ UℓR(J) ⇐⇒ U τ ∈ UrR(J) and U ∈ UℓsR(J) ⇐⇒ U τ ∈ UrR(J).

Furthermore, the following implications hold when ω �∈ R:

U ∈ UrsR(J) ∪ UℓsR(J) =⇒ ρ−1
ω U ∈ Lm×m

2 =⇒ U ∈ UrR(J) ∩ UℓR(J).

There are a number of other characterizations of these classes. Thus, for

example, in Chapter 4, an mvf U ∈ U(J) is said to belong to the class US(J)

of singular J-inner mvf’s if it is an outer mvf in the Smirnov class Nm×m
+

in C+, i.e., if U ∈ Nm×m
+ and U−1 ∈ Nm×m

+ . Then an mvf U ∈ U(J) is said

to be right (resp., left) regular J-inner, if it does not have a nonconstant

right (resp., left) divisor in the multiplicative semigroup U(J) that belongs

to US(J). Characterizations of the subclasses UrsR(J) and UℓsR(J) in terms

of the Treil-Volberg matricial version of the Muckenhoupt (A2)-condition

are established in Chapter 10.

Every mvf U ∈ U(J) admits a pair of essentially unique factorizations:

U(λ) = U1(λ)U2(λ), where U1 ∈ UrR(J) and U2 ∈ US(J), (1.12)

and

U(λ) = U3(λ)U4(λ), where U4 ∈ UℓR(J) and U3 ∈ US(J).

The second factorization follows from the first (applied to the transposed

mvf’s U τ (λ)). The first factorization formula is established in Chapter 7

by considering the connection between mvf’s W ∈ UrR(jpq) and the GSIP

(generalized Schur interpolation problem) in the class

Sp×q = {s ∈ Hp×q
∞ : ‖s‖∞ ≤ 1},

where Hp×q
∞ is the Hardy space of holomorphic bounded p× q mvf’s in C+.

In this problem, three mvf’s are specified: s◦ ∈ Sp×q and two inner mvf’s
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b1 ∈ Sp×p and b2 ∈ Sq×q and

S(b1, b2; s
◦) = {s ∈ Sp×q : b−1

2 (s − s◦)b−1
2 ∈ Hp×q

∞ }

is the set of solutions to this problem. The GSIP based on s◦, b1 and b2 is

said to be completely indeterminate if, for every nonzero vector ξ ∈ C
q , there

exists an mvf s ∈ S(b1, b2; s
◦) such that s(λ)ξ �≡ s◦(λ)ξ. An mvf W ∈ U(jpq)

is the resolvent matrix of this GSIP if

S(b1, b2; s
◦) = {TW [ε] : ε ∈ Sp×q}. (1.13)

There are infinitely many resolvent matrices W ∈ U(jpq) for each completely

indeterminate GSIP (a description is furnished in Chapter 7) and every such

W automatically belongs to the class UrR(jpq). Conversely, every mvf W ∈
UrR(jpq) is the resolvent matrix of a completely indeterminate GSIP. The

correspondence between the class UrR(jpq) and the completely indeterminate

GSIP’s is established in Chapter 7. Moreover, W ∈ UrsR(jpq) if and only if

W is the resolvent matrix of a strictly completely indeterminate GSIP; i.e.,

if and only if there exists at least one ε ∈ Sp×q such that ‖TW [ε]‖∞ < 1. The

correspondence between the subclasses UrR(Jp) and UrsR(Jp) and completely

indeterminate and strictly completely indeterminate GCIP’s (generalized

Carathéodory interpolation problems) are discussed in Chapter 7 too. This

chapter also contains formulas for resolvent matrices U(λ) that are obtained

from the formulas in Chapter 5 for U ∈ UrsR(J) with J = jpq and J = Jp

from the description of the corresponding RKHS’s H(U).

The results on GCIP’s that are obtained in Chapter 7 are used in Chapter

8 to study bitangential generalizations of the Krein extension problem of

extending a continuous mvf g(t), given on the interval −a ≤ t ≤ a, with a

kernel

k(t, s) = g(t + s) − g(t) − g(−s) + g(0)

that is positive on [0, a]× [0, a] to a continuous mvf g̃(t) on R which is sub-

ject to analogous constraints on [0,∞) × [0,∞). In particular, the classes

of entire mvf’s U in UrR(Jp) and UrSR(Jp) are identified as the classes of

resolvent matrices of completely indeterminate and strictly completely in-

determinate bitangential extension problems for mvf’s g(t). A bitangential

generalization of Krein’s extension problem for continuous positive definite

mvf’s and Krein’s extension problem for accelerants and the resolvent ma-

trices for these problems are also considered in this chapter.
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10 Introduction

In Chapter 11 extremal values of entropy functionals for completely inde-

terminate generalized interpolation and extension problems are established

in a uniform way that is based on the parametrizations of jpq and Jp inner

mvf’s that was discussed in earlier chapters.

Every mvf U ∈ U(J) has a pseudocontinuation from C+ into C− that is a

meromorphic mvf of Nevanlinna class in C−. Consequently, every submatrix

s ∈ Sp×q of an inner mvf S ∈ Sm×m admits such an extension to C−, as

do mvf’s of the form s = TW [ε] and and c = TA[τ ], where W ∈ U(jpq),

A ∈ U(Jp), ε is a constant p × q contractive matrix and τ is a constant

p × p matrix with τ + τ∗ ≥ 0. Such representations of the mvf’s s and c

arose in the synthesis of passive linear networks with losses by a lossless

system with a scattering matrix S, a chain scattering matrix W or a trans-

mission matrix A, repectively. The representations of s as a block of an

n × n inner mvf S and s = TW [ε] and c = TA[τ ] with constant matrices

ε ∈ Sp×q and τ ∈ Cp×p, respectively, are called Darlington representations,

even though Darlington only worked with scalar rational functions c ∈ C,

and the scattering formalism described above was introduced by Belevich for

rational mvf’s s ∈ Sp×q . In the early seventies Darlington representations

for mvf’s s ∈ Sp×q and c ∈ Cp×p that admit pseudocontinuations into C−

were obtained independently by D. Z. Arov [Ar71] and P. Dewilde [De71];

generalizations to operator valued functions were obtained in [Ar71] and

[Ar74a] and by R. Douglas and J. W. Helton in [DoH73]. Descriptions of the

sets of representations and solutions of other inverse problems for J-inner

mvf’s are discussed in Chapter 9, which includes more detailed references.

In the study of bitangential interpolation problems and bitangential in-

verse problems for canonical systems, a significant role is played by a set

ap(W ) of pairs {b1, b2} of inner mvf’s b1 ∈ Sp×p and b2 ∈ Sq×q that are

associated with each mvf W ∈ U(jpq) and a set apII(A) of pairs {b3, b4} of

p × p inner mvf’s that is associated with each mvf A ∈ U(Jp). The inner

mvf’s in {b1, b2} are defined in terms of the blocks w11 and w22 of W by the

inner-outer factorization of (w#
11)

−1 = (w11(λ)∗)−1, which belongs to Sp×p

and the outer-inner factorization of w−1
22 , which belongs to Sq×q :

(w#
11)

−1 = b1ϕ1 and w−1
22 = ϕ2b2.

The pair {b3, b4} ∈ apII(A) is defined analogously in terms of the entries in

the blocks of the de Branges matrix

E(λ) =
[
E−(λ) E+(λ)

]
=

[
a22(λ) − a21(λ) a22(λ) + a21(λ)

]
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that is defined in terms of the bottom blocks of A via the inner-outer and

outer-inner factorizations of (E#
− (λ))−1 = (E−(λ)∗)−1 and E+(λ)−1 in the

Smirnov class N p×p
+ :

(E#
− )−1 = b3ϕ3 and E−1

+ = ϕ4b4.

If the mvf A is holomorphic at the point λ = 0, then b3 and b4 are also

holomorphic at the point λ = 0 and may be uniquely specified by imposing

the normalization conditions b3(0) = Ip and b4(0) = Ip.

To illustrate the role of associated pairs we first consider a system of the

form (1.1) or (1.10) with J = jpq . Then the matrizant Wx, 0 ≤ x < d

is a monotonic continuous chain (with respect to the variable x) of entire

jpq-inner mvf’s that is normalized by the condition Wx(0) = Im . Corre-

spondingly there is a unique chain of associated pairs {bx
1 (λ), bx

2 (λ)} of entire

inner mvf’s with bx
1 (0) = Ip and bx

2 (0) = Iq , and this chain is monotonic and

continuous with respect to the variable x.

The class UrsR(J) plays a significant role in a number of inverse problems

for canonical systems of the forms (1.1) and (1.10). In particular, the ma-

trizant Ux(λ), 0 ≤ x < d, of every canonical system that can be reduced to a

Dirac system with locally summable potential belongs to the class UrsR(J)

for every x ∈ [0, d); see e.g., [ArD05c], which includes applications to ma-

trix Schrödinger equations with potentials of the form q(x) = v2(x) ± v′(x)

(even though the matrizant of the Schrödinger equation belongs to the class

US(J)).

In the authors’ formulation of bitangential inverse problems, the given

data is a monotonic continuous chain of pairs {bx
1 (λ), bx

2 (λ)}, 0 ≤ x < d, and

a spectral characteristic (e.g., a monodromy matrix, an input scattering or

impedance matrix, or a spectral function) and the problem is to find a system

with the given spectral characteristic that satisfies the two restrictions:

(1) Wx ∈ UrR(jpq) for every x ∈ [0, d).

(2) {bx
1 , bx

2} ∈ ap(W ) for every x ∈ [0, d).

These inverse problems were solved by Krein’s method, which is based on

identifying the matrizant with a family of resolvent matrices of an ap-

propriately defined completely indeterminate extension problem; see e.g.,

[ArD05b], [ArD05c] and [ArD07b].

The Krein method works because for each completely indeterminate GSIP

with given data b1, b2, s◦, there is an mvf W ∈ U(jpq) such that (1.13) holds
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and {b1, b2} ∈ ap(W ) that is unique up to a right constant jpq unitary

multiplier. Moreover, if b1 and b2 are holomorphic at the point λ = 0, then

W is holomorphic at the point λ = 0 and then may be uniquely specified by

imposing the normalization W (0) = Im . Furthermore, W (λ) is entire if b1

and b2 are entire. These relationships are discussed in Chapters 7 and 8.

Descriptions of the RKHS’s H(W ) and H(A) based on associated pairs

are discussed in Chapter 5.

The theory of the RKHS’ H(U) and B(E) is developed further and ap-

plied to construct functional models for Livsic-Brodskii operator nodes in

Chapter 6. In this chapter the mvf’s U ∈ U(J) that are holomorphic and

normalized at the point λ = 0 (and in the even more general class LB(J))

are identified as characteristic mvf’s of Livsic-Brodskii nodes. Connections

with conservative and passive linear continuous time invariant systems are

also discussed.

Necessary and sufficient conditions for the characteristic mvf of a simple

Livsic-Brodskii node to belong to the class UrsR(J) are furnished in Chapter

10, and functional models of these nodes are given in terms of the associated

pairs of the first and second kind of the characteristic function U of the node.

An m×m mvf U ∈ P(J) may be interpreted as the resolvent matrix of a

symmetric operator with deficiency indices (m, m) in a Hilbert space. This

theory was developed and applied to a number of problems in analysis by

M. G. Krein; see e.g., Krein [Kr49] and the monograph [GoGo97]. The latter

focuses on entire symmetric operators and, correspondingly, entire resolvent

mvf’s U ∈ U(J). Connections between the Krein theory of resolvent matrices

and and characteristic mvf’s of Livsic-Brodskii J-nodes with the de Branges

theory of RKHS’ H(U) were considered in [AlD84] and [AlD85]. Resolvent

matrices of symmetric operators were identified as characteristic mvf’s of

generalized LB J-nodes by M. G. Krein and S. N. Saakjan [KrS70], A. V.

Shtraus [Sht60], E. R. Tsekanovskii and Yu. L. Shmulyan [TsS77] and others.

An m×m mvf U ∈ P(J) may also be interpreted as the resolvent matrix

of a completely indeterminate commutant lifting problem; see e.g., [SzNF70]

and [FoFr90].

Finally, we remark that although we have chosen to focus on the classes

P(J) and U(J) for the open upper half plane C+, most of the considered

results have natural analogues for the open unit disc D with boundary T.
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