
1 An introduction to R

In order to learn to work with R, you have to learn to speak its language, the S

language, developed originally at Bell Laboratories (Becker et al., 1988). The
grammar of this programming language is beautiful and easy to learn. It is im-
portant to master its basics, as this grammar is designed to guide you towards the
appropriate way of thinking about your data and how you might want to carry out
your analysis.

When you begin to use R on an Apple Macintosh or a Windows PC, you will
start R either through a menu guiding you to applications, or by clicking on R’s
icon. As a result, a graphical user interface is started up, with as its central part a
window with a prompt (>), the place where you type your commands. On unix
or linux systems, the same window is obtained by opening a terminal and typing
R at its prompt.

The sequence of commands in a given R session and the objects created are
stored in files named .Rhistory and .RData when you quit R and respond
positively to the question of whether you want to save your workspace. If you do
so, then your results will be available to you the next time you start up R. If you
are using a graphical user interface, this .RData file will be located by default in
the folder where R has been installed. In unix and linux, the .RData file will
be created in the same directory as where R was started up.

You will often want to useR for different projects, located in different directories
on your computer. On unix and linux systems, simply open a terminal in the
desired directory, and start R. When using a graphical user interface, you have
to use the File drop-down menu. In order to change to another directory, select
Change dir. You will also have to load the .RData and .Rhistory using the
options Load Workspace and Load History.

Once R is up and running, you need to install a series of packages, including
the package that comes with this book, languageR. This is accomplished with
the following instruction, to be typed at the R prompt:

install.packages(c("rpart", "chron", "Hmisc", "Design",
"Matrix", "lme4", "coda", "e1071", "zipfR", "ape",
"languageR"), repos = "http://cran.r-project.org")

Packages are installed in a folder named library, which itself is located in
R’s home directory. On my system, R’s home is /home/harald/R-2.4.0, so
packages are found in /home/harald/R-2.4.0/library, and the code of the

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

2 an introduction to r

main examples in this book is located in /home/harald/R-2.4.0/library/

languageR/scripts.
I recommend that you create a file named .Rprofile in your home directory.

This file should contain the line,

library(languageR)

telling R that upon startup it should attach languageR. All data sets and functions
defined in languageR, and some of the packages that we will need, will be
automatically available. Alternatively, you can type library(languageR) at
the R prompt yourself after you have started R. All examples in this book assume
that the languageR package has been attached.

The way to learn a language is to start speaking it. The way to learn R, and the
S language that it is built on, is to start using it. Reading through the examples in
this chapter is not enough to become a confident user of R. For this, you need to
actually try out the examples by typing them at the R prompt. You have to be very
precise in your commands, which requires a discipline that you will master only
if you learn from experience, from your mistakes and typos. Don’t be put off if R
complains about your initial attempts to use it, just carefully compare what you
typed, letter by letter and bracket by bracket, with the code in the examples.

If you type a command that extends over separate lines, the standard prompt >
will change into the special continuation prompt +. If you think your command
is completed, but still have a continuation prompt, there is something wrong with
your syntax. To cancel the command, use either the escape key, or hit control-c.
Appendix B provides an overview of operators and functions, grouped by topic,
that you may find useful as a complement to the example-by-example approach
followed in the main text of this book.

1.1 R as a calculator

Once you have an R window, you can use R simply as a calculator. To
add 1 and 2, type,

> 1 + 2

and hit the return (enter) key, and R will display:

[1] 3

The [1] preceding the answer indicates that 3 is the first element of the answer. In
this example, it is also the only element. Other examples of arithmetic operations
are:

> 2 * 3 # multiplication
[1] 6
> 6 / 3 # division
[1] 2
> 2 ˆ 3 # power

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

1.1 R as a calculator 3

[1] 8
> 9 ˆ 0.5 # square root
[1] 3

The hash mark # indicates that the text to its right is a comment that should be
ignored by R. Operators can be stacked, in which case it may be necessary to
make explicit by means of parentheses the order in which the operations have to
be carried out:

> 9 ˆ 0.5 ˆ 3
[1] 1.316074
> (9 ˆ 0.5) ˆ 3
[1] 27
> 9 ˆ (0.5 ˆ 3)
[1] 1.316074

Note that the evaluation of exponentiation proceeds from right to left, rather than
from left to right. Use parentheses whenever you are not absolutely sure about
the order in which R evaluates stacked operators.

The results of calculations can be saved and referenced by variables. For
instance, we can store the result of adding 1 and 2 in a variable named x. There
are three ways in which we can assign the result of our addition to x. We can use
the equals sign as assignment operator,

> x = 1 + 2
> x
[1] 3

or we can use a left arrow (composed of < and -) or a right arrow (composed of
- and >, as follows:

> x <- 1 + 2
> 1 + 2 -> x

The right arrow is especially useful in cases where you have typed a long expres-
sion and only then decide that you would like to save its output rather than have
it displayed on your screen. Instead of having to go back to the beginning of the
line, you can continue typing and use the right arrow as assignment operator. We
can modify the value of x, for instance, by increasing its value by one:

> x = x + 1

Here we take x, add one, and assign the result (4) back to x. Without this explicit
assignment, the value of x remains unchanged:

> x = 3
> x + 1 # result is displayed, not assigned to x
[1] 4
> x # so x is unchanged
[1] 3

We can work with variables in the same way that we work with numbers:

> 4 ˆ 3
[1] 64
> x = 4

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

4 an introduction to r

> y = 3
> x ˆ y
[1] 64

The more common mathematical operations are carried out with operators such
as +, -, and *. For a range of standard operations, as well as for more complex
mathematical calculations, a wide range of functions is available. Functions are
commands that take some input, do something with that input, and return the
result to the user. Above, we calculated the square root of 9 with the help of the
∧ operator. Another way of obtaining the same result is by means of the sqrt()
function:

> sqrt(9)
[1] 3

The argument of the square root function, 9, is enclosed between parentheses.

1.2 Getting data into and out of R

Bresnan et al. (2007) studied the dative alternation in English in the
three-million-word Switchboard collection of recorded telephone conversations
and in the Treebank Wall Street Journal collection of news and financial reportage.
In English, the recipient can be realized either as an np (Mary gave John the book)
or as a pp (Mary gave the book to John). Bresnan and colleagues were interested
in predicting the realization of the recipient (as np or pp) from a wide range of
potential explanatory variables, such as the animacy, the length in words, and the
pronominality of the theme and the recipient. A subset of their data collected from
the Treebank is available as the data set verbs. (Bresnan and colleagues studied
many more variables, the full data set is available as dative, and we will study
it in detail in later chapters.) You should have attached the languageR package
at this point, otherwise verbs will not be available to you.

We display the first 10 rows of the verbs data with the help of the function
head(). (Readers familiar with programming languages like C and Python should
note that R numbering begins with 1 rather than with zero.)

> head(verbs, n = 10)
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme
1 NP feed animate inanimate 2.6390573
2 NP give animate inanimate 1.0986123
3 NP give animate inanimate 2.5649494
4 NP give animate inanimate 1.6094379
5 NP offer animate inanimate 1.0986123
6 NP give animate inanimate 1.3862944
7 NP pay animate inanimate 1.3862944
8 NP bring animate inanimate 0.0000000
9 NP teach animate inanimate 2.3978953
10 NP give animate inanimate 0.6931472

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

1.2 Getting data into and out of R 5

When the option n is left unspecified, the first 6 rows will be displayed by default.
Tables such as exemplified by verbs are referred to in R as data frames. Each
line in this data frame represents a clause with a recipient, and specifies whether
this recipient was realized as an np or as a pp. Each line also lists the verb used, the
animacy of the recipient, the animacy of the theme, and the logarithm of the length
of the theme. Note that each elementary observation — here the realization of the
recipient as np or pp in a given clause — has its own line in the input file. This
is referred to as the long data format, where long highlights that no attempt is
made to store the data more economically.

It is good practice to spell out the elements in the columns of a data frame with
sensible names. For instance, the first line with data specifies that the recipient
was realized as an np for the verb to feed, that the recipient was animate, and
that the theme was inanimate. The length of the theme is listed in log units, for
reasons that will become clear in later chapters. The actual length of the theme
is 14, as shown when we undo the logarithmic transformation with its inverse,
the exponential function exp():

> exp(2.6390573)
[1] 14
> log(14)
[1] 2.639057

A data frame such as verbs can be saved outside R as an independent file with
write.table(), enclosing the name of the file (including its path) between
double quotes:

> write.table(verbs, file = "/home/harald/dativeS.txt") # Linux
> write.table(verbs, file = "/users/harald/dativeS.txt") # MacOSX
> write.table(verbs, file = "c:stats/dativeS.txt") # Windows

Users of Windows should note the use of the forward slash for path specification.
Alternatively, on MacOS X or Windows, the function file.choose() may be
used, replacing the file name, in which case a dialog box is provided.

External data in this tabular format can be loaded into R with read.table().
We tell this function that the file we just made has an initial line, its header, that
specifies the column names:

> verbs = read.table("/home/harald/dativeS.txt", header = TRUE)

R handles various other data formats as well, including sas.get() (which con-
verts sas data sets), read.csv() (which handles comma-separated spreadsheet
data), and read.spss() (for reading spss data files).

Data sets and functions in R come with extensive documentation, including
examples. This documentation is accessed by means of the help() function.
Many examples in the documentation can be also executed with the example()
function:

> help(verbs)
> example(verbs)

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

6 an introduction to r

1.3 Accessing information in data frames

When working with data frames, we often need to select or manipulate
subsets of rows and columns. Rows and columns are selected by means of a
mechanism referred to as subscripting. In its simplest form, subscripting can
be achieved simply by specifying the row and column numbers between square
brackets, separated by a comma. For instance, to extract the length of the theme
for the first line in the data frame verbs, we type:

> verbs[1, 5]
[1] 2.639057

Whatever precedes the comma is interpreted as a restriction on the rows, and
whatever follows the comma is a restriction on the columns. In this example, the
restrictions are so narrow that only one element is selected, the one element that
satisfies the restrictions that it should be on row 1 and in column 5. The other
extreme is no restrictions whatsoever, as when we type the name of the data frame
at the prompt, which is equivalent to typing:

> verbs[,] # this will display all 903 rows of verbs!

When we leave the slot before the comma empty, we impose no restrictions on
the rows:

> verbs[, 5] # show the elements of column 5
[1] 2.6390573 1.0986123 2.5649494 1.6094379 1.0986123
[6] 1.3862944 1.3862944 0.0000000 2.3978953 0.6931472
...

As there are 903 rows in verbs, the request to display the fifth column results in
an ordered sequence of 903 elements. In what follows, we refer to such an ordered
sequence as a vector. Thanks to the numbers in square brackets in the output,
we can easily see that 0.00 is the eighth element of the vector. Column vectors
can also be extracted with the $ operator preceding the name of the relevant
column:

> verbs$LengthOfTheme # same as verbs[, 5]

When we specify a row number but leave the slot after the comma empty, we
impose no restrictions on the columns, and therefore obtain a row vector instead
of a column vector:

> verbs[1,] # show the elements of row 1
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

1 NP feed animate inanimate 2.639057

Note that the elements of this row vector are displayed together with the column
names.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

1.3 Accessing information in data frames 7

Row and column vectors can be extracted from a data frame and assigned to
separate variables:

> row1 = verbs[1,]
> col5 = verbs[, 5]
> head(col5, n = 5)
[1] 2.6390573 1.0986123 2.5649494 1.6094379 1.0986123

Individual elements can be accessed from these vectors by the same subscripting
mechanism, but simplified to just one index between the square brackets:

> row1[1]
RealizationOfRec

1 NP
> col5[1]
[1] 2.639057

Because the row vector has names, we can also address its elements by name,
properly enclosed between double quotes:

> row1["RealizationOfRec"]
RealizationOfRec

1 NP

You now know how to extract single elements, rows, and columns from data
frames, and how to access individual elements from vectors. However, we often
need to access more than one row or more than one column simultaneously. R
makes this possible by placing vectors before or after the comma when subscript-
ing the data frame, instead of single elements. (For R, single elements are actually
vectors with only one element.) Therefore, it is useful to know how to create your
own vectors from scratch. The simplest way of creating a vector is to combine el-
ements with the concatenation operator c(). In the following example, we select
some arbitrary row numbers that we save in the variable rs (shorthand for rows):

> rs = c(638, 799, 390, 569, 567)
> rs
[1] 638 799 390 569 567

We can now use this vector of numbers to select precisely those rows from verbs

that have the row numbers specified in rs. We do so by inserting rs before the
comma:

> verbs[rs,]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

638 PP pay animate inanimate 0.6931472
799 PP sell animate inanimate 1.3862944
390 NP lend animate animate 0.6931472
569 PP sell animate inanimate 1.6094379
567 PP send inanimate inanimate 1.3862944

Note that the appropriate rows of verbs appear in exactly the same order as
specified in rs.

The combination operator c() is not the only function for creating vectors. Of
the many other possibilities, the colon operator should be mentioned here. This

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

8 an introduction to r

operator brings into existence sequences of increasing or decreasing numbers
with a stepsize of one:

> 1 : 5
[1] 1 2 3 4 5
> 5 : 1
[1] 5 4 3 2 1

In order to select from verbs the rows specified by rs and the first three columns,
we specify the row condition before the comma and the column condition after
the comma:

> verbs[rs, 1:3]
RealizationOfRec Verb AnimacyOfRec

638 PP pay animate
799 PP sell animate
390 NP lend animate
569 PP sell animate
567 PP send inanimate

Alternatively, we could have specified a vector of column names instead of column
numbers:

> verbs[rs, c("RealizationOfRec", "Verb", "AnimacyOfRec")]

Note once more that when strings are brought together into a vector, they must
be enclosed between quotes.

Thus far, we have selected rows by explicitly specifying their row numbers.
Often, we do not have this information available. For instance, suppose we are
interested in those observations for which the AnimacyOfTheme has the value
animate. We do not know the row numbers of these observations. Fortunately,
we do not need them either, because we can impose a condition on the rows of
the data frame such that only those rows will be selected that meet that condi-
tion. The condition that we want to impose is that the value in the column of
AnimacyOfTheme is animate. Since this is a condition on rows, it precedes the
comma:

> verbs[verbs$AnimacyOfTheme == "animate",]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

58 NP give animate animate 1.0986123
100 NP give animate animate 2.8903718
143 NP give inanimate animate 2.6390573
390 NP lend animate animate 0.6931472
506 NP give animate animate 1.9459101
736 PP trade animate animate 1.6094379

This is equivalent to:
> subset(verbs, AnimacyOfTheme == "animate")

It is important to note that the equality in the condition is expressed with a double
equal sign. This is because the single equal sign is the assignment operator. The
following example illustrates a more complex condition with the logical operator

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

1.3 Accessing information in data frames 9

and (&) (the logical operator for or is |):
> verbs[verbs$AnimacyOfTheme == "animate" & verbs$LengthOfTheme > 2,]

RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme
100 NP give animate animate 2.890372
143 NP give inanimate animate 2.639057

Row and column names of a data frame can be extracted with the functions
rownames() and colnames():

> head(rownames(verbs))
[1] "1" "2" "3" "4" "5" "6"

> colnames(verbs)
[1] "RealizationOfRec" "Verb" "AnimacyOfRec" "AnimacyOfTheme"
[5] "LengthOfTheme"

The vector of column names is a string vector. Perhaps surprisingly, the vector of
row names is also a string vector. To see why this is useful, we assign the subtable
of verbs obtained by subscripting the rows with the rs vector to a separate object
that we name verbs.rs:

> verbs.rs = verbs[rs,]

We can extract the first line not only by row number,
> verbs.rs[1,]

RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme
638 PP pay animate inanimate 0.6931472

but also by row name:

> verbs.rs["638",] # same output

The row name is a string that reminds us of the original row number in the data
frame from which verbs.rs was extracted:

> verbs[638,] # same output again

Let’s finally extract a column that does not consist of numbers, such as the
column specifying the animacy of the recipient:

> verbs.rs$AnimacyOfRec
[1] animate animate animate animate inanimate
Levels: animate inanimate

Two things are noteworthy. First, the words animate and inanimate are not en-
closed between quotes. Second, the last line of the output mentions that there are
two levels: animate and inanimate. Whereas the row and column names
are vectors of strings, non-numerical columns in a data frame are automati-
cally converted by R into factors. In statistics, a factor is a non-numerical
predictor or response. Its values are referred to as its levels. Here, the factor
AnimacyOfRec has as its only possible values animate and inanimate, hence
it has only two levels. Most statistical techniques don’t work with string vec-
tors, but with factors. This is the reason why R automatically converts non-
numerical columns into factors. If you really want to work with a string vector

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

10 an introduction to r

instead of a factor, you have to do the back-conversion yourself with the function
as.character():

> verbs.rs$AnimacyOfRec = as.character(verbs.rs$AnimacyOfRec)
> verbs.rs$AnimacyOfRec
[1] "animate" "animate" "animate" "animate" "inanimate"

Now the elements of the vector are strings, and as such properly enclosed between
quotes. We can undo this conversion with as.factor():

> verbs.rs$AnimacyOfRec = as.factor(verbs.rs$AnimacyOfRec)

If we repeat these steps, but with a smaller subset of the data in which Anima-

cyOfRec is only realized as animate,

> verbs.rs2 = verbs[c(638, 390),]
> verbs.rs2

RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme
638 PP pay animate inanimate 0.6931472
390 NP lend animate animate 0.6931472

we observe that the original two levels of AnimacyOfRec are remembered:

> verbs.rs2$AnimacyOfRec
[1] animate animate
Levels: animate inanimate

In order to get rid of the uninstantiated factor level, we convert AnimacyOfRec
to a character vector, and then convert it back to a factor:

> as.factor(as.character(verbs.rs2$AnimacyOfRec))
[1] animate animate
Levels: animate

An alternative with the same result is:

> verbs.rs2$AnimacyOfRec[drop=TRUE]

1.4 Operations on data frames

1.4.1 Sorting a data frame by one or more columns

In the previous section, we created the data frame verbs.rs, the rows
of which appeared in the arbitrary order specified by our vector of row numbers
rs. It is often useful to sort the entries in a data frame by the values in one of the
columns, for instance, by the realization of the recipient,

> verbs.rs[order(verbs.rs$RealizationOfRec),]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

390 NP lend animate animate 0.6931472
638 PP pay animate inanimate 0.6931472
799 PP sell animate inanimate 1.3862944
569 PP sell animate inanimate 1.6094379
567 PP send inanimate inanimate 1.3862944

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88259-0 - Analyzing Linguistic Data: A Practical Introduction to Statistics Using R
R. H. Baayen
Excerpt
More information

http://www.cambridge.org/9780521882590
http://www.cambridge.org
http://www.cambridge.org

