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König’s Lemma

1.1 Two ways of looking at mathematics

It seems that in mathematics there are sometimes two or more ways of proving
the same result. This is often mysterious, and seems to go against the grain,
for we often have a deep-down feeling that if we choose the ‘right’ ideas or
definitions, there must be only one ‘correct’ proof. This feeling that there
should be just one way of looking at something is rather similar to Paul Erdős’s
idea of ‘The Book’ [1], a vast tome held by God, the SF, in which all the best,
most revealing and perfect proofs are written.

Sometimes this mystery can be resolved by analysing the apparently differ-
ent proofs into their fundamental ideas. It often turns out that, ‘underneath the
bonnet’, there is actually just one key mathematical concept, and two seem-
ingly different arguments are in some sense ‘the same’. But sometimes there
really are two different approaches to a problem. This should not be disturbing,
but should instead be seen as a great opportunity. After all, two approaches to
the same idea indicates that there are some new mathematics to be investigated
and some new connections to be found and exploited, which hopefully will
uncover a wealth of new results.

I shall give a rather simple example of just the sort of situation I have in
mind that will be familiar to many readers – one which will be typical of the
kind of theorem we will be considering throughout this book.

Consider a binary tree. A tree is a diagram (often called a graph) with
a special point or node called the root, and lines or edges leaving this node
downwards to other nodes. These again may have edges leading to further
nodes. The thing that makes this a tree (rather than a more general kind of
graph) is that the edges all go downwards from the root, and that means the
tree cannot have any loops or cycles. The tree is a binary tree if every node is
connected to at most two lower nodes. If every node is connected to exactly
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2 König’s Lemma
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Figure 1.1 The full binary tree.
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Figure 1.2 A binary tree.

two lower nodes, the tree is called the full binary tree. Note that in general,
a node in a binary tree may be connected to 0, 1 or 2 lower nodes. We will
label the nodes in our trees with sequences of integers. It is convenient to make
labels for the nodes below the node that has label x by adding either the digit 0
or 1 to the end of x, giving x0 and x1. Figure 1.1 illustrates the full binary tree,
whereas Figure 1.2 gives a typical (non-full) binary tree.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88219-4 - The Mathematics of Logic: A Guide to Completeness Theorems
and their Applications
Richard Kaye
Excerpt
More information

http://www.cambridge.org/0521882192
http://www.cambridge.org
http://www.cambridge.org


1.1 Two ways of looking at mathematics 3

Trees are very important in mathematics, because many constructions follow
trees in some way or other. Binary trees are especially interesting since a
walk along a tree, following a path that starts at the root, has at most two
choices of direction at every node. Binary trees arise quite naturally in many
mathematical ideas and proofs and general theorems about them can be quite
powerful and useful. One of the better known and more useful of these results
is called König’s Lemma.

To explain König’s Lemma, consider what it means for a tree T to be infinite.
There are two viewpoints, and two possible definitions.

Firstly, suppose you have somehow drawn the whole of the tree T on paper
or on the blackboard and are inspecting it. You are in a fortunate position to be
able to take in every one of its features, and to examine every one of its nodes
and edges. You will quite naturally say that the tree is infinite if it has infinitely
many nodes, or – amounting to the same thing – infinitely many edges. This is
a sort of ‘definition from perfect information’ and is similar to what logicians
call semantics, though we will not see the connection with semantics and the
theory of ‘meaning’ for a while.

Now consider you are an ant walking on the binary tree T , which is again
drawn in its entirety on paper. You start at the root node, and you follow the
edges, like ant tracks, which you hope will take you to something interesting.
Unlike the mathematician viewing the tree in its entirety, you can only see the
node you are at and the edges leaving it. If you take a walk down the tree,
you may have choices of turning left or right at any given node and continuing
your path. But it is possible that you have no choice at all, because either
there is only one edge out of the node other than the one you entered it by,
or possibly there is no such edge at all, in which case your walk has come
to an end. To the ant, which cannot perceive the whole of the tree, but just
follows paths, there is a quite different idea of what it means for the tree to be
infinite: the ant would say that T is infinite if it can find somehow (by guessing
the right combination of ‘left’ and ‘right’ choices) an infinite path through the
tree. The ant’s definition of ‘infinite’ might be thought of as a ‘definition from
imperfect information’ and is similar to the logician’s idea of proof. If you
like, you can think of an infinite path chosen by the ant as a proof that the tree
is infinite. Like all proofs, it supports the claim made, without giving much
extra information – such as what the tree looks like off this path.

König’s Lemma is the statement that, for binary trees, these two ideas of
a tree being infinite are the same. It is in fact a rather useful statement with
many interesting applications. The key feature of this statement is that it re-
lates two definitions, one mathematical definition working from perfect or total
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4 König’s Lemma

information, and one working from the point of view of much more limited in-
formation, and shows that they actually say the same thing.

As with all ‘if and only if’ theorems, there are two directions that must be
proved. The first, that if there is an infinite path through the tree then the tree
is infinite, is immediate. This easier direction is called a Soundness Theorem
since it says the ant’s perception based on partial information is sound, or in
other words will not result in erroneous conclusions. The other direction is
the non-trivial one, and its mathematical strength lies in the way it states that
a rather general mathematical situation (that the tree is infinite) can always be
detected in a special way from partial information. The reason why it is called
Completeness will be discussed later in relation to some other examples.

This has been a long preliminary discussion, but I hope it has proved illumi-
nating. We shall now turn to the more formal mathematical details and define
tree, path, etc., and then state and prove König’s Lemma properly.

Definition 1.1 The set of natural numbers, N, will be taken in this book to be
{0, 1, 2, . . .}.

For those readers who expect the natural numbers to start with 1, I can only
say that I appreciate that there are occasions when it is convenient to forget
about zero, but for me zero is very natural, probably the most logically natural
number of all, so is included here in the set of natural numbers.

Definition 1.2 A sequence is a function s whose domain is either the set N

of all natural numbers or a subset of it of the form {x ∈ N : x < n} for some
n ∈N. Normally the values of the sequence will be numbers, 0 or 1 say, but the
definition above (with n = 0) allows the empty sequence with no values at all.
We write a sequence by listing its values in order, for example as 00110101001
or 0101010101. The length of a sequence is the number of elements in the
domain of the function. This will always be a natural number or infinity.

Definition 1.3 If s is a sequence of length l and n ∈ N is at most l, then s � n
denotes the initial part of s of length n.

For example, if s = 00100011 then s � 4 = 0010.

Definition 1.4 If s is a sequence of length l and x is 0 or 1 then sx is the
sequence of length l + 1 whose last element is x and all other elements agree
with those of s.

Our definition of a tree is of a set of sequences that is closed under the
restriction operation � .
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1.1 Two ways of looking at mathematics 5

Definition 1.5 A tree is a set of sequences T such that for any s ∈ T of length
n and for any l < n then s � l ∈ T .

Think of a sequence s ∈ T as a finite path starting from the root and arriving
at some node. The individual digits in the sequence determine which choice of
edge is made at each node. The set of nodes of the whole tree is then the set of
sequences in the set T and two nodes s, t ∈ T are connected by a single edge
if one can be got from the other by adding a single number to the sequence. In
other words, s and t are connected if s � (n−1) = t when s is the longer of the
two and has length n, or the other way round if t is longer. Then the condition
in the definition says, not unreasonably, that each node that this path passes
through must also be in the tree. The root of the tree is the empty sequence of
length 0.

Definition 1.6 A subtree of a tree T is a subset S of T that is a tree in its own
right.

A subtree of a tree T might contain fewer nodes, and therefore fewer choices
at certain nodes.

Definition 1.7 A binary tree is a tree T where all the sequences in it are
functions from some {n ∈ N : n < k} to {0, 1}.

In other words, at any node, a path from the root of a binary tree has at most
two options: to go left (0) or right (1). However, it may turn out that only one,
or possibly neither, of these options is available at a particular node.

Definition 1.8 A tree T is infinite if it contains infinitely many sequences, or
(equivalently) has infinitely many nodes.

A path is a subtree with no branching allowed. That means for any two
nodes in the tree, one is a ‘predecessor’ of the other. More formally, we have
the following definition.

Definition 1.9 A path, p, in a tree T is a subtree of T such that for any s, t ∈ p
with lengths n, k respectively and n � k, we have s = t � n.

A tree T containing an infinite path p is obviously infinite. König’s Lemma
states that the converse is also true for binary trees.

Theorem 1.10 (König’s Lemma) Let T be an infinite binary tree. Then T
contains an infinite path p.
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6 König’s Lemma

Proof Suppose T is an infinite binary tree. For a sequence s of length n let
Ts be {r ∈ T : r � n = s}∪ {s � k : k < n}, which we will call the subtree of T
below s. You will be able to check easily that Ts is a tree. In general it may or
may not be infinite.

We are going to find a sequence s(n) of elements of T such that

• s(n) has length n,
• s(n) = s(n+1) � n,
• the tree Ts(n) below s(n) is infinite.

This construction is by induction, using the third property above as our in-
duction hypothesis. When we have completed the proof the set {s(n) : n ∈ N}
will be our infinite path p in T .

So suppose inductively that we have chosen s = s(n) of length n and Ts is
infinite. Then since the tree is binary, made from sequences of 0s and 1s, we
have

Ts = {r ∈ T : r � (n+1) = s0}∪{r ∈ T : r � (n+1) = s1}∪{s � k : k � n} .

This is, by the induction hypothesis, infinite. Hence (as the third of these three
sets is obviously finite) at least one of the first two sets, corresponding to ‘0’ or
‘1’ respectively, is infinite. If the first of these is infinite we set s(n + 1) = s0
and in this case we have

Ts(n+1) = {r ∈ T : r � (n+1) = s0}∪{s0}∪{s � k : k � n}
which is infinite. If not we set s(n+1) = s1 which would then be infinite as be-
fore. Either way we have defined s(n+1) and proved the induction hypothesis
for n+1.

1.2 Examples and exercises

The central theorem of this book, the Completeness Theorem for first-order
logic, is not only of the same flavour as König’s Lemma, but is in fact a pow-
erful generalisation of it. To give you an idea of the power that this sort of
theorem has, it is useful to see a selection of applications of König’s Lemma
here.

We start by exploring the limits of König’s Lemma a little: it turns out that
the important thing is not that there are at most two choices at each node but
that the number of ways in which the branches divide is always finite.

Definition 1.11 If T is a tree and s ∈ T is a node of T then the valency or
degree of s is the number of nodes of T connected to s. Thus this is the number
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1.2 Examples and exercises 7

of x such that sx ∈ T plus one (to cater for the edge back towards the root), or
just the number of such x if s is the root node.

Exercise 1.12 Prove the following generalisation of König’s Lemma: an infi-
nite tree in which every vertex has finite valency has an infinite path. Assume
that the tree has vertices or nodes which are sequences of natural numbers of
finite length and that for each s ∈ T there is a bound Bs ∈ N on the possible
values x such that sx ∈ T .

There are two ways that you might have done the last exercise. You might
have modified the proof given above, or you may have tried to reduce the
case of arbitrary finite valency trees to the case of binary trees by somehow
‘encoding’ arbitrary finite branching by a series of binary branches.

Exercise 1.13 Whichever method you used, have a go at proving the extension
of König’s Lemma by the other method.

Exercise 1.14 By giving an appropriate example of an infinite tree, show that
König’s Lemma is false for graphs with vertices of infinite valency.

König’s Lemma is an elegant but nevertheless not very surprising or difficult
result to see. Its truth, it seems, is reasonably clear, though a completely rigor-
ous proof takes a moment or two to come up with. It is all the more surprising,
therefore that there should be non-trivial applications. We will look at a few of
these now, though nothing later in this book will depend on them.

Example 1.15 The set X = [0, 1] has the property (called sequential compact-
ness, equivalent to compactness for metric spaces) that every sequence (an) of
elements of X has a subsequence converging to some element in X .

Proof Starting with [0, 1] we continually divide intervals into equal halves,
but at stage k of the construction we throw away any such interval that con-
tains none of the an with n > k. More precisely, the nodes of the tree at
depth k are identified with intervals I = [(r − 1)2−k, r2−k] for which r ∈ N

and {an : n > k and an ∈ I} is non-empty, and two nodes are connected if one
is a subset of the other.

This defines a binary tree. It is infinite because there are infinitely many
an and each lies in an interval. By König’s Lemma there is an infinite path
through this tree, and by the construction of the tree we may take an infinite
subsequence of an in this path, one at each level of the tree. This is the required
convergent subsequence.
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8 König’s Lemma

Now consider infinite sequences u0u1u2. . . of the digits 0, 1, 2, . . ., k− 1. We
will call such sequences k-sequences. Say a k-sequence s is xn-free if there is
no finite sequence, x, of digits 0, 1, 2, . . ., k− 1, such that the finite sequence
xn (defined to be the result of repeating and concatenating x as xxxx. . .x, where
there are n copies of the string x) does not appear as a contiguous block of the
sequence s.

Exercise 1.16 (a) Show that there is no x2-free 2-sequence.
(b) Use König’s Lemma to show that there is an x3-free 2-sequence if and

only if there are arbitrarily long finite x3-free 2-sequences. State and prove a
similar result for x2-free 3-sequences.

(c) Define an operation on finite 2-sequences σ such that σ(0) = 01, σ(1) =
10, and σ(u0u1. . .um) = σ(u0)σ(u1). . .σ(um), where this is concatenation of
sequences. Let σn(s) = σ(σ(. . .(σ(s)). . .)), i.e. σ iterated n times. Show that
each of the finite sequences σn(0) is x3-free, and hence there is an infinite
x3-free 2-sequence.

(d) Show there is an x2-free 3-sequence.

Another example of the use of König’s Lemma is for graphs in the plane. A
graph is a set V of vertices and a set E of edges, which are unordered subsets of
V with exactly two vertices in each edge. In a planar graph the set of vertices
V is a set of points of R

2, and the edges joining vertices are lines which are
‘smooth’ (formed from finitely many straight-line segments) and may not cross
except at a vertex.

A graph with set of vertices V can be k-coloured if there is a map f : V →
{0, 1, . . ., k−1} such that f (u) �= f (v) for all vertices u, v that are joined by
an edge. You should think of the values 0, 1, . . ., k − 1 as ‘colours’ of the
vertices; the condition says two adjacent vertices must be coloured differently.
Graph colourings, and especially colourings of planar graphs, are particularly
interesting and have a long history [12]. A deep and difficult result by Appel
and Haken shows that every finite planar graph is 4-colourable [10].

Exercise 1.17 Use König’s Lemma to show that an infinite graph can be k-
coloured if and only if every finite subgraph of it can be so coloured. (Make the
simplification that the vertices of our infinite graph can be ordered as v0, v1, . . .

with indices from N. Construct a tree where the nodes at level n are all k-
colourings of the subgraph with vertices v0, v1, . . ., vn−1, and edges join nodes
if one colouring extends another.) Deduce from Appel and Haken’s result that
every infinite planar graph can be 4-coloured.

Tiling problems provide another nice application of König’s Lemma. Con-
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1.3 König’s Lemma and reverse mathematics* 9

sider a finite set of tiles which are square, with special links like jigsaw pieces
so that in a tiling with tiles fitting together, one edge of one tile must be next
to one of certain edges of other tiles. A tiling of the plane is a tiling using
any number of tiles of each of the finitely many types, so that the whole of the
plane is covered. Tiling problems ask whether the plane can or cannot be tiled
using a particular set.

Exercise 1.18 Prove that a finite set of tiles can tile the plane if and only if
every finite portion of the plane can be so tiled.

Finally, for this section, trees are also useful for describing computations.
We will not define any idealised computer here, nor provide any background
in computability theory, so this next example is for readers with such back-
ground, or who are willing to suspend judgement until they have such back-
ground. Normally, computations are deterministic, that is every step is deter-
mined completely by the state of the machine. A non-deterministic computa-
tion is one where the computer has a fixed number, B, of possible ‘next moves’
at any stage. The machine is allowed to choose one of these ‘at random’, or
by making a ‘lucky guess’ and in so doing it hopes to verify that some asser-
tion is true. This gives rise to a computation tree of all possible computations.
Suppose we somehow know in advance that whatever choices are made at any
step, every computation of the machine will eventually halt and give an answer.
That means that all paths through the computation tree are finite. Then by the
contrapositive of König’s Lemma the tree is finite. This means that the non-
deterministic computation can be simulated in finite time by a deterministic
one which constructs the computation tree in memory and analyses it.

1.3 König’s Lemma and reverse mathematics*

König’s Lemma is rather attractive and has some pretty applications. It has
been ‘traditional’ in logic textbooks to give some of the examples above as
applications of the much more powerful ‘Completeness Theorem for first-order
logic’. Whilst not incorrect, this has always seemed a pity to me, as it hardly
does the Completeness Theorem justice when the applications can be proved
directly from the more familiar König’s Lemma. Suffice it to say for now
that there will be plenty of interesting applications of the full Completeness
Theorem that cannot be argued from König’s Lemma alone.

It may be a good idea to say a few words about why König’s Lemma is pow-
erful, and where it does real mathematical work. The reason is that, although
there may be an infinite path in a tree, it is not always clear how to find one,
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10 König’s Lemma

and in any case there are likely to be choices involved. In our proof of König’s
Lemma, to keep track of all these individual choices, we used the concept of a
certain subtree Ts being infinite. Being ‘infinite’ is of course a powerful math-
ematical property, and one about which there is a lot that can be said, both
within and outside the field of mathematical logic. This concept of an infinite
subtree is doing quite a lot of work for us here, especially as it is being used
infinitely many times in the course of an induction.

Some workers in the logic community study these ideas in more detail by
trying to identify which theorems need which lemmas to prove them. This
area of logic is often called reverse mathematics since the main aim is usually
to prove the axioms from the theorems. I am not going to advocate reverse
mathematics here, but there are plenty of times when it is nice to know that a
complicated lemma cannot be avoided in a proof. It is certainly true for many
of the exercises in the previous section that König’s Lemma (or something very
much like it) is necessary for their solution. In reverse mathematics one usually
works from a weaker set of axioms, one where the concept of an infinite set
is not available. It turns out, for example, that relative to this weak set of
axioms the sequential compactness of [0, 1] is actually equivalent to König’s
Lemma. For more information on reverse mathematics see the publications by
Harvey Friedman, Stephen Simpson and others, in particular Simpson’s 2001
volume [11].

The proof of König’s Lemma works, as we have seen, by making a series
of choices. The issue of making choices is also a very subtle one, but one
that will come up in many places in this book. We can always make finitely
many choices as part of a proof, by just listing them. (In this way, to make
n choices in a proof you will typically need at least n lines of proof, for each
n ∈ N.) But making infinitely many choices in one proof, or even an unknown
finite number of choices, will depend on being able to give a rule stating which
choice is to be made and when. This might be more difficult to achieve. Some
versions of König’s Lemma do indeed involve infinitely many arbitrary choices
as we turn ‘left’ or ‘right’ following an infinite path. This is a theme that will
be taken up in the next chapter. As a taster, you could attempt the following
exercise, a more difficult version of Exercise 1.12.

Exercise 1.19 Consider the generalisation of König’s Lemma that says that an
infinite tree T in which every vertex has finite valency has an infinite path. Do
not make any simplifying assumptions on the elements of the sequences s ∈ T .
What choices have to be made in the course of the proof, and how might you
specify all of these choices unambiguously in your proof?
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