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Introduction

The focus of this book is the question how many groups of order n are there?

This is to be interpreted in the natural way: we define f�n� to be the number

of groups of order n up to isomorphism and ask for information about the

function f .

The values of f�n� for small values of n are:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 � � �

f�n� 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 � � �

For 1 � n � 16 the groups of order n were classified well over a hundred

years ago, and the value of f�n� clearly follows from this classification. The

easiest case is when n is a prime—Lagrange’s Theorem shows that a group

of order n must be cyclic, and so f�n�= 1. When n is in the range of the table

above, only n= 16 requires a lengthy argument to establish a classification.

Note that f�15�= 1 even though 15 is not prime.

As n increases, the problem of classifying groups of order n becomes hard.

The groups of order 210 have only recently been classified, by Besche, Eick

and O’Brien [6]. An appendix to their paper lists f�n� when 1 � n � 2000;

in particular when n = 210 they count 49487365422 groups! However, the

groups of order 211 have not been classified and it is not known how many

groups of order 211 there are. (We will show in Chapter 4 that f�211� > 244.)

So if we are to say anything about f�n� when n is large, we must resort to

giving estimates for f�n� rather than calculating f�n� exactly.

Graham Higman [45] showed in 1960 that

f�pm� � p
2
27m

3−O�m2��

Charles Sims [86] proved in 1965 that

f�pm� � p
2
27m

3+O�m8/3�
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2 Introduction

and, as the culmination of a long line of development, Laszlo Pyber [82]

proved in 1991 (published in 1993) that

f�n� � n
2
27��n�

2+O���n�5/3��

where ��n� is the highest power to which any prime divides n. Amplification

of these results, and their proofs, forms the main part of the work: the results

of Higman and Sims are expounded in Part II (incorporating a modification of

Sims’ argument due to Mike Newman and Craig Seeley [77], which improves

the error term significantly) and Pyber’s theorem is the subject of Part III.

The proofs use a large amount of very attractive theory that is just beyond

the scope of an undergraduate course in algebra. All that theory is expounded

here, so that our treatment of the theorems of Higman and Sims and of Pyber’s

theorem in the soluble case is self-contained. Our treatment of the general case

of Pyber’s theorem in Chapter 16 is not self-contained, however, because it

relies ultimately upon the Classification of the Finite Simple Groups (CFSG).

The asymptotics of the function f tell us much, but far from everything,

about the groups of order n. To get a clearer picture we consider related

matters. For example, context is given by the questions how many semigroups

and how many latin squares of order n are there? These questions are treated

briefly in Chapter 2. Detail is given by such questions as: how many abelian

groups of order n are there? how many of the groups of order n have abelian

Sylow subgroups? how many of the groups of order n satisfy a given identical

relation? how many are soluble? how many are nilpotent? Questions of this

type are treated in Part IV.

Standing conventions:

• most groups considered are finite—if at any point finiteness is not men-

tioned but seems desirable, the reader is invited to assume it;

• f has already been introduced as the group enumeration function;

• for a class X of groups (or of other structures) f
X
�n� denotes the number

of members of X of order n, up to isomorphism;

• logarithms are to the base 2;

• maps are on the left;

• p always denotes a prime number;

• if n= p
�1

1 p
�2

2 · · ·p
�k

k , where p1� p2� � � � � pk are distinct prime numbers, then

��n�= �1+�2+· · ·+�k and ��n�=max	�i � 1 � i � k
.

Other notation and conventions are introduced where they are needed.
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Some basic observations

This chapter is devoted to elementary estimates for f�n�, the number of groups

of order n (up to isomorphism). We begin by looking at some enumeration

functions for weaker objects than groups.

Since a binary system is determined by its multiplication table, we find

that

f�n� � fbinary systems�n� � nn2 �

At most n! of these multiplication tables are isomorphic to any fixed binary

system, since an isomorphism is one of only n! permutations. Hence

nn2−n
�

nn2

n!
� fbinary systems�n� � nn2 �

If we consider binary systems with a unit element, we have

nn2−3n+O�1�
� fbinary systems with 1�n� � n�n−1�2 = nn2−2n+1�

Recall that a semigroup is a set with an associative multiplication defined

on it. For all � > 0,

n�1−��n2
� fsemigroups�n� � nn2

if n � n0���. To see this, consider the binary systems on �0�1� � � � � n− 1�

described by tables of the following form:
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6 Some basic observations

0 1 � � � m−2 m−1 m m+1 � � � n−2 n−1

0 0 0 � � � 0 0 0 0 � � � 0 0

1 0 0 � � � 0 0 0 0 � � � 0 0
���

���
���

���
���

���
���

���
���

m−1 0 0 � � � 0 0 0 0 � � � 0 0

m 0 0 � � � 0 0 ∗ ∗ � � � ∗ ∗

m+1 0 0 � � � 0 0 ∗ ∗ � � � ∗ ∗
���

���
���

���
���

���
���

���
���

n−1 0 0 � � � 0 0 ∗ ∗ � � � ∗ ∗

Here the starred entries are arbitrary subject to being at most m− 1. The

associative law holds for this table, since

�aiaj�ak = 0= ai�ajak��

Hence

fsemigroups�n� � m�n−m�2 �

(Notice here that we should divide by n!, but this again does not make a

significant difference.) Setting m to be approximately n1− 1
2 � we have

fsemigroups�n� � n�1− 1
2 ���n−n

1− 1
2
�
�2 �

For sufficiently large n,

n�1− 1
2 ���n−n

1− 1
2
�
�2

� n�1−��n2 �

Thus we get the requisite lower bound.

If we add the condition that all our semigroups contain a unit element, we

have similar results to the above.

Daniel Kleitman, Bruce Rothschild and Joel Spencer enumerate semigroups

more precisely in [55]. They show that most semigroups can be split into two

subsets A and B having the following property: there exists an element 0 ∈ B

such that if x� y ∈ A then xy ∈ B but if x ∈ B or y ∈ B then xy = 0. They then

use this fact to prove

fsemigroups�n�=

(

n
∑

t=1

g�t�

)

�1+O�1��� where

g�t�=

(

n

t

)

t1+�n−t�2 �
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Some basic observations 7

The function g�t� maximises at t0, where t0 ∼ n/2 loge n. Thus we may

improve the lower bound we gave above to

fsemigroups�n� � nn2�1−�log logn/ logn�−O�1/ logn���

where (for this inequality only) log should denote the natural logarithm—

although, as the astute reader will realise, in fact the base of the logarithms

does not matter here.

A multiplication table with inverses is a latin square (i.e., in each row and

column of the table, an element appears only once). We have

n
1
2 n

2−O�n�
� flatin squares�n� � nn2 �

The lower bound was proved by Marshall Hall [40]. Using less elementary

methods, the lower bound may be improved: Henryk Minc showed in [69]

that

�n!�2n/nn2
� flatin squares�n��

His proof uses the Egoryčev–Falikman theorem [26, 32, 70] establishing the

van der Waerden conjecture on permanents. Note that there is a constant c

such that n!> c �n/e�n, and so flatin squares�n� > c2nn2�1−1/ logn�. Much remains

to be discovered about this enumeration function. In 2005, Brendan McKay

and Ian Wanless [68] state ‘At the time of writing, not even the asymptotic

value of flatin squares�n� is known’.

Returning to the group enumeration function, we see that even very ele-

mentary methods are enough to show that there are seriously fewer groups

than semigroups or latin squares:

Observation 2.1

f�n� � nn logn�

Proof: For a group G, define

d�G�=min�k � ∃g1� � � � � gk ∈G such that G= �g1� � � � � gk���

We first show that if �G� = n then d�G� � logn. Let

�1�=G0 <G1 <G2 < · · ·<Gr =G

be a maximal chain of subgroups. Let gi ∈ Gi \Gi−1 for 1 � i � r . Then

�g1� � � � � gi� = Gi, as one easily sees by induction. In particular, G can be

generated by r elements. Now by Lagrange’s Theorem

�G� =
r
∏

i=1

�Gi 	 Gi−1� � 2r � (2.1)
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8 Some basic observations

Hence r � 	logn
. Then by Cayley’s theorem G � Sym�n� and so

f�n� � number of subgroups of order n in Sym�n�

� number of 	logn
-generator subgroups of Sym�n�

� number of 	logn
-element subsets of Sym�n�

� �n!�logn

� nn logn

and the result follows.

Recall the notation 
�n� and ��n� that we introduced at the end of Chap-

ter 1. A factorisation of n has at most ��n� non-trivial factors. Equation (2.1)

shows that r � ��n�, and therefore the bound for d�G� can be sharpened to

say that d�G�� ��n�. We remark that in fact d�G��
�n�+1, as we will see

in Corollary 16.7, but ignoring this for the moment and feeding the simple

bound for d�G� into the above argument we get that

f�n� � nn��n��

That is about as far as one can go with elementary methods. Nevertheless,

it already shows that the associative law and the existence of inverses are

separately very much weaker than is their combination.

The aim of the remainder of the book is to prove the better bounds on f�n�

given in the Introduction, using more sophisticated methods.
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Preliminaries

This chapter contains a brief account of some of the results we will need in

the next two chapters. More specifically, we review some basic commutator

identities and results on nilpotent groups, discuss the Frattini subgroup of a

group and prove some simple enumeration results concerning vector spaces,

general linear groups and symplectic groups. We emphasise that all groups

are finite in this section—some of the results (and definitions) differ in the

infinite case. We assume that the reader has already met a few commutator

identities and the idea of a nilpotent group, and so we have included sketch

proofs rather than full detail for some of the results. For more detail, see

Gorenstein [36, Sections 2.2 and 2.3].

3.1 Tensor products and exterior squares of abelian groups

As preparation for some of our treatment of commutators we recall (without

proofs) the definition of tensor product and exterior square of abelian groups.

If A, B are abelian groups (which we write additively here) the tensor product

A⊗B is defined to be the abelian group which is generated by all symbols

a⊗b for a ∈ A and b ∈ B subject to the relations

�a1+a2�⊗b−a1⊗b−a2⊗b = 0 �

a⊗ �b1+b2�−a⊗b1−a⊗b2 = 0 �

which make the operation ⊗ bilinear. We identify a⊗ b with its image

modulo the relations and then the map A×B → A⊗B (where here A×B

simply denotes the set of pairs), �a� b� �→ a⊗b, is bilinear. If A is generated

by a1� � � � � ar and B is generated by b1� � � � � bs then

�ai⊗bj � 1 � i � r� 1 � j � s�
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12 Preliminaries

will be a generating set for A⊗B; moreover, the order of a⊗b divides the

greatest common divisor of the orders of a and b.

The exterior square A∧2 (sometimes written
∧2A) of A is defined to be

the abelian group generated by all symbols a∧b for a�b ∈ A with the same

bilinearity relations as the tensor product and, in addition, the relations

a∧a= 0 for all a ∈ A

which make ∧ an alternating function of its arguments. Again, we identify

a∧b with its image modulo the relations and then the two-variable function

�a� b� �→ a∧ b is an alternating bilinear map A×A → A∧2. Note that the

equation b∧a = −�a∧b� follows easily from the defining relations for the

exterior square, and that if A is generated by a1� � � � � ar then

�ai∧aj � 1 � i < j � r�

is a generating set for A∧2.

One of the main properties of the tensor product is that it is universal for

bilinear maps. That is, if C is an abelian group and f � A×B → C is a bilinear

map then there is auniquehomomorphismf ∗ � A⊗B→C such thatf ∗�a⊗b�=

f�a�b� for all a ∈ A, b ∈ B. Similarly, the exterior square is universal for

alternating bilinear maps in the sense that if f � A×A→C is bilinear and such

that f�a�a�= 0 for all a then there is a unique homomorphism f ∗ � A∧2 → C

such that f ∗�a∧b�= f�a�b� for all a�b ∈A. Another fundamental property is

functoriality: the tensor product and exterior square are functorial in the sense

that if A1 , A2 , B1 , B2 are abelian groups and f � A1 → A2, g � B1 → B2 are

homomorphisms then there are homomorphisms f ⊗ g � A1⊗B1 → A2 ⊗B2

and f∧2 � A ∧2
1 → A ∧2

2 such that �f ⊗ g��a⊗b�= f�a�⊗ g�b� for all a ∈ A1,

b ∈ B1 and f∧2�a∧b�= f�a�∧f�b� for all a�b ∈ A1.

3.2 Commutators and nilpotent groups

Let G be a group and let x� y ∈ G. The commutator 	x� y
 of x and y is

defined by 	x� y
= x−1y−1xy. For x� y� z ∈G, we define 	x� y� z
= 		x� y
� z
.

Throughout this section, we will write xy to mean y−1xy.

Lemma 3.1 Let G be a group.

(1) For all x� y ∈G,

	x� y
= 	y� x
−1� (3.1)
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3.2 Commutators and nilpotent groups 13

(2) For all x� y� z ∈G,

	xy� z
= 	x� z
y	y� z
= 	x� z
	x� z� y
	y� z
� (3.2)

	x� yz
= 	x� z
	x� y
z = 	x� z
	x� y
	x� y� z
� (3.3)

(3) For all x� y� z ∈G,

	x� y−1� z
y	y� z−1� x
z	z� x−1� y
x = 1� (3.4)

The proof of this lemma is easy: just use the definition of a commutator to

express each side of the above equalities as a product of x� y� z and their

inverses.

Corollary 3.2 Let G be a group.

(1) For all x� y� z ∈G,

	x−1� y
=
(

	x� y
−1
)x−1

= 	x� y� x−1
−1	x� y
−1� (3.5)

	x� y−1
=
(

	x� y
−1
)y−1

= 	x� y� y−1
−1	x� y
−1� (3.6)

(2) For all x� y� z ∈G,

	x� y� z
=
(

	z� x−1� y−1
−1
)xy (

	y−1� z−1� x
−1
)zy

� (3.7)

Proof: The corollary follows from Lemma 3.1 by making the appropriate

substitutions. To derive (3.5), replace y by x−1 and z by y in (3.2). For (3.6),

replace z by y−1 in (3.3). To derive (3.7), replace y by y−1 in (3.4).

Lemma 3.3 Let G be a group. Let x� y ∈ G. Suppose that 	y� x
 commutes

with both x and y. Then for all positive integers n

	y� xn
= 	yn� x
= 	y� x
n� (3.8)

�xy�n = xnyn	y� x

1
2 n�n−1�� (3.9)

Proof: The equality (3.8) follows by induction on n, using (3.2) and (3.3) in

the inductive step. To establish (3.9), use the fact that yix = xyi	yi� x
.

We will now consider a collection of results related to nilpotency of groups.

Let H and K be subgroups of a group G. Then 	H�K
 is defined to be the

subgroup generated by all elements of the form 	h� k
 where h ∈ H and

k ∈K. Note that 	H�K
= 	K�H
, by Equation (3.1). The subgroup 	H�K�L


is defined by 	H�K�L
 = 		H�K
�L
. The following lemma, known as the

Three Subgroup Lemma, is often useful.
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14 Preliminaries

Lemma 3.4 Let K, L and M be subgroups of a group G. Then 	K�L�M
 �

	M�K�L
	L�M�K
 whenever 	M�K�L
 and 	L�M�K
 are normal subgroups

of G.

Proof: Suppose that 	M�K�L
 and 	L�M�K
 are normal subgroups of G.

The subgroup 	K�L�M
 is generated by elements of the form 	g�h
 where

g ∈ 	K�L
 and h ∈M . We may express g as a product of commutators of the

form 	g′� h′
 where g′ ∈K and h′ ∈ L, and then use Equations (3.2) and (3.3)

to express 	g�h
 as a product of conjugates of elements of the form 	x� y� z


where x ∈ K, y ∈ L and z ∈ M . But (3.7) expresses 	x� y� z
 as a product

of a conjugate of an element of 	M�K�L
 and a conjugate of an element

of 	L�M�K
. Since 	M�K�L
 and 	L�M�K
 are normal, we find that each

generator of 	K�L�M
 lies in 	M�K�L
	L�M�K
, so the lemma follows.

The lower central seriesG1�G2�G3� � � � of a groupG is defined byG1 =G

and Gi+1 = 	Gi�G
 for every positive integer i. From now on, we will always

use Gi to denote the ith term of the lower central series of G. It is not difficult

to see, using the definition of the lower central series, that the subgroups Gi

are characteristic subgroups of G. Clearly Gi/Gi+1 is central in G/Gi+1. For

all normal subgroups N of G, we have that �G/N�i = �GiN�/N . Moreover, if

H is a subgroup of G then Hi is a subgroup of Gi for all positive integers i.

Proposition 3.5 Let G be a group. Let A=G/G2 =G/G′ and Ai =Gi/Gi+1.

Then A2 is a homomorphic image of A∧2 and Ai+1 is a homomorphic image

of Ai⊗A for all i � 1.

Proof: It follows immediately from Lemma 3.1 that the map A×A→ A2,

�aG′� bG′� �→ 	a� b
G3 is well-defined and bilinear. It is also alternating since

	a�a
= 1 for all a ∈G. Therefore there is a homomorphism A∧2 → A2 such

that aG′ ∧ bG′ �→ 	a� b
G3 for all a�b ∈ G. This is surjective since G2 is

generated by the commutators 	a� b
 for a�b ∈ G, and therefore A2 is a

homomorphic image of A∧2. The proof that Ai+1 is a homomorphic image of

Ai⊗A for all i � 1 is similar and we omit it.

Proposition 3.6 Let G be a group. For all positive integers i and j, we have

that 	Gi�Gj
 � Gi+j .

Proof: We use induction on j. The case when j = 1 follows by definition of

the lower central series. Assume that j > 1 and that 	Gi�Gj−1
 is a subgroup

ofGi+j−1 for any groupG and any i� 0. We prove that 	Gi�Gj
 is a subgroup

of Gi+j as follows.
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