ESSENTIALS OF MICRO- AND NANOFLUIDICS

This book introduces students to the basic physical principles needed to analyze fluid flow in micro- and nanosize devices. This is the first book to unify the thermal sciences with electrostatics, electrokinetics, and colloid science; electrochemistry; and molecular biology. The author discusses key concepts and principles, such as the essentials of viscous flows, electrochemistry, heat and mass transfer phenomena, elements of molecular and cell biology, and much more. This textbook presents state-of-the-art analytical and computational approaches to problems in all these areas, especially in electrokinetic flows, and gives examples of the use of these disciplines to design devices used for rapid molecular analysis, biochemical sensing, drug delivery, DNA analysis, the design of an artificial kidney, and other transport phenomena. This textbook includes exercise problems, modern examples of the applications of these sciences, and a solutions manual available to qualified instructors.

A. Terrence Conlisk is Professor of mechanical and aerospace engineering at The Ohio State University. He is an internationally recognized expert in the areas of microand nanofluidics, helicopter aerodynamics, and complex flows driven by vortices. He is the author of numerous publications and hundreds of technical presentations and seminars delivered throughout the world. After his PhD thesis (Purdue, 1978) on the prediction of the fluid dynamics and separation of isotopes in a gas centrifuge, he began his work on various aspects of the dynamics of two- and three-dimensional vortices, with a focus on helicopter aerodynamics. Since 1999, he has been involved in modeling ionic and biomolecular transport through micro- and nanochannels for the design of devices used for rapid molecular analysis, sensing, drug delivery, and other applications. Professor Conlisk's wide spectrum of research interests makes him uniquely qualified to write on the thoroughly interdisciplinary fields of microand nanofluidics.

ESSENTIALS OF MICRO-AND NANOFLUIDICS

With Applications to the Biological and Chemical Sciences

A. Terrence Conlisk

The Ohio State University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521881685

© A. Terrence Conlisk 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Conlisk, A. Terrence, 1950–
Essentials of micro- and nanofluidics : with applications to the biological and chemical sciences /
A. Terrence Conlisk.
p. ; cm.
Includes bibliographical references and index.
ISBN 978-0-521-88168-5 (hardback)
I. Title.
[DNLM: 1. Thermodynamics. 2. Biomedical Technology. 3. Hydrodynamics.
4. Micro-Electrical-Mechanical Systems. 5. Nanostructures – therapeutic use. 6. Static Electricity.
QU 34]
572'.436-dc23 2011033658

ISBN 978-0-521-88168-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To my mother and father, Ginny and Terry, who first taught me the value of education.

To my brother and sisters, Virginia, Bill, Mary, and Elizabeth for friendship, love and support, and the many good times that so few families experience.

And to my wife, Paulette, and children, Terry and Katie, for their love and understanding; and for putting up with me over these many years. Without you this book would not have been possible.

Contents

Preface

1 Ir	troduction and Overview	1
1.1	Micro- and nanofluidics	1
1.2	Some micro- and nanofluidic devices	3
1.3	What is it about the nanoscale?	7
1.4	Nanotechnology	11
1.5	What is a fluid?	13
1.6	Historical perspectives	14
	1.6.1 Fluid mechanics	15
	1.6.2 Heat and mass transfer	17
	1.6.3 Electrokinetic phenomena	19
1.7	The thermal sciences	20
1.8	Electrostatics	23
1.9	Electrolyte solutions	25
1.10	The electrical double layer	26
1.11	Colloidal systems	29
1.12	Molecular biology	32
1.13	The convergence of molecular biology and engineering	34
1.14	Design of micro- and nanofluidic devices	35
1.15	Unit systems	37
1.16	A word about notation	37
1.17	Chapter summary	38
2 P	reparatory Concepts	40
2.1	Introduction	40
2.2	Important constitutive laws	41
2.3	Determining transport properties	45
	2.3.1 Viscosity	45
	2.3.2 Diffusion coefficient	48
	2.3.3 Thermal conductivity	52

vii

Contents		
	2.3.4 Electrical permittivity	54
	2.3.5 Surface tension and wettability	55
2.4	Classification of fluid flows	59
2.5	Elements of thermodynamics	62
2.6	The nature of frictional losses in channels and pipes	68
2.7	Chapter summary	70
3 Th	e Governing Equations for an Electrically Conducting Fluid	74
3.1	Introduction	74
3.2	The continuum approximation and its limitations	75
3.3	Kinematics	77
3.4	Surface and body forces	83
3.5	The continuity equation	87
3.6	The Navier–Stokes equations	88
3.7	Mass transport	93
	3.7.1 Definitions	93
	3.7.2 Governing equation	97
3.8	Electrostatics	100
3.9	Energy transport	102
3.10	Two-dimensional, steady, and incompressible flow	106
3.11	Boundary and initial conditions	106
	3.11.1 Velocity boundary conditions	107
	3.11.2 Mass transfer boundary conditions	113
	3.11.3 Electrostatics boundary conditions	114
	3.11.4 Temperature boundary conditions	116
	3.11.5 Other boundary conditions	117
3.12	Dimensional analysis and similarity	117
3.13	Fluid, electrostatics, and heat and mass transfer analogies	123
	3.13.1 Mole fraction and temperature similarity	123
	3.13.2 Velocity and electrical potential similarity	125
3.14	Other stress-strain relationships	126
3.15	Mathematical character of partial differential equations	128
	3.15.1 Introduction	128
	3.15.2 Mathematical classification of second-order partial	
	differential equations	128
	3.15.3 Characteristic curves	129
	3.15.4 Boundary and initial conditions	130
	3.15.5 Classification of the governing equations of micro-	
	and nanofluidics	131
3.16	Well-posed problems	131
3.17	The role of fabrication, experiments, and theory in micro-	
	and nanofluidics	132
3.18	Chapter summary	134

ix	Conte	nts	
	4 Th	ne Essentials of Viscous Flow	140
	4.1	Introduction	140
	4.2	The structure of flow in a pipe or channel	141
	4.3	Poiseuille flow in a pipe or channel	143
	4.4	The velocity in slip flow	146
		4.4.1 Gases	146
		4.4.2 Liquids	147
	4.5	Flow in a thin film under gravity	148
	4.6	The boundary layer on a flat plate	150
	4.7	Fully developed suction flows	155
	4.8	Developing suction flows	158
	4.9	The lubrication approximation	162
	4.10	A surface tension-driven flow	166
	4.11	Stokes flow past a sphere	169
	4.12	Sedimentation of a solid particle	172
	4.13	A simple model for blood flow	173
	4.14	Chapter summary	174
	5 He	eat and Mass Transfer Phenomena in Channels and Tubes	180
	5.1	Introduction	180
	5.2	One-dimensional temperature distributions in channel flow	181
	5.3	Thermal and mass transfer entrance regions	184
	5.4	The temperature distribution in fully developed tube flow	189
	5.5	The Graetz problem for a channel	189
	5.6	Mass transfer in thin films	192
	5.7	Classical Taylor-Aris dispersion	194
	5.8	The stochastic nature of diffusion: Brownian motion	199
	5.9	Unsteady mass transport in uncharged membranes	201
	5.10	Temperature and concentration boundary layers	205
	5.11	Chapter summary	207
	<u>6 In</u>	troduction to Electrostatics	213
	6.1	Introduction	213
	6.2	Coulomb's law: The electric field	214
	6.3	The electric field due to an isolated large flat plate	216
	6.4	Gauss's law	218
	6.5	The electric potential	219
	6.6	The electric dipole and polar molecules	221
	6.7	Poisson's equation	222
	6.8	Current and current density	225
	6.9	Maxwell's equations	226
	6.10	Chapter summary	227

Conte	nıs	
7 EI	ements of Electrochemistry and the Electrical Double Layer	230
7.1	Introduction	230
7.2	The structure of water and ionic species	231
7.3	Chemical bonds in biology and chemistry	233
7.4	Hydration of ions	234
7.5	Chemical potential	236
7.6	The Gibbs function and chemical equilibrium	240
7.7	Electrochemical potential	243
7.8	Acids, bases, and electrolytes	244
7.9	Site-binding models of the silica surface	246
7.10	Polymer surfaces	249
7.11	Qualitative description of the electrical double layer	251
7.12	Electrolyte and potential distribution in the electrical double layer	253
7.13	Multivalent asymmetric mixtures	259
7.14	The ζ potential and surface charge density: Putting it all together	260
	7.14.1 The classical liquid-side view for a symmetric electrolyte	260
	7.14.2 The solid-side view and connection to the liquid side	262
7.15	The electrical double layer on a cylinder	265
7.16	The electrical double layer on a sphere	266
7.17	Electrical conductivity in an electrolyte solution	267
7.18	Semi-permeable membranes	270
7.19	The Derjaguin approximation	275
7.20	Chapter summary	278
8 El	ements of Molecular and Cell Biology	283
8.1	Introduction	283
8.2	Nucleic acids and polysaccharides	285
8.3	Proteins	287
	8.3.1 Protein function	288
	8.3.2 Protein structure	289
	8.3.3 Some common proteins	292
	8.3.4 Few polypeptide chains are useful	295
8.4	Protein binding	295
8.5	Cells	298
8.6	The cell membrane	300
8.7	Membrane transport and ion channels	301
8.8	Chapter summary	304
9 EI	ectrokinetic Phenomena	306
9.1	Introduction	306
9.2	Electro-osmosis	307
	9.2.1 The relationship between velocity and potential	307
	9.2.2 The Debye–Hückel approximation reviewed	312

xi	Contents
----	----------

	924	Asymptotic solution for binary electrolytes of arbitrary	
	<i>).</i> 2.т	valence	313
	925	Walls with different ζ notentials	316
	926	Species velocities in electro-osmotic flow: Electromigration	318
	0.2.7	Current and current density in electro osmotic flow	320
	9.2.7	Electro espectic flow in an enpulue	220
	9.2.0	Electro-osmotic flow in an annulus	224
	9.2.9	Dispersion in electro espectie flow	224
0.2	9.2.10 Electro	Dispersion in electro-osmotic now	221
9.5	0.2.1	Introduction	221
	9.5.1	Electronhoratic mobility	222
	9.3.2	Lectrophoretic mobility	332 224
	9.3.3	The full new linear methods	224
0.4	9.3.4	ine retentiel	220
9.4	Stream		241
9.5	Sedim		341
9.6	Joule h	neating	342
9.7	Chapte	er summary	344
10 E	ssentia	al Numerical Methods	348
10.1	Introdu	action	348
10.2	Types	of errors	350
10.3	Taylor	series	351
10.4	Zeros	of functions	353
	10.4.1	Numerical methods	353
	10.4.2	Polynomials	358
10.5	Interpo	olation	359
	10.5.1	Linear interpolation	360
	10.5.2	The difference table	361
	10.5.3	Lagrangian polynomial interpolation	362
	10.5.4	Newton interpolation formulas	363
	10.5.5	Matlab interpolation functions	365
	10.5.6	Cubic spline interpolation	366
10.6	Curve	fitting	370
10.7	Numer	rical differentiation	373
	10.7.1	Derivatives from Taylor series	373
	10.7.2	A more accurate forward formula for the first derivative	375
10.8	Numer	rical integration	376
	10.8.1	The trapezoidal rule	377
	10.8.2	Simpson's rules	380
	10.8.3	Matlab integration functions	382
	10.8.4	The indefinite integral	382
	10.8.5	Other formulas	383
	10.8.6	Grid (mesh) size	383
	10.8.7	Singularities	384

xii	Content	S		
	10.9	Solution	n of linear systems	386
	10.9	10.9.1	Solving sets of linear equations in Matlab	389
		10.9.2	Iterative solution to linear systems	390
		10.9.3	Tridiagonal systems	393
		10.9.4	Ill-conditioning and stability	396
	10.10	Solution	n of boundary value problems	398
		10.10.1	Introduction	398
		10.10.2	Linear equations	399
		10.10.3	Nonlinear equations	403
		10.10.4	Systems of ordinary differential equations	405
		10.10.5	Derivative boundary conditions	407
		10.10.6	Convergence tests and Richardson extrapolation	409
		10.10.7	Solving boundary value problems with Matlab functions	410
	10.11	Solution	n of initial value problems	411
		10.11.1	Introduction	411
		10.11.2	Taylor series method	413
		10.11.3	Euler methods	414
		10.11.4	Runge-Kutta methods	416
		10.11.5	Adams–Moulton methods	419
		10.11.6	Symplectic integrators	419
		10.11.7	Stiff equations and stability	424
		10.11.8	Solving initial value problems using Matlab functions	428
	10.12	Numeri	cal solution of the PNP system	428
	10.13	Partial d	lifferential equations	430
		10.13.1	Elliptic equations	431
		10.13.2	Parabolic equations	432
		10.13.3	The Matlab PDE solver	435
	10.14	Verifica	tion and validation of numerical solutions	435
	10.15	Chapter	summary	438
	11 M	olecular	Simulations	447
	11.1	Introduc	ction	447
	11.2	The mo	lecular world	449
	11.3	Ensemb	les	451
	11.4	The pot	entials	451
	11.5	Using th	ne Lennard–Jones potential	453
	11.6	Molecu	lar models for water	456
	11.7	Periodic	boundary conditions	457
	11.8	The Ew	ald sum	460
	11.9	Numeri	cal issues	463
		11.9.1	Time integration	463
		11.9.2	Truncation of interactions	464
		11.9.3	Boundary conditions	465

Conte	nts	
11.1	0 Postprocessing	465
11.1	1 Nonequilibrium molecular dynamics	467
	11.11.1 Introduction	467
	11.11.2 Poiseuille flow	468
	11.11.3 Electro-osmotic flow	469
11.1	2 Molecular dynamics packages	471
	11.12.1 Introduction	471
	11.12.2 What MD/NEMD simulators do	471
11.1	3 Summary	472
12	Applications	475
12.1	Introduction	475
12.2	DNA transport	476
	12.2.1 How does DNA move?	477
	12.2.2 Mathematical model	479
	12.2.3 Results	481
	12.2.4 DNA current	482
	12.2.5 Comparison with experiment	483
12.3	Development of an artificial kidney	484
	12.3.1 Background	484
	12.3.2 The nanopore membrane for filtration	486
	12.3.3 Hindered transport	487
12.4	Biochemical sensing	491
	12.4.1 Introduction	491
	12.4.2 What is a biosensor?	492
	12.4.3 Receptor-based classification of biosensors	493
	12.4.4 Transducer-based classification of biosensors	494
	12.4.5 Evaluation of biosensor performance	495
	12.4.6 Nanopores and nanopore membranes for biochemical	
	sensing	496
12.5	Chapter summary	498
App	endix A Matched Asymptotic Expansions	501
A.1	Introduction	501
A.2	Terminology	501
A.3	Asymptotic sequences and expansions	502
A.4	Regular perturbations	503
A.5	Singular perturbations	504
App	endix B Vector Operations in Curvilinear Coordinates	508
B.1	Cylindrical coordinates	508
B.2	Spherical coordinates	508
B.3	Rectangular coordinates	509

xiv	Contents
	Contonto

App	510	
C.1	Fluid dynamics and micro- and nanofluidics	510
C.2	General nanotechnology	511
C.3	Wikipedia	511
App	512	
Bibl	iography	515
Inde	533	

Preface

The book is meant to be used as a text for an interdisciplinary course in microand nanofluidics that includes the study of ionic and biomolecular transport at the advanced undergraduate and beginning graduate levels. The rationale for this book is that most, if not all, problems in the twenty-first century are interdisciplinary in nature, yet no textbooks address the topics required for investigating problems that cut across disciplines in engineering, the physical sciences, and mathematics. The closest approach to this concept is in the several texts that address the thermal sciences at a strictly undergraduate level (Moran *et al.*, 2003). Another set of texts addresses problems in applied mathematics applicable to engineering problems generally at the advanced graduate level (Bird *et al.*, 2002). Still another set of texts under the general area of biophysics links the mathematics and biological sciences, again most often at the advanced graduate level (Murray, 2001, 2003). In contrast, this book aims at the advanced undergraduate and beginning graduate student pool.

A number of other related books are on the market, but all are monographs directed at the senior graduate student (Karniadakis et al., 2005; Masliyah and Bhattacharjee, 2006; Tabeling, 2005; Liou & Fang, 2006; Nguyen & Wereley, 2002; Bruus, 2008; Kirby, 2010; Chang and Yeo, 2010). All these texts emphasize the unique features of transport at the micro- and nanoscale, of which there are many. In contrast, while the reader will be exposed to many of these unique features, it is my contention that transport at the micro- and nanoscale actually unifies all the thermal sciences, fluid dynamics, heat and mass transfer, and thermodynamics; it also, sometimes by necessity, unifies the thermal sciences with electrostatics, electrokinetics, and colloid science; electrochemistry; and molecular biology. This book is the first to show how all these fields are interrelated at the micro- and nanoscale and show how it is essential for a researcher, student, or faculty to acquire an understanding at some level of all these fields. The fundamental concepts within these fields are supported by addressing the continuum and molecular computation techniques that may be employed to solve these problems.

The objective of this book is to introduce students in the physical and mathematical sciences and engineering to the basic physical principles appropriate to analyzing fluid flow in micro- and nanoscale devices. The book will emphasize

xvi Preface

the fundamental principles involved in the formulation and solution of problems in fluid mechanics and mass transfer for pressure-driven and electrically driven motion of biofluids and electrolyte solutions at the micro- and nanoscale. It will introduce the student to a variety of subject matter spanning the physical sciences, thermal engineering, and applied numerical methods to enable the student to solve problems of an interdisciplinary nature. On completion of the book, the student should be able to extract from a raw physical situation the essential principles from which a useful model for thermal, ionic, and biomolecular transport may be developed.

The primary target audience of this text is the advanced undergraduate and beginning graduate engineering student; however, it is hoped that the book will be accessible to some advanced undergraduate students in physics and the chemical and biological sciences with the appropriate mathematics background.

In writing this book, I have been greatly influenced by the style and format of White (2006), which is aimed at a similar audience and contains exercises at the end of each chapter. White uses canonical problems in the field to illustrate basic fluid dynamic phenomena, and I have followed this style, expanding into heat and mass transfer, electrostatics, electrochemistry, electrokinetics, and molecular biology.

As with any book project, many people have contributed. I am thankful for Dr. David Mott, who read, with a keen eye, an advanced draft of the book, and to Professor Shaurya Prakash, who read a nearly final version of the manuscript. I am very thankful to Professor Susan Olesik, who read an early draft of the electrochemistry chapter, and to Dr. Arfaan Rampersaud, who reviewed the chapter on molecular biology. I am also thankful to Professor Minami Yoda, with whom I have worked over the past seven or so years. We have cut our teeth on microand nanofluidics together over that time. I am grateful to my colleagues Professor Shuvo Roy, Dr. Bill Fissell, and Professor Andrew Zydney, who introduced me to the fluid dynamics of the kidney. Professor Sherwin Singer read the molecular simulation chapter and made many suggestions and corrections that have been incorporated. Dr. Harvey Zambrano also helped me greatly with that chapter. I am also grateful to Professors Narayan Aluru and Ron Larson and Dr. Dirk Gillespie for their contributions.

And thanks to those researchers who have contributed the boxed vignettes that are about their work or some aspect of micro- and nanofluidics for which I did not have room. They are acknowledged at the end of the presentation.

I am particularly grateful for all the discussions I have had with faculty at the nanoscale science and engineering center, called the Center for the Affordable Nanoengineering of Polymeric Biomedical Devices (CANPBD).

Thanks go to my present and former students, Prashanth Ramesh, Ankan Kumar, Pradeep Gnanaprakasam, and Devi Pulla, some of whose work appears in the book; to Mike Stubblebine, who helped catalog the figures; and to Professor Subhra Datta and Dr. Lei Chen, who both have done much in the way of research that appears in this book. Subhra wrote first drafts of several sections, and Lei produced many of the figures that appear in the book. Both have

xvii Preface

read the manuscript, portions more than once. Thanks also to Dan Hoying, an undergraduate physics student who read a nearly final version of the book, and Zhizi Peng and Cong Zhang, who produced several figures; Cong was a significant contributor to the solutions manual; and to Harvey Zambrano who helped me write a section in the molecular dynamics chapter; and to Kevin Disotell who read the final proofs; and to Jim Marcicki who taught me about batteries.

I am grateful to my "Introduction to Micro- and Nanofluidics" class in the Autumn quarter of 2010, who used the book and had many suggestions that were heartily received and implemented. Thanks also go to graduate student Martin Kearney-Fisher, who read the entire manuscript and gave me pages of corrections and suggestions, almost all of which I have incorporated. Martin's suggestions have made the manuscript much better.

Thanks also to my editor, Peter Gordon, who kept me on task and made a number of suggestions on how to write the book, especially the early chapters. He also provided me with additional resources that allowed a more thorough treatment of this rapidly expanding field. And thanks go to Peggy Rote for her diligence in managing the production process.

If I have forgotten to thank someone, I apologize.

The book begins with an introduction and overview of micro- and nanofluidics in Chapter 1, followed by Chapter 2, "Preparatory Concepts." Chapter 2 is meant to unify concepts on two levels: discussing the fundamental roles of transport coefficients in fluid mechanics and heat and mass transfer and the relationship between thermodynamics, the equilibrium science, and heat transfer and fluid mechanics, the nonequilibrium thermal sciences. These two initial chapters are followed by a discussion of the governing equations and boundary conditions associated with micro- and nanofluidics. At the micro and nano levels, several new phenomena come into play:¹

- 1. Because of the large surface-to-volume ratio, the characteristics of surfaces play a major role in fluid and mass transport.
- 2. Classical means of transporting fluids, such as pressure drop, may not be possible.
- 3. Noncontinuum effects arise when the length scale associated with the fluid transport becomes less than 10 nm.

All these issues are discussed throughout the book, and the second point is the reason that electrokinetic transport methods become important.

The next three chapters cover the fundamentals of viscous flow, heat and mass transport, and electrostatics. While writing this book, I was astonished at how similar these fields are in the way of expressing basic transport phenomena. Many analogies between these three (or four, if mass transfer is considered separately) disciplines are discussed throughout.

¹We are speaking here primarily of liquid flows. Gas flows are treated extensively by Liou and Fang (2006) and Karniadakis *et al.* (2005).

xviii Preface

Following these three chapters are two chapters covering the fundamentals of electrochemistry and molecular and cell biology. These two chapters are meant to reintroduce engineering students to material they may have had in their first-year course work, although parts of each chapter are written at a higher level.

Following these two chapters, electrokinetic phenomena are discussed in Chapter 9. The two most important of these phenomena, electro-osmosis and electrophoresis, are discussed in great detail, and canonical problems of electroosmosis are described in the spirit of the style of White (2006).

The next chapter covers the basics of numerical methods, from zero finding to the numerical solution of partial differential equations. The primary role of this chapter is to introduce the student to basic numerical methods that can be used to solve problems in micro- and nanofluidics. For some engineering students, this chapter is likely to be a review; however, physics and chemistry students may find this chapter valuable.

Next, the fundamental concepts involved in performing molecular simulations, specifically equilibrium molecular dynamics and nonequilibrium molecular dynamics, are presented along with examples of Poiseuille flow and electroosmotic flow. It is surprising how different the philosophy and expectations of what is achievable in a simulation on the molecular level are from the continuum perspective. The reader need only compare the presentation of the numerical methods in this chapter with those presented in the previous chapter to see this. Note the differences in how the continuum and molecular results are verified and validated.

The book ends with a chapter devoted exclusively to applications. Applications are too numerous to mention, but I have chosen those applications with which I am familiar. Thus a simple model for DNA transport is presented, along with a section on biochemical sensing and the fluid mechanics and mass transfer involved in the design of a renal assist device.

Each chapter is followed by a set of exercises that range from simple calculations, such as determining the Debye length for a given set of parameters, to finding the solution of viscous flow through an annulus to the calculation of the numerical solution of the Poisson equation to completely open-ended exercises that require a written report. The exercises after Chapter 12 are all open ended. In these open-ended exercises, other applications not included in the book are introduced such as the use of nanoparticles to treat cancer. These exercises have been designed to make maximum use of the Web and emphasize the development of the technical writing skill of the student. A short introduction to technical writing is available from the author, on request.

Several appendices, giving a short introduction to the method of matched asymptotic expansions, the governing equations in cylindrical and spherical coordinates, a list of interesting and useful Web sites, and a prospective syllabus, are also included. Writing this book has been a tremendous learning experience, and I have bought several chemistry and biology dictionaries. I have also acquired more biology and chemistry textbooks in six years than I have in my entire life

xix Preface

(I have Cambridge University Press to thank for some of these). While all this about learning from books is true, I cannot tell you how many times I have been to Wikipedia or used the other Web sites that appear in Appendix B.

Much of the material in the book is gleaned from research papers, from those that are very old and classical to those published very recently. I have tried to be judicious in my choice of references, and to those whom I have overlooked, I apologize. I would be happy to be informed of the omission of a major paper that would contribute to a future manuscript. This has been quite a task, and I and my students, and several faculty, have read parts of the book, as noted earlier. Nevertheless, errors are inevitable, and I would be grateful if I could be informed of any errors that do appear in the book. For these errors, I take full responsibility.

The emphasis in this book has been the interdisciplinary nature of micro- and nanofluidics. This book is me speaking about what I think is important to know in micro- and nanofluidics. Thus I take responsibility for those many topics that are left out. For this, I do not apologize but merely say that tough choices were made. I hope that this book will be read by students with diverse backgrounds and that they will benefit from what I hope is a lucid presentation.