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1 Introduction

If it were possible for geoloscientists and engineers to know the locations of oil and
gas, the locations and transmissivity of faults, the porosity, the permeability, and the
multi-phase flow properties such as relative permeability and capillary pressure at all
locations in a reservoir, it would be conceptually possible to develop a mathematical
model that could be used to predict the outcome of any action. The relationship of the
model variables, m, describing the system to observable variables or data, d, is denoted

gim) =d.

If the model variables are known, outcomes can be predicted, usually by running a
numerical reservoir simulator that solves a discretized approximation to a set of partial
differential equations. This is termed the forward problem.

Most oil and gas reservoirs are inconveniently buried beneath thousands of feet of
overburden. Direct observations of the reservoir are available only at well locations
that are often hundreds of meters apart. Indirect observations are typically made at
the surface, either at the well-head (production rates and pressures) or at distributed
locations (e.g. seismic). In the inverse problem, the observations are used to determine
the variables that describe the system. Real observations are contaminated with errors,
€, so the inverse problem is to “solve” the set of equations

dobs = g(m) + €

for the model variables, with the goal of making accurate predictions of future perfor-
mance.

1.1 The forward problem

In a forward problem, the physical properties of some system (system or model param-
eters) are known, and a deterministic method is available for calculating the response
or outcome of the system to a known stimulus. The physical properties are referred
to as system or model parameters. A typical forward problem is represented by a dif-
ferential equation with specified initial and/or boundary conditions. A simple example
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2 1 Introduction

of a forward problem of interest to petroleum engineers is the following steady-state
problem for a one-dimensional flow in a porous medium:

i k(x)A dp(x) _o, (1.1)
dx 7 dx

for0 < x < L, and

dp ___ar (1.2)
dx lx=L~  K(L)A

p0) = p. (1.3)

where A (cross sectional area to flow in cm?), i (viscosity in cp), g (flow rate in cm?/s),
and pressure p, (atm) are assumed to be constant. The length of the system in cm is
represented by L. The function k(x) represents the permeability field in Darcies. This
steady-state problem could describe linear flow in either a core or a reservoir. For this
forward problem, the model parameters, which are assumed to be known, are A, L, u,
and k(x). The stimulus for the system (reservoir or core) is provided by prescribing
q (the flow rate out the right-hand end) and p(0) (the pressure at the left-hand end),
for example, by the boundary conditions, which are assumed to be known exactly. The
system output or response is the pressure field, which can be determined by solving the
boundary-value problem. The solution of this steady-state boundary-value problem is
given by

X

qm 1

p(x) = pe — 7/@615- (1.4)
0

If the emphasis is on the relationship between the permeability field and the pressure,

we might formally write the relationship between pressure, p;, at a location, x;, and the

permeability field as p; = g; (k). This expression indicates that the function g; specifies

the relation between the permeability field and pressure at the point x;.

Forward problems of interest to us can usually be represented by a differential equa-
tion or system of differential equations together with initial and/or boundary conditions.
Most such forward problems are well posed, or can be made to be well posed by impos-
ing natural physical constraints on the coefficients of the differential equation(s) and
the auxiliary conditions. Here, auxiliary conditions refer to the initial and boundary
conditions. A boundary-value problem, or initial boundary-value problem, is said to
be well posed in the sense of Hadamard [7], if the following three criteria are satisfied:
(a) the problem has a solution,

(b) the solution is unique, and

(c) the solution is a continuous function of the problem data.

It is important to note that the problem data include the functions defining the initial
and boundary conditions and the coefficients in the differential equation. Thus, for the
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3 1.2 The inverse problem

boundary-value problem of Egs. (1.1)—(1.3), the problem data refers to p,, guu/k(L)A
and k(x).

If k(x) were zero in some part of the core, then we can not obtain steady-state flow
through the core and the pressure solution of Eq. (1.4) is not defined, i.e. the boundary-
value problem of Egs. (1.1)—(1.3) does not have a solution for ¢ > 0. However, if we
impose the restriction that k(x) > § > 0 for any arbitrarily small § then the boundary-
value problem is well posed.

If a problem is not well posed, it is said to be ill posed. At one time, most mathemati-
cians believed that ill-posed problems were incorrectly formulated and nonphysical.
We know now that this is incorrect and that a great deal of useful information can be
obtained from ill-posed problems. If this were not so, there would be little reason to
study inverse problems, as almost all inverse problems are ill posed.

1.2  The inverse problem

In its most general form, an inverse problem refers to the determination of the plausible
physical properties of the system, or information about these properties, given the
observed response of the system to some stimulus. The observed response will be
referred to as observed data. For example, for the steady-state problem considered
above, an inverse problem could represent the problem of determining the permeability
field from pressure data measured at points in the interval [0, L]. Note that measured
or observed data is different from the problem data introduced in the definition of a
well-posed problem.

In both forward and inverse problems, the physical system is characterized by a set of
model parameters, where here, a model parameter is allowed to be either a function or
a scalar. For the steady single-phase flow problem, the model parameters can be chosen
as the inverse permeability (m(x) = 1/k(x)), fluid viscosity, cross sectional area A and
length L. Note, however, the model parameters could also be chosen as (k(x)A)/u
and L. If we were to attempt to solve Eq. (1.1) numerically, we might discretize the
permeability function, and choose k; = k(x;) for a limited number of integers i as
our parameters. The choice of model parameters is referred to as a parameterization
of the physical system. Observable parameters refer to those that can be observed or
measured, and will simply be referred to as observed data. For the above steady-state
problem, forcing fluid to flow through the porous medium at the specified rate g provides
the stimulus and measured values of pressure at certain locations that represent observed
data. Pressure can be measured only at a well location, or in the case where the system
represents a core, at locations where pressure transducers are situated. Although the
relation between observed data and model parameters is often referred to as the model,
we will refer to this relationship as the (assumed) theoretical model, because we wish
to refer to any feasible set of specific model parameters as a model. In the continuous
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4 1 Introduction

inverse problem, the model or model parameters may represent a function or set of
functions rather than simply a discrete set of parameters. For the steady-state problem of
Egs. (1.1)—(1.3), the boundary-value problem implicitly defines the theoretical model
with the explicit relation between observable parameters and the model or model
parameters given by Eq. (1.4).

The inverse problem is almost never well posed. In the cases of most interest to
petroleum reservoir engineers and hydrogeologists, an infinite number of equally good
solutions exist. For the steady-state problem, the general inverse problem represents
the determination of information about model parameters (e.g. 1/k(x), i, A, and L)
from pressure measurements. As pressure measurements are subject to noise, measured
pressure data will not, in general, be exact. The assumed theoretical model may also not
be exact. For the example problem considered earlier, the theoretical model assumes
constant viscosity and steady-state flow. If these assumptions are invalid, then we are
using an approximate theoretical model and these modeling errors should be accounted
for when generating inverse solutions.

For now, we state the general inverse problem as follows: determine plausible values
of model parameters given inexact (uncertain) data and an assumed theoretical model
relating the observed data to the model. For problems of interest to petroleum engineers,
the theoretical model always represents an approximation to the true physical relation
between physical and/or geometric properties and data. Left unsaid at this point is what
is meant by plausible values (solutions) of the inverse problems. A plausible solution
must of course be consistent with the observed data and physical constraints (perme-
ability and porosity can not be negative), but for problems of interest in petroleum
reservoir characterization, there will normally be an infinite number of models satis-
fying this criterion. Do we want to choose just one estimate? If so, which one? Do we
want to determine several solutions? If so, how, why, and which ones? As readers will
see, we have a very definite philosophical approach to inverse problems, one that is
grounded in a Bayesian viewpoint of probability and assumes that prior information
on model parameters is available. This prior information could be as simple as a geolo-
gist’s statement that he or she believes that permeability is 200 md plus or minus 50. To
obtain a mathematically tractable inverse problem, the prior information will always
be encapsulated in a prior probability density function. Our general philosophy of the
inverse problem can then be stated as follows: given prior information on some model
parameters, inexact measurements of some observable parameters, and an uncertain
relation between the data and the model parameters, how should one modify the prior
probability density function (PDF) to include the information provided by the inexact
measurements? The modified PDF is referred to as the a posteriori probability density
function. In a sense, the construction of the a posteriori PDF represents the solution to
the inverse problem. However, in a practical sense, one wishes to construct an estimate
of the model (often, the maximum a posteriori estimate) or realizations of the model
by sampling the a posteriori PDF. The process of constructing a particular estimate
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5 1.2 The inverse problem

of the model will be referred to as estimation; the process of constructing a suite of

realizations will be referred to as simulation.

Here, our emphasis is on estimating and simulating permeability and porosity fields.
Our approach to the application of inverse problem theory to petroleum reservoir
characterization problems may be summarized as follows.

1. Postulate a prior PDF for the model parameters from analog fields, core, logs, and
seismic data. We will often assume that the prior PDF is multi-variate Gaussian, in
which case the means and the covariance fully define the stochastic model.

2. Formulate the a posteriori PDF conditioned to all observed data. Data could include
both production data and “hard” data (direct measurements of the variables to be
estimated) for the rock property fields.

3. Construct a suite of realizations of the rock property fields by sampling the a
posteriori PDF.

4. Generate a reservoir performance prediction under proposed operating conditions
for each realization. This step is done using a reservoir simulator.

5. Construct statistics (e.g. histogram, mean, variance) from the set of predicted out-
comes for each performance variable (e.g. cumulative oil production, water—oil
ratio, breakthrough time). Determine the uncertainty in predicted performance from
the statistics.

In our view, steps 2 and 3 are both vital, albeit difficult, and most of our research effort
has focussed either on step 3 or on issues related to computational efficiency including
the development of methods to efficiently generate sensitivity coefficients. Note that
if one simply generates a set of rock property fields consistent with all observed data,
but the set does not characterize the true uncertainty in the rock property fields (in
our language, does not represent a correct sampling of the a posteriori PDF), steps 4
and 5 can not be expected to yield a meaningful characterization of the uncertainty in
predicted reservoir performance.
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]
2 Examples of inverse problems

The inverse problems examples presented in this chapter illustrate the concepts of data,
model, uniqueness, and sensitivity. Each of these concepts will be developed in much
greater depth in subsequent chapters. The examples are all quite simple to describe and
understand, but several are difficult to solve.

2.1  Density of the Earth

The mass, M, and moment of inertia, /, of the Earth are related to the density distri-
bution, p(r), (assuming mass density is only a function of radius) by the following

formulas:
M = 4x / r2p(r)dr, 2.1)
0
8r [ 4
I =— rp(r)dr, 2.2)
3 Jo

where a is the radius of the Earth. If the true density is known for all r, then it is easy
to compute the mass and the moment of inertia. In reality, the mass and moment of
inertia can be estimated from measurements of the precession of the axis of rotation
and the gravitational constant; the density distribution must be estimated. The data
vector consists of the “observed” mass and moment of inertia of the Earth:

d=[M 1" (2.3)

and the model variable, m = p(r), is the density. (Throughout this book, the superscript
T on a matrix or vector denotes its transpose.) The relationship between the model
variable and the theoretical data is

a 4 2
d= / T ar. 24)
o | 37

Note that, in this example, the dimension of the model to be estimated is infinite,
while the dimension of the data space is just 2. Prior information might be a lower
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7 2.2 Acoustic tomography
I
T, Ts Ts
n 15} 13 T
s 15 1o T,
17 13 ) I3
Figure 2.1. The array of nine blocks with traveltime parameters, #;, and the six measurement
locations for total traveltime, 7;, across the array.
bound on the density. A loose lower bound would be that density is positive. A rea-
sonable lower bound with more information is that density is greater than or equal to
2250 kg/m>. Although it is easy to generate a model that fits the data exactly, unless
other information is available, the uncertainty in the estimated density at a point or a
radius is unbounded.
Note also that the theoretical relationship between the density and the data in this
example is only approximate as the Earth is not exactly spherical, and there is no
a priori reason to believe that the density is only a function of radius.
I

2.2  Acoustic tomography

One of the simplest examples that demonstrates the concepts of sensitivity, nonunique-
ness, and inconsistency is the problem of estimation of the spatial distribution of
acoustic slowness (1/velocity) from measurements of traveltime along several ray
paths through a solid body. For simplicity, we assume that the material properties are
uniform within each of the nine blocks (Fig. 2.1) and we only consider paths that are
orthogonal to the block boundaries so that refraction can be ignored and the paths
remain straight. If # denotes the acoustic slowness of a homogeneous block, and T
denotes the time required to travel a distance D within or across a block, then T =t D.
Consider a 3 x 3 array of blocks of various materials shown in Fig. 2.1. Each homo-
geneous block is 1 unit in width by 1 unit in height. Measurements of traveltime have
been made for each column and each row of blocks. If the slowness of the (1, 1) block
is t, the slowness of the (1, 2) block is #,, and the slowness of the (1, 3) block is 73,
then 71, the total traveltime for a sound wave to travel across the first row of blocks, is
givenby 71 = t; + t, + t3. Similar relations hold for the other rows and columns. If the
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8 2 Examples of inverse problems

measurements of traveltime are exact, the entire set of relations between measurements

and slowness in each block is
T'=t+H+t
h=1t+1t+1
Tz =1t;+1t5+ 19

Ii=t+u+1 (2.5)
Ts=t+t+1
To =tz + 16 + 1o.

Given measured values of 7;, i = 1,2, ..., 6, the inverse problem is to determine
information about the acoustic slownesses, t;, j = 1,2, ..., 9. More specifically, we
may wish to determine the set of all solutions of Eq. (2.6)

_t1_
— —_ t2

T 1 110 0 0 0 0 O ,

T 000111000t3

T3_000000111t4 26)

T4_100100100t5 ‘

Ts 010010010:
| T | 001001001t7

8
With the notation commonly used in this book, Eq. (2.6) is written as
d=Gm, 2.7
where the data, d, is the vector of traveltime measurements, i.e.
d=[T\ T, Ts s Tgl, (2.8)
the model, m, is the vector of slowness values given by
m=[n b 1" (2.9)

and the sensitivity matrix, G, is the matrix that relates the data to the model variables

and is given by

S O = O O -

S = O O O

-0 O O O =

SO O = O = O

S = O O = O

-0 O O = O

SO O = = O O

S = O = O O

-_ o O = O O

(2.10)
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9 2.2 Acoustic tomography

The reason for calling G the sensitivity matrix is easily understood by examining the
particular row of G associated with a particular measurement. Note that there are as
many rows as there are measurements. Each row has nine elements in this example,
one for each model variable. The element in the ith row and jth column of G gives the
“sensitivity” (07;/0¢;) of the ith measurement to a change in the jth model variable.
So, for example, the fourth measurement is only sensitive to #;, 74, and #;. As can
be seen easily from Eq. (2.5) or (2.6), 074/0t; =1 for j =1,4,7 and 074/0t; =0
otherwise. Note when 97;/9t; = 0, a change in the acoustic slowness ¢; will not affect
the value of the traveltime T;, thus we can find no information on the value of #; from
the measured value of T;.

When we want to visualize the sensitivity for a particular measurement, we often
display the row in a natural ordering, one that corresponds to the spatial distribution of
model parameters; see Fig. 2.1. Here, we let G; denote the ith row of G and display G,
0(0]0
as:| 1| 1| 1 |. This display is convenient as it indicates that the second traveltime
0/0]0
measurement only depends on the slowness values in the second row. Similarly, G4 can
1{0]0
be displayed as:| 1 | 0 | O |, which, when compared to Fig. 2.1 shows clearly that
11010
the fourth traveltime measurement is only sensitive to the slowness values of the first

column of blocks. Of course, when the models become very large, we will not display
all of the numbers. Instead we will use a shading scheme that shows the strength of the
sensitivity by the darkness of the grayscale.

Solutions
Suppose that the values of acoustic slowness are such that the exact measurement of
one-way traveltime in each of the columns and rows is equal to 6 units (i.e. T; = 6
for all i). Clearly, a homogeneous model for which the slowness of each block is 2
will satisfy this data exactly, i.e. with all ; =2 and all T; = 6, Eq. (2.6) is satisfied.
Similarly, it is easy to see that

m=[2 2 2 24+4b 2—b 2 2—b 2+b 2. (2.11)

is a solution of Eq. (2.6), for any real constant b, when all entries of the data vector are
equal to 6. A little examination shows that the following models also satisfy the data

exactly:
1123 -210| 8 24a | 2| 2—-a 24b | 2-b | 2
2122 216 2 2 2] 2 2-b | 2+b | 2|,
31201 10 10| —4 2—a | 2| 24a 2 2 |2
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10 2 Examples of inverse problems
I

Box 1. Nonuniqueness

The null space of G is the set of all real, nine-dimensional column vectors m such
that Gm = 0. It is easy to verify that each of the following models represent vectors
in the null space of G,

0 1 —1 1 -1 10 0 0 0 0 0 0
0| —1 1 —1 1 0 0 1 —1 1 -1 10
0 0 0 0 0 0 0| -1 1 -1 1 0

In fact, the four vectors represented by these four models represent a basis for the
null space of G, so any vector in the null space of G can be written as a unique linear
combination of these four vectors. If v is any vector in the null space of G and m
is a vector of acoustic slownesses that satisfies Gm = d where d is the vector of
measured traveltimes, then the model m + v also satisfies the data because

Gm+v)=G6m+ Gv=d. (2.12)

Thus, we can add any linear combination of models (vectors) in the null space of
G to a model that satisfies the traveltime data and obtain another model which also
satisfies the data.

This acoustic tomography problem has an infinite number of models that satisfy the
data exactly for certain data. As there are fewer traveltime data than model variables,
this is not surprising. We show next, however, that for other values of the traveltime
data, there are no values of acoustic slowness that satisfy Eq. (2.6).

No solution
As measurements are always noisy, let us assume that because of the inaccuracy of the
timing, the following measurements were made:

T, =[607 607 577 593 593 6.03]" (2.13)

Interestingly, despite the fact that there are fewer data than model parameters, there
are no models that satisfy this data. Eq. (2.5) indicates that 77 should be the sum of
the slowness values in the first row, 7> should be the sum of the slowness values in the
second row, and T3 should be the sum of the slowness values in the third row. Thus

Ti+ T+ Ts=t+t+ -+t (2.14)

But T} is the sum of slowness values in column one, and similarly for 75 and T so if
there are values of the model parameters that satisfy these data, we must also have

Th+Ts+Te=t+6+---+1t9. (2.15)
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