Contents

Nota	tion	pa	ge xi
Intro	duction		XV
1	Prelir	ninaries	1
	1.1	Regularly varying functions and their main properties	1
	1.2	Subexponential distributions	13
	1.3	Locally subexponential distributions	44
	1.4	Asymptotic properties of 'functions of distributions'	51
	1.5	The convergence of distributions of sums of random variables	
		with regularly varying tails to stable laws	57
	1.6	Functional limit theorems	75
2	Rand	om walks with jumps having no finite first moment	80
	2.1	Introduction. The main approach to bounding from above	
		the distribution tails of the maxima of sums of random variables	s 80
	2.2	Upper bounds for the distribution of the maximum of sums	
		when $\alpha \leqslant 1$ and the left tail is arbitrary	84
	2.3	Upper bounds for the distribution of the sum of random	
		variables when the left tail dominates the right tail	91
	2.4	Upper bounds for the distribution of the maximum of sums	
		when the left tail is substantially heavier than the right tail	97
	2.5	Lower bounds for the distributions of the sums. Finiteness	
		criteria for the maximum of the sums	103
	2.6	The asymptotic behaviour of the probabilities $\mathbf{P}(S_n \ge x)$	110
	2.7	The asymptotic behaviour of the probabilities $\mathbf{P}(\overline{S}_n \ge x)$	120
3	Rand	om walks with jumps having finite mean and infinite variance	e127
	3.1	Upper bounds for the distribution of \overline{S}_n	127
	3.2	Upper bounds for the distribution of $\overline{S}_n(a), a > 0$	137
	3.3	Lower bounds for the distribution of S_n	141
	3.4	Asymptotics of $\mathbf{P}(S_n \ge x)$ and its refinements	142
	3.5	Asymptotics of $\mathbf{P}(\overline{S}_n \ge x)$ and its refinements	149

Cambridge University Press	
978-0-521-88117-3 - Asymptotic Analysis of Random Walks: Heavy-Tailed Distributi	ons
A.A. Borovkov and K.A. Borovkov	
Table of Contents	
More information	

vi		Contents			
	3.6	The asymptotics of $\mathbf{P}(\overline{S}(a) \ge x)$ with refinements and the			
		general boundary problem	154		
	3.7	Integro-local theorems on large deviations of S_n for index			
		$-lpha, lpha \in (0,2)$	166		
	3.8	Uniform relative convergence to a stable law	173		
	3.9	Analogues of the law of the iterated logarithm in the case of			
		infinite variance	176		
4	Rano	dom walks with jumps having finite variance	182		
	4.1	Upper bounds for the distribution of \overline{S}_n	182		
	4.2	Upper bounds for the distribution of $\overline{S}_n(a), a > 0$	191		
	4.3	Lower bounds for the distributions of S_n and $\overline{S}_n(a)$	194		
	4.4	Asymptotics of $\mathbf{P}(S_n \ge x)$ and its refinements	197		
	4.5	Asymptotics of $\mathbf{P}(\overline{S}_n \ge x)$ and its refinements	204		
	4.6	Asymptotics of $\mathbf{P}(\overline{S}(a) \ge x)$ and its refinements. The			
		general boundary problem	208		
	4.7	Integro-local theorems for the sums S_n	217		
	4.8	Extension of results on the asymptotics of $\mathbf{P}(S_n \ge x)$ and			
		$\mathbf{P}(S_n \ge x)$ to wider classes of jump distributions	224		
	4.9	The distribution of the trajectory $\{S_k\}$ given that $S_n \ge x$	220		
		or $S_n \ge x$	228		
5	Rano	dom walks with semiexponential jump distributions	233		
	5.1	Introduction	233		
	5.2	Bounds for the distributions of S_n and \overline{S}_n , and their			
		consequences	238		
	5.3	Bounds for the distribution of $S_n(a)$	247		
	5.4	Large deviations of the sums S_n	250		
	5.5	Large deviations of the maxima S_n	268		
	5.6	Large deviations of $S_n(a)$ when $a > 0$	274		
	5.7	Large deviations of $S_n(-a)$ when $a > 0$	287		
	5.8	Integro-local and integral theorems on the whole real line	290		
	5.9	Additivity (subexponentiality) zones for various distribution	206		
		classes	290		
6	Larg	Large deviations on the boundary of and outside the Cramér zone			
	for r	andom walks with jump distributions decaying exponentiall	У		
	fast		300		
	6.1	Introduction. The main method of studying large deviations			
	_	when Cramér's condition holds. Applicability bounds	300		
	6.2	Integro-local theorems for sums S_n of r.v.'s with distributions			
		from the class $\mathcal{E} \mathcal{K}$ when the function $V(t)$ is of index from	200		
		the interval $(-1, -3)$	308		

		Contents	vii
	6.3	Integro-local theorems for the sums S_n when the Cramér transform for the summands has a finite variance at the right boundary point	315
	6.4	The conditional distribution of the trajectory $\{S_k\}$ given $S_n \in \Delta[x)$	318
	6.5	Asymptotics of the probability of the crossing of a remote boundary by the random walk	319
7	Asym	ptotic properties of functions of regularly varying and semie	ex-
	poner	ntial distributions. Asymptotics of the distributions of stoppe	ed
	sums	and their maxima. An alternative approach to studying the network of $\mathbf{P}(S \ge r)$	335
	7.1	Functions of regularly varying distributions	335
	7.2	Functions of semiexponential distributions	341
	7.3	Functions of distributions interpreted as the distributions of	
		stopped sums. Asymptotics for the maxima of stopped sums	344
	7.4	Sums stopped at an arbitrary Markov time	347
	7.5	An alternative approach to studying the asymptotics of $\mathbf{P}(S_n \ge x)$ for sub- and semiexponential distributions of	
		the summands	354
	7.6	A Poissonian representation for the supremum S and the time when it was attained	367
8	On th	e asymptotics of the first hitting times	369
	8.1	Introduction	369
	8.2	A fixed level x	370
	8.3	A growing level x	391
9	Integ	ro-local and integral large deviation theorems for sums o	of
	rando	om vectors	398
	9.1	Introduction	398
	9.2	Integro-local large deviation theorems for sums of indepen-	400
	93	dent random vectors with regularly varying distributions	402 412
10	7.5 T		417
10		e deviations in trajectory space	417
	10.1	Introduction	417
	10.2	The general case	410
	-		722
11	Larg 11.1	e deviations of sums of random variables of two types The formulation of the problem for sums of random variables	427
	11.0	of two types Asymptotics of $\mathcal{D}(m, n, m)$ related to the close of receiver the	427
	11.2	Asymptotics of $F(m, n, x)$ related to the class of regularly varying distributions	429

viii		Contents	
	11.3	Asymptotics of $P(m, n, x)$ related to semiexponential	
		distributions	432
12	Random walks with non-identically distributed jumps in the		i-
	angu	lar array scheme in the case of infinite second moment. Trai]-
	sient	phenomena \overline{C}	439
	12.1	Upper and lower bounds for the distributions of S_n and S_n	439
	12.2	Asymptotics of the probability of the grossing of an arbitrary	434
	12.5	remote boundary on an unbounded time interval. Bounds for	
		the first crossing time	457
	12.4	Convergence in the triangular array scheme of random walks	
		with non-identically distributed jumps to stable processes	464
	12.5	Transient phenomena	471
13	Rand	lom walks with non-identically distributed jumps in the tr	i-
	angu	lar array scheme in the case of finite variances	482
	13.1	Upper and lower bounds for the distributions of S_n and S_n	482
	13.2	Asymptotics of the probability of the crossing of an arbitrary	105
	12.2	remote boundary	495
	13.3	The invariance principle. Transfent phenomena	502
14	Rand	lom walks with dependent jumps	506
	14.1	The classes of random walks with dependent jumps that	500
	14.2	admit asymptotic analysis Martingalas on countable Markov shoing. The main results	506
	14.2	of the asymptotic analysis when the jump variances can be	
		infinite	509
	14.3	Martingales on countable Markov chains. The main results	
		of the asymptotic analysis in the case of finite variances	514
	14.4	Arbitrary random walks on countable Markov chains	516
15	Exter	nsion of the results of Chapters 2–5 to continuous-time ran	1-
	dom	processes with independent increments	522
	15.1	Introduction	522
	15.2	The first approach, based on using the closeness of the	
	15.2	trajectories of processes in discrete and continuous time	525
	15.5	from Chapters 2, 5 for random processes with independent	
		increments	532
16	Exter	nsion of the results of Chapters 3 and 4 to generalized renews	al
	proce	esses	543
	16.1	Introduction	543
	16.2	Large deviation probabilities for $S(T)$ and $\overline{S}(T)$	551
	16.3	Asymptotic expansions	574

Cambridge University Press	
978-0-521-88117-3 - Asymptotic Analysis of Random Walks: Heavy-Tailed Distribution	\mathbf{s}
A.A. Borovkov and K.A. Borovkov	
Table of Contents	
More information	
Table of Contents More information	

	Contents	ix
16.4	The crossing of arbitrary boundaries	585
16.5	The case of linear boundaries	592
Bibliographic notes		602
References		611
Index		624