SLOSHING

This book presents sloshing with marine- and land-based applications, with a focus on ship tanks. It also includes the nonlinear multimodal method developed by the authors and an introduction to computational fluid dynamics. Emphasis is also placed on rational and simplified methods, including several experimental results. Topics of special interest include antirolling tanks, linear sloshing, viscous wave loads, damping, and slamming. The book contains numerous illustrations, examples, and exercises.

Odd M. Faltinsen received his Ph.D. in naval architecture and marine engineering from the University of Michigan in 1971 and has been a Professor of Marine Hydrodynamics at the Norwegian University of Science and Technology since 1976. Dr. Faltinsen has experience with a broad spectrum of hydrodynamically related problems for ships and sea structures, including hydroelastic problems. He has published approximately 300 scientific publications and is the author of the textbooks *Sea Loads on Ships and Offshore Structures* and *Hydrodynamics of High-Speed Marine Vehicles*, published by Cambridge University Press in 1990 and 2005, respectively. Faltinsen is a Foreign Associate of the National Academy of Engineering, USA, and a Foreign Member of the Chinese Academy of Engineering.

Alexander N. Timokha obtained his Ph.D. in fluid dynamics from Kiev University in 1988 and, later, a full doctorate in physics and a mathematics degree (habilitation) in 1993 at the Institute of Mathematics of the National Academy of Sciences of Ukraine. He is now Leading Researcher and Professor of Applied Mathematics at the Institute of Mathematics. Since 2004, he has been a Visiting Professor at CeSOS, Norwegian University of Science and Technology, Trondheim, Norway. In the 1980s, he was involved as a consultant of hydrodynamic aspects of spacecraft applications for the famous design offices of Yuzhnoye and Salut. Dr. Timokha's current research interests lie in mathematical aspects of hydromechanics with emphasis on free-surface problems in general and on sloshing in particular. He has authored more than 120 publications and 2 books.

Sloshing

ODD M. FALTINSEN

Norwegian University of Science and Technology

ALEXANDER N. TIMOKHA

Norwegian University of Science and Technology and National Academy of Sciences of Ukraine

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521881111

© Odd M. Faltinsen and Alexander N. Timokha 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Faltinsen, O. M. (Odd Magnus), 1944–
Sloshing / Odd M. Faltinsen, Alexander N. Timokha. – 1st ed. p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-88111-1 (hardback)
1. Sloshing (Hydrodynamics) I. Timokha, A. N. II. Title.
TA357.5.S57F35 2009
620.1'064–dc22 2009006711

ISBN 978-0-521-88111-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Nomenclature	<i>page</i> xvii
Preface and Acknowledgment	XXV
Acronyms and Abbreviations	
1 SLOSHING IN MARINE- AND LAND-BASED	
APPLICATIONS	1
1.1 Introduction	1
1.2 Resonant free-surface motions	1
1.3 Ship tanks	5
1.3.1 Oil tankers	10
1.3.2 FPSO ships and shuttle tankers	12
1.3.3 Bulk carriers	12
1.3.4 Liquefied gas carriers	14
1.3.5 LPG carriers	15
1.3.6 LNG carriers	16
1.3.7 Chemical tankers	21
1.3.8 Fish transportation	21
1.3.9 Cruise vessels	21
1.3.10 Antirolling tanks	22
1.4 Tuned liquid dampers	22
1.5 Offshore platforms	24
1.6 Completely filled fabric structure	27
1.7 External sloshing for ships and marine structures	27
1.8 Sloshing in coastal engineering	30
1.9 Land transportation	31
1.10 Onshore tanks	31
1.11 Space applications	32
1.12 Summary of chapters	33
2 GOVERNING EQUATIONS OF LIQUID SLOSHING	35
2.1 Introduction	35
2.2 Navier–Stokes equations	35
2.2.1 Two-dimensional Navier–Stokes formulation for	
incompressible liquid	35
2.2.1.1 Continuity equation	36
2.2.1.2 Viscous stresses and derivation of the Navier–Stokes	
equations	36

v

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

vi • Contents

	2.2.2 Three-dimensional Navier–Stokes equations	37
	2.2.2.1 Vorticity and potential flow	38
	2.2.2.2 Compressibility	39
	2.2.3 Turbulent flow	40
	2.2.4 Global conservation laws	40
	2.2.4.1 Conservation of fluid momentum	40
	2.2.4.2 Conservation of kinetic and potential fluid energy	41
	2.2.4.3 Examples: two special cases	42
	2.3 Tank-fixed coordinate system	43
	2.4 Governing equations in a noninertial, tank-fixed coordinate	
	system	45
	2.4.1 Navier–Stokes equations	45
	2.4.1.1 Illustrative example: application to the Earth as an	
	accelerated coordinate system	46
	2.4.2 Potential flow formulation	47
	2.4.2.1 Governing equations	47
	2.4.2.2 Body boundary conditions	48
	2.4.2.3 Free-surface conditions	48
	2.4.2.4 Mass (volume) conservation condition	49
	2.4.2.5 Free boundary problem of sloshing and	
	initial/periodicity conditions	49
	2.5 Lagrange variational formalism for the sloshing problem	51
	2.5.1 Eulerian calculus of variations	51
	2.5.2 Illustrative examples	53
	2.5.2.1 Spring-mass systems	53
	2.5.2.2 Euler-Bernoulli beam equation	54
	2.5.2.3 Linear sloshing in an upright nonmoving tank	56
	2.5.3 Lagrange and Bateman–Luke variational formulations for	
	nonlinear sloshing	57
	2.5.3.1 The Lagrange variational formulation	57
	2.5.3.2 The Bateman–Luke principle	58
	2.6 Summary	59
	2.7 Exercises	59
	2.7.1 Flow parameters	59
	2.7.2 Surface tension	60
	2.7.3 Kinematic boundary condition	60
	2.7.4 Added mass force for a nonlifting body in infinite fluid	60
	2.7.5 Euler–Lagrange equations for finite-dimensional	
	mechanical systems	61
3	WAVE-INDUCED SHIP MOTIONS	63
	3.1 Introduction	63
	3.2 Long-crested propagating waves	63
	3.3 Statistical description of waves in a sea state	67
	3.4 Long-term predictions of sea states	70
	3.5 Linear wave-induced motions in regular waves	73
	3.5.1 Definitions	73
	3.5.2 Equations of motion in the frequency domain	76
	1 1 J	

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

Contents • vii

	3.6 Coupled sloshing and ship motions	80
	3.6.1 Quasi-steady free-surface effects of a tank	80
	3.6.2 Antirolling tanks	82
	3.6.3 Free-surface antirolling tanks	83
	3.6.4 U-tube roll stabilizer	85
	3.6.4.1 Nonlinear liquid motion	88
	3.6.4.2 Linear forces and moments due to liquid motion in	
	the U-tube	90
	3.6.4.3 Lloyd's U-tube model	90
	3.6.4.4 Controlled U-tank stabilizer	94
	3.6.5 Coupled sway motions and sloshing	97
	3.6.6 Coupled three-dimensional ship motions and sloshing in	
	beam waves	99
	3.7 Sloshing in external flow	103
	3.7.1 Piston-mode resonance in a two-dimensional moonpool	103
	3.7.2 Piston and sloshing modes in three-dimensional	
	moonpools	108
	3.7.3 Resonant wave motion between two hulls	110
	3.8 Time-domain response	111
	3.9 Response in irregular waves	114
	3.9.1 Linear short-term sea state response	114
	3.9.2 Linear long-term predictions	115
	3.10 Summary	115
	3.11 Exercises	117
	3.11.1 Wave energy	117
	3.11.2 Surface tension	117
	3.11.3 Added mass and damping	118
	3.11.4 Heave damping at small frequencies in finite water depth	
		118
	3.11.5 Coupled roll and sloshing in an antirolling tank of a	
	barge in beam sea	119
	3.11.6 Operational analysis of patrol boat with U-tube tank	120
	3.11.7 Moonpool and gap resonances	121
4	LINEAR NATURAL SLOSHING MODES	122
т	4.1 Introduction	122
	4.1 Introduction 4.2 Natural frequencies and modes	122
	4.2 Event netural frequencies and modes	125
	4.5 Exact natural nequencies and modes	125
	4.3.1 Dectangular planar tank	125
	4.3.1.1 Rectaliguial planal tank $4.3.1.2$ Wedge cross section with 4.5° and 60° semi-apex	123
	angles	128
	4 3 1 3 Troesch's analytical solutions	120
	4.3.2 Three-dimensional cases	130
	4321 Rectangular tank	130
	4322 Upright circular cylindrical tank	133
	44 Seiching	135
	4 4 1 Parabolic basin	136
		150

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

viii • Contents

4.4.2 Triangular basin	136
4.4.3 Harbors	137
4.4.4 Pumping-mode resonance of a harbor	137
4.4.5 Ocean basins	138
4.5 Domain decomposition	138
4.5.1 Two-dimensional sloshing with a shallow-water part	138
4.5.2 Example: swimming pools	140
4.6 Variational statement and comparison theorems	140
4.6.1 Variational formulations	142
4.6.1.1 Rayleigh's method	142
4.6.1.2 Rayleigh quotient for natural sloshing	144
4.6.1.3 Variational equation	147
4.6.2 Natural frequencies versus tank shape: comparison	
theorems	150
4.6.3 Asymptotic formulas for the natural frequencies and the	
variational statement	151
4.6.3.1 Small liquid-domain reductions of rectangular tanks	151
4.6.3.2 Asymptotic formula for a chamfered tank bottom:	
examples	152
4.6.3.3 Discussion on the analytical continuation and the	
applicability of formula (4.90)	155
4.7 Asymptotic natural frequencies for tanks with small internal	
structures	157
4.7.1 Main theoretical background	158
4.7.2 Baffles	161
4.7.2.1 Small-size (horizontal or vertical) thin baffle	161
4.7.2.2 Hydrodynamic interaction between baffles (plates)	
and free-surface effects	164
4.7.3 Poles	168
4.7.3.1 Horizontal and vertical poles	168
4.7.3.2 Proximity of circular poles	170
4.8 Approximate solutions	171
4.8.1 Two-dimensional circular tanks	171
4.8.2 Axisymmetric tanks	172
4.8.2.1 Spherical tank	173
4.8.2.2 Ellipsoidal (oblate spheroidal) container	175
4.8.3 Horizontal cylindrical container	176
4.8.3.1 Shallow-liquid approximation for arbitrary	
cross-section	176
4.8.3.2 Shallow-liquid approximation for circular	
cross-section	177
4.9 Two-layer liquid	179
4.9.1 General statement	179
4.9.2 Two-phase shallow-liquid approximation	182
4.9.2.1 Example: oil–gas separator	183
4.10 Summary	185
4.11 Exercises	186

Contents • ix

	4.11.1 Irregular frequencies	186
	4.11.2 Shallow-liquid approximation for trapezoidal-base tank	186
	4.11.3 Annular and sectored upright circular tank	187
	4.11.4 Circular swimming pool	187
	4.11.5 Effect of pipes on sloshing frequencies for a	
	gravity-based platform	189
	4.11.6 Effect of horizontal isolated baffles in a rectangular tank	191
	4.11.7 Isolated vertical baffles in a rectangular tank	192
5	LINEAR MODAL THEORY	193
	5.1 Introduction	193
	5.2 Illustrative example: surge excitations of a rectangular tank	193
	5.3 Theory	196
	5.3.1 Linear modal equations	196
	5.3.1.1 Six generalized coordinates for solid-body, linear	
	dynamics	196
	5.3.1.2 Generalized coordinates for liquid sloshing and	
	derivation of linear modal equations	197
	5.3.1.3 Linear modal equations for <i>prescribed</i> tank motions	199
	5.3.2 Resulting hydrodynamic force and moment in linear	
	approximation	200
	5.3.2.1 Force	200
	5.3.2.2 Moment	202
	5.3.3 Steady-state and transient motions: initial and periodicity	
	conditions	204
	5.4 Implementation of linear modal theory	208
	5.4.1 Time- and frequency-domain solutions	208
	5.4.1.1 Time-domain solution with <i>prescribed</i> tank motion	208
	5.4.1.2 Time-domain solution of coupled sloshing and body	
	motion	208
	5.4.1.3 Frequency-domain solution of coupled sloshing and	
	body motion	208
	5.4.2 Forced sloshing in a two-dimensional rectangular tank	211
	5.4.2.1 Hydrodynamic coefficients	211
	5.4.2.2 Completely filled two-dimensional rectangular tank	213
	5.4.2.3 Transient sloshing during collision of two ships	219
	5.4.2.4 Effect of elastic tank wall deflections on sloshing	224
	5.4.3 Forced sloshing in a three-dimensional rectangular-base	
	tank	226
	5.4.3.1 Hydrodynamic coefficients	226
	5.4.3.2 Added mass coefficients in ship applications	229
	5.4.3.3 Tank added mass coefficients in a ship motion analysis	
		233
	5.4.4 Hydrodynamic coefficients for an upright circular	
	cylindrical tank	235
	5.4.5 Coupling between sloshing and wave-induced vibrations	
	of a monotower	237

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

x • Contents

5.4.5.1 Theory	237
5.4.5.2 Undamped eigenfrequencies of the coupled motions	240
5.4.5.3 Variational method	240
5.4.5.4 Wave excitation	242
5.4.5.5 Damping	244
5.4.6 Rollover of a tank vehicle	245
5.4.7 Spherical tanks	247
5.4.7.1 Hydroelastic vibrations of a spherical tank	247
5.4.7.2 Simplified two-mode modal system for sloshing in a	
spherical tank	249
5.4.8 Transient analysis of tanks with asymptotic estimates of	
natural frequencies	250
5.5 Summary	251
5.6 Exercises	251
5.6.1 Moments by direct pressure integration and the Lukovsky	
formula	251
5.6.2 Transient sloshing with damping	251
5.6.3 Effect of small structural deflections of the tank bottom	
on sloshing	252
5.6.4 Effect of elastic deformations of vertical circular tank	252
5.6.5 Spilling of coffee	253
5.6.6 Braking of a tank vehicle	253
5.6.7 Free decay of a ship cross-section in roll	253
6 VISCOUS WAVE LOADS AND DAMPING	254
6 VISCOUS WAVE LOADS AND DAMPING6.1 Introduction	254 254
6 VISCOUS WAVE LOADS AND DAMPING6.1 Introduction6.2 Boundary-layer flow	254 254 254
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 	254 254 254 255
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular 	254 254 254 255
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 	254 254 254 255 257
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 	254 254 254 255 257 258
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 	254 254 254 255 257 258 260
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular 	254 254 254 255 257 258 260
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 	254 254 254 255 257 258 260 261
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 	254 254 254 255 257 258 260 261 262
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 	254 254 254 255 257 258 260 261 262 262
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 6.3.2 Incorporation of boundary-layer damping in a potential 	254 254 255 257 258 260 261 262 262
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 6.3.2 Incorporation of boundary-layer damping in a potential flow model 	254 254 254 255 257 258 260 261 262 262 262
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 6.3.2 Incorporation of boundary-layer damping in a potential flow model 6.3.3 Bulk damping 	254 254 254 255 257 258 260 261 262 262 262 264 265
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 6.3.2 Incorporation of boundary-layer damping in a potential flow model 6.3.3 Bulk damping 6.4 Morison's equation 	254 254 254 255 257 258 260 261 262 262 262 264 265 266
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 6.3.2 Incorporation of boundary-layer damping in a potential flow model 6.3.3 Bulk damping 6.4 Morison's equation in a tank-fixed coordinate system 	254 254 254 255 257 258 260 261 262 262 262 264 265 266 267
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 6.3.2 Incorporation of boundary-layer damping in a potential flow model 6.3.3 Bulk damping 6.4 Morison's equation 6.4.1 Morison's equation in a tank-fixed coordinate system 6.4.2 Generalizations of Morison's equation 	254 254 254 255 257 258 260 261 262 262 262 264 265 266 267 269
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 6.3.2 Incorporation of boundary-layer damping in a potential flow model 6.3.3 Bulk damping 6.4 Morison's equation 6.4.1 Morison's equation in a tank-fixed coordinate system 6.4.3 Mass and drag coefficients (<i>C_M</i> and <i>C_D</i>) 	254 254 254 255 257 258 260 261 262 262 262 264 265 266 265 266 267 269 270
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 6.3.2 Incorporation of boundary-layer damping in a potential flow model 6.3.3 Bulk damping 6.4 Morison's equation 6.4.1 Morison's equation in a tank-fixed coordinate system 6.4.2 Generalizations of Morison's equation 6.4.3 Mass and drag coefficients (C_M and C_D) 6.5 Viscous damping due to baffles 	254 254 254 255 257 258 260 261 262 262 262 264 265 266 267 269 270 274
 6 VISCOUS WAVE LOADS AND DAMPING 6.1 Introduction 6.2 Boundary-layer flow 6.2.1 Oscillatory nonseparated laminar flow 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 6.2.3 Turbulent nonseparated boundary-layer flow 6.2.3.1 Turbulent energy dissipation 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 6.3 Damping of sloshing in a rectangular tank 6.3.1 Damping due to boundary-layer flow (Keulegan's theory) 6.3.2 Incorporation of boundary-layer damping in a potential flow model 6.3.3 Bulk damping 6.4 Morison's equation 6.4.1 Morison's equation in a tank-fixed coordinate system 6.4.2 Generalizations of Morison's equation 6.4.3 Mass and drag coefficients (C_M and C_D) 6.5 Viscous damping due to baffles 6.5.1 Baffle mounted vertically on the tank bottom 	254 254 254 255 257 258 260 261 262 262 262 264 265 266 267 269 270 274 275

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

Contents • xi

	6.6 Forced resonant sloshing in a two-dimensional rectangular	
	tank	280
	6.7 Tuned liquid damper (TLD)	280
	6.7.1 TLD with vertical poles	282
	6.7.2 TLD with vertical plate	283
	6.7.3 TLD with wire-mesh screen	283
	6.7.4 Scaling of model tests of a TLD	286
	6.7.5 Forced longitudinal oscillations of a TLD	286
	6.8 Effect of swash bulkheads and screens with high solidity	
	ratio	289
	6.9 Vortex-induced vibration (VIV)	294
	6.10 Summary	296
	6.11 Exercises	297
	6.11.1 Damping ratios in a rectangular tank	297
	6.11.2 Morison's equation	297
	6.11.3 Scaling of TLD with vertical poles	298
	6.11.4 Effect of unsteady laminar boundary-layer flow on	
	potential flow	298
	6.11.5 Reduction of natural sloshing frequency due to	
	wire-mesh screen	298
7	MULTIMODAL METHOD	299
	7.1 Introduction	299
	7.2 Nonlinear modal equations for sloshing	300
	7.2.1 Modal representation of the free surface and velocity	
	potential	300
	7.2.2 Modal system based on the Bateman–Luke formulation	301
	7.2.3 Advantages and limitations of the nonlinear modal	
	method	303
	7.3 Modal technique for hydrodynamic forces and moments	304
	7.3.1 Hydrodynamic force	305
	7.3.1.1 General case	305
	7.3.1.2 Completely filled closed tank	306
	7.3.2 Moment	306
	7.3.2.1 Hydrodynamic moment as a function of the angular	
	momentum	306
	7.3.2.2 Potential flow	307
	7.3.2.3 Completely filled closed tank	307
	7.4 Limitations of the modal theory and Lukovsky's formulas due	
	to damping	307
	7.5 Summary	308
	7.6 Exercises	309
	7.6.1 Modal equations for the beam problem	309
	7.6.2 Linear modal equations for sloshing	309

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

xii • Contents

8	NONLINEAR ASYMPTOTIC THEORIES AND	
	EAPERIMENTS FOR A I WO-DIMENSIONAL	210
	KECIANGULAK IANK	310
	8.1 Introduction	310
	8.2 Steady-state resonant solutions and their stability for a	
	Duffing-like mechanical system	315
	8.2.1 Nonlinear spring-mass system, resonant solution, and its	
	stability	315
	8.2.1.1 Steady-state solution	315
	8.2.1.2 Stability	317
	8.2.1.3 Damping	319
	8.2.2 Steady-state resonant sloshing due to horizontal	
	excitations	319
	8.3 Single-dominant asymptotic nonlinear modal theory	323
	8.3.1 Asymptotic modal system	323
	8.3.1.1 Steady-state resonant waves: frequency-domain	225
	solution	325
	8.3.1.2 Time-domain solution and comparisons with	
	experiments	327
	8.3.2 Nonimpulsive hydrodynamic loads	337
	8.3.2.1 Hydrodynamic pressure	337
	8.3.2.2 Hydrodynamic force	338
	8.3.2.3 Hydrodynamic moment relative to origin O	339
	8.3.2.4 Nonimpulsive hydrodynamic loads on internal	220
	structures	240
	8.3.3 Coupled ship motion and slosning	340
	8.3.4 Applicability: effect of higher modes and secondary	2.41
	resonance	341
	8.4 Adaptive asymptotic modal system for finite fiquid depth	243
	8.4.2 Hudrodynamic fores and mamort	245
	8.4.2 Particular finite dimensional model systems	245
	8.5. Critical depth	243
	8.6 Asymptotic model theory of Boussiness type for	347
	lower intermediate and shallow liquid depths	352
	8.6.1 Intermodal ordering	352
	8.6.2 Boussiness type multimodal system for intermediate and	552
	shallow depths	353
	863 Damping	355
	8.7 Intermediate liquid denth	355
	8.8 Shallow liquid depth	357
	8.8.1 Use of the Boussinesa-type multimodal method for	557
	intermediate and shallow denths	357
	8811 Transients	357
	8812 Steady-state regimes	358
	882 Steady-state hydraulic jumps	361
	steady state in allotte jumps	501

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

Contents • xiii

8.9 Wave loads on interior structures in shallow liquid depth	371
8.10 Mathieu instability for vertical tank excitation	373
8.11 Summary	375
8.11.1 Nonlinear multimodal method	375
8.11.2 Subharmonics	377
8.11.3 Damping	377
8.11.4 Hydraulic jumps	377
8.11.5 Hydrodynamic loads on interior structures	377
8.12 Exercises	377
8.12.1 Moiseev's asymptotic solution for a rectangular tank wi	th
infinite depth	377
8.12.2 Mean steady-state hydrodynamic loads	378
8.12.3 Simulation by multimodal method	378
8.12.4 Force on a vertical circular cylinder for shallow depth	378
8.12.5 Mathieu-type instability	379
9 NONLINEAR ASYMPTOTIC THEORIES AND	
EXPERIMENTS FOR THREE-DIMENSIONAL	200
SLOSHING	380
9.1 Introduction	380
9.1.1 Steady-state resonant wave regimes and hydrodynamic	
instability	380
9.1.1.1 Theoretical treatment by the two lowest natural	
modes	380
9.1.1.2 Experimental observations and measurements for a	
nearly square-base tank	381
9.1.2 Bifurcation and stability	385
9.2 Rectangular-base tank with a finite liquid depth	387
9.2.1 Statement and generalization of adaptive modal system	207
(8.95)	387
9.2.2 Moiseev-based modal system for a nearly square-base	200
	388
9.2.3 Steady-state resonance solutions for a nearly square-bas	e
	392
9.2.4 Classification of steady-state regimes for a square-base	202
tank with longitudinal and diagonal excitations	393
9.2.4.1 Longitudinal excitation	394
9.2.4.2 Diagonal excitation	400
9.2.5 Longitudinal excitation of a hearly square-base tank	401
9.2.6 Amplification of higher modes and adaptive modal	409
modeling for transferits and swirling $0.2(1 + A detains and detains and detains and its account of the second state of the s$	408
9.2.0.1 Adaptive modal modeling and its accuracy	408
9.2.0.2 Transient amplitudes	409
9.2.0.3 Response for longitudinal excitations	412
9.2.0.4 Response for longitudinal excitations	414
9.5 vertical circular cylinder	41/
9.3.1 Experiments	419

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

xiv • Contents

	9.3.2 Modal equations	422
	9.3.3 Steady-state solutions	424
	9.4 Spherical tank	426
	9.4.1 Wave regimes	428
	9.4.2 Tower forces	430
	9.5 Summary	432
	9.5.1 Square-base tank	432
	9.5.2 Nearly square-base tanks	433
	9.5.3 Circular base	433
	9.5.4 Spherical tank	433
	9.6 Exercises	434
	9.6.1 Multimodal methods for square- and circular-base tanks	434
	9.6.2 Spherical pendulum, planar, and rotary motions	434
	9.6.3 Angular Stokes drift for swirling	435
	9.6.4 Three-dimensional shallow-liquid equations in a	
	body-fixed accelerated coordinate system	436
	9.6.5 Wave loads on a spherical tank with a tower	437
10	COMPUTATIONAL FLUID DYNAMICS	439
	10.1 Introduction	439
	10.2 Boundary element methods	444
	10.2.1 Free-surface conditions	445
	10.2.2 Generation of vorticity	447
	10.2.3 Example: numerical discretization	447
	10.2.4 Linear frequency-domain solutions	449
	10.3 Finite difference method	450
	10.3.1 Preliminaries	451
	10.3.2 Governing equations	451
	10.3.3 Interface capturing	452
	10.3.3.1 Level-set technique	453
	10.3.4 Introduction to numerical solution procedures	454
	10.3.5 Time-stepping procedures	455
	10.3.6 Spatial discretizations	456
	10.3.7 Discretization of the convective and viscous terms	456
	10.3.8 Discretization of the Poisson equation for pressure	457
	10.3.9 Treatment of immersed boundaries	458
	10.3.10 Constrained interpolation profile method	459
	10.4 Finite volume method	460
	10.4.1 Introduction	460
	10.4.2 FVM applied to linear sloshing with potential	
	flow	462
	10.4.2.1 Example	464
	10.5 Finite element method	465
	10.5.1 Introduction	465
	10.5.2 A model problem	465
	10.5.2.1 Numerical example	466
	10.5.3 One-dimensional acoustic resonance	466

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

Contents • xv

	10.5.4 FEM applied to linear sloshing with potential flow	468
	10.5.4.1 Matrix system	470
	10.5.4.2 Example	472
	10.6 Smoothed particle hydrodynamics method	472
	10.7 Summary	477
	10.8 Exercises	478
	10.8.1 One-dimensional acoustic resonance	478
	10.8.2 BEM applied to steady flow past a cylinder in infinite	
	fluid	479
	10.8.3 BEM applied to linear sloshing with potential flow and	
	viscous damping	480
	10.8.4 Application of FEM to the Navier–Stokes equations	480
	10.8.5 SPH method	480
11	SLAMMING	481
	11.1 Introduction	481
	11.2 Scaling laws for model testing	484
	11.3 Incompressible liquid impact on rigid tank roof without gas	
	cavities	488
	11.3.1 Wagner model	489
	11.3.1.1 Prediction of wetted surface	491
	11.3.1.2 Spray root solution	492
	11.3.2 Damping of sloshing due to tank roof impact	494
	11.3.3 Three-dimensional liquid impact	496
	11.4 Impact of steep waves against a vertical wall	497
	11.4.1 Wagner-type model	500
	11.4.2 Pressure-impulse theory	502
	11.5 Tank roof impact at high filling ratios	503
	11.6 Slamming with gas pocket	506
	11.6.1 Natural frequency for a gas cavity	509
	11.6.1.1 Simplified analysis	511
	11.6.2 Damping of gas cavity oscillations	511
	11.6.3 Forced oscillations of a gas cavity	513
	11.6.3.1 Prediction of the wetted surface	515
	11.6.3.2 Case study	515
	11.6.4 Nonlinear gas cavity analysis	516
	11.6.5 Scaling	516
	11.7 Cavitation and boiling	522
	11.8 Acoustic liquid effects	522
	11.8.1 Two-dimensional liquid entry of body with horizontal	
	bottom	524
	11.8.2 Liquid entry of parabolic contour	526
	11.8.3 Hydraulic jump impact	526
	11.8.4 Thin-layer approximation of liquid–gas mixture	527
	11.9 Hydroelastic slamming	528
	11.9.1 Experimental study	532
	11.9.2 Theoretical hydroelastic beam model	533
	· · · · · · · · · · · · · · · · · · ·	

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

xvi • Contents

11.9.3 Comparisons between theory and experiments	537
11.9.4 Parameter study for full-scale tank	538
11.9.5 Model test scaling of hydroelasticity	544
11.9.6 Slamming in membrane tanks	545
11.10 Summary	548
11.11 Exercises	550
11.11.1 Impact force on a wedge	550
11.11.2 Prediction of the wetted surface by Wagner's method	550
11.11.3 Integrated slamming loads on part of the tank roof	551
11.11.4 Impact of a liquid wedge	551
11.11.5 Acoustic impact of a hydraulic jump against a vertical	
wall	551
APPENDIX: Integral Theorems	553
Bibliography	555
Index	571

Nomenclature

pair A and A , or A_i	dominant wave amplitudes in the steady-state analysis of nonlinear three-dimensional sloshing, or wave amplitudes in ocean wave problems
$A_{ij}^{ m Name}$	added mass coefficients for three-dimensional statement; Name specifies subject [$i, j = 1,, 6$ and Name = frozen, filled, slosh, etc.]
a_{ij}^{Name}	the same as A_{ij}^{Name} , but for a two-dimensional statement
В	beam (breadth) of a ship or catamaran
pair B and \overline{B}	dominant wave amplitudes in the steady-state analysis of nonlinear three-dimensional sloshing
$B_t = L_2$	breadth of tank for three-dimensional sloshing
Bo	Bond number
B_{ij}	elements of the damping matrix $[i, j = 1,, 6]$
b_{ij}	the same as B_{ij} , but for two-dimensional statement $[i, j = 1,, 6]$
b_s	effective sloshing breadth
<i>c</i> ₀	speed of sound
Ca	Cauchy number
C_E	modified Euler number
C_D	drag coefficient
C_M	
C_v	restoring coefficients [i i 1 6: Name frozen filled
	slosh, etc.]
D or d	diameter, draft of a ship
$D_0 = 2R_0$	diameter of spherical tank
d*/dt	*-time derivative of a vector function in the body-fixed (noninertial) coordinate system; the superscript asterisk indicates that one should not time-differentiate the unit vectors (see eq. (2.50))
$\boldsymbol{e}_i \text{ or } \boldsymbol{e}_x, \boldsymbol{e}_y, \boldsymbol{e}_z$	unit vectors of the body (tank)-fixed coordinate system $[i = 1, 2, 3]$
$oldsymbol{e}_i'$	unit vectors of the Earth-fixed coordinate system $[i = 1, 2, 3]$

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

xviii • Nomenclature

E	Young's modulus
$E(t), \langle E \rangle$	energy, time-averaged energy
E_g	work done by gravitational force; bulk modulus of gas
$\ddot{E_k}$	kinetic energy
E_n	potential energy
-p F_1	bulk modulus of liquid
E_l	bulk modulus of electicity
L_v E	work done by external fores
L_{ext}	work done by external forces
$E_{\rm in}$	internal strain energy of deforming the object
$E_{\rm mem}$	membrane elasticity
Eu	Euler number
$\boldsymbol{F}^{\mathrm{Name}}(t)$	hydrodynamic force, where Name declares specific conditions on the considered fluid (e.g., filled, frozen) if needed $[=(F_1, F_2, F_3)]$
F_i^{Name}	for $i = 1, 2, 3$, components of $\mathbf{F}^{\text{Name}}(t)$; for $i = 4, 5, 6$, components of the hydrodynamic moment $\mathbf{M}_O(t)$ in the <i>Oxyz</i> -coordinate system
Fn	Froude number
$f_M(x, y)$	wave patterns defined by the natural sloshing modes, $f_M = \varphi_M(x, y, 0) [M \text{ is integer or a set of integers; e.g., } i, j]$
g = g	gravitational acceleration vector $[=g_1 e_1 + g_2 e_2 + g_3 e_3]$ gravitational acceleration $[=9.81 \text{ m s}^{-2}]$
δ σ:	components of \boldsymbol{a} in the Orvz-coordinate system ($i = 1, 2, 3$)
$\mathbf{G}_{O}(t)$	angular fluid momentum relative to the origin O
h	liquid depth
\overline{h}	nondimensional liquid depth scaled by tank breadth or length
H	wave height
H.	tank height
H_{t}	significant wave beight
111/3	significant wave neight
I^0	inertia tensor for a frozen liquid $[= \{I_{ij}^0\}]$
I	second moment of area with respect to the neutral axis for the beam problem
$\boldsymbol{J}^{1}(t)$	inertia tensor for sloshing $[= \{J_{ii}^1(t)\}]$
$oldsymbol{J}_0^1$	linearized inertia tensor (time-independent) for sloshing
$J_{lpha}(\cdot)$	$[{J_{0ij}^1}]$ the Bessel function of the first kind [α is a real nonnegative number]
$k \text{ or } k_M$	wave number; if M (integer or several integer indices, e.g., i, j , or a symbol) is present, the wave number for natural sloshing modes
KC	Keulegan–Carpenter number

Nomenclature • xix

l	characteristic linear dimension in two-dimensional statement;
1.	length of a baffle
	effective sloshing length
L	characteristic linear dimension in three-dimensional statement; the length of a ship; a typical dimension in some
1	illustrative examples and exercises
L	
$L_t = L_1$	length of a tank in three-dimensional analysis
L_m	length in model scale
L_p	length in prototype scale
M	mass of an object in a three-dimensional statement
M_l	mass of a contained liquid in three-dimensional
M(t)	fluid momentum
$M_O^{\text{Name}}(t)$	hydrodynamic moment relative to the origin <i>O</i> in the <i>Oxyz</i> -coordinate system; Name declares specific conditions
	$\begin{bmatrix} (M & M & M) \\ (EName EName EName) \end{bmatrix}$
т	$\begin{bmatrix} (M_{O1}, M_{O2}, M_{O3}) = (F_4, F_5, F_6, F_6) \end{bmatrix}$ mass of an object in a two-dimensional statement, mass per unit length
m_{k}	spectral moments $[k = 0, 1, 2,]$
m_1	mass of a contained liquid in two-dimensional statement
Ma	Mach number
$\boldsymbol{n} = (n_1, n_2, n_3)$	outer normal vector of a fluid volume
<i>n</i> ⁺	normal vector with positive direction into a fluid volume $[= -n]$
0	origin of the body-fixed coordinate system Oxyz
$O(\varepsilon)$	expresses the same order as a small parameter $\varepsilon \ll 1$
Ο'	the origin of the Earth-fixed (inertial) coordinate system $Q'x'y'z'$
Oxvz	the body[tank]-fixed coordinate system
O'x'y'z'	the Earth-fixed [inertial] coordinate system
$o(\varepsilon)$	expresses higher order than a small parameter $\varepsilon \ll 1$
Р	pressure impulse
p(x, y, z, t)	pressure
p_0	ullage pressure [= const]
p_a	atmospheric pressure
p_v	liquid vapor pressure
<i>p</i> _D	dynamic pressure
O(t)	the liquid domain (in most cases, the tank liquid)
\tilde{O}_0	the tank liquid domain in hydrostatic state
~ "	1 5

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

xx • Nomenclature

r	component of the cylindrical polar coordinate system (r, θ, z)
$\boldsymbol{r} = (x, y, z)$	radius vector of a point in the body-fixed coordinate system
<i>r</i> ′	radius vector of a point in the Earth-fixed coordinate system
	$[= \mathbf{r}_{O} + \mathbf{r}]$
$\mathbf{r}_{lC}(t)$	radius vector of the mobile mass center of a contained liquid in the Originate system $\begin{bmatrix} (y_1, y_2), (y_1, y_2) \end{bmatrix}$
-	In the Oxyz-coordinate system $[=(x_{lC}(l), y_{lC}(l), z_{lC}(l))]$
r_{lC_0}	Tadius vector of a contained inquid in the hydrostatic state in the Orug goordinate system $[-(x_1, y_2, z_3)]$
ן מ ^ן זמ	the Oxy_2 -cooldinate system $[=(x_{lC_0}, y_{lC_0}, z_{lC_0})]$
$\mathbf{K}_0[= \frac{1}{2}D_0]$	radius of internal structures (e.g. poles) inserted into the
10	liquid
r i _ 1 5 6	radii of guration
$P_{jj}, j = 4, 5, 0$	arithmetical mean roughness on the body surface
Ru and RE	Peynolds number, different definitions
Rn and KL Rn	transition Reynolds number
<i>Mι</i> _t <i>r</i>	transition Reynolds number
S(t)	wetted tank surface
So	tank surface below the mean free surface
St	Strouhal number
So	boundary enclosing the liquid volume $O[e \neq \Sigma(t) + S(t)]$
SŲ	\mathcal{L}
t	time (s)
t	tangential vector
Т	period
$T_0, T_1, and T_2$	modal period and mean wave periods
T_M	for sloshing, natural sloshing periods [<i>M</i> is integer or a set of
	integers, e.g., i, j]
T_{s}	surface tension
T_d	duration of an external loading
T_{sc}	scantling draft
Tmem	membrane tension
$T_{\rm st}$	tension of a string
- 31	
и	the Ox -component of v
u_1, u_2, u_3	see v
u_r	see v_r
Ú	characteristic velocity
Ū _a	gravity potential $[= -g \cdot r = -gz']$
$U_{gn} = U_n$	normal velocity component of a fluid surface: see n
	normal component of the fluid velocity on a fluid surface.
	see <i>n</i>
2)	absolute fluid velocity $[= u \boldsymbol{\rho}_1 + v \boldsymbol{\rho}_2 + w \boldsymbol{\rho}_2 - (u + v + v) - v \boldsymbol{\rho}_2 + v$
-	$(\mu_1, \mu_2, \mu_2)]$
2)	(u_1, u_2, u_3) relative (with respect to the Orwz-system) fluid velocity
U _r	$\begin{bmatrix} -\mu a_1 + \mu a_2 + \mu a_2 \end{bmatrix}$
	$[-u_r\mathbf{e}_1 + v_r\mathbf{e}_2 + w_r\mathbf{e}_3]$

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter <u>More information</u>

Nomenclature • xxi

υ	the Oy-component of v
v_r	see v_r
v_O	velocity of the origin $O = v_{O1}\boldsymbol{e}_1 + v_{O2}\boldsymbol{e}_2 + v_{O3}\boldsymbol{e}_3 =$
	$(v_{O1}, v_{O2}, v_{O3}) = (\dot{\eta}_1, \dot{\eta}_2, \dot{\eta}_3)]$
V	entry (vertical) velocity in slamming problems
Vol	fluid volume (area for two-dimensional case)
w	the Oz -component of v
w(x, t)	beam deflection
Wn	Weber number
w_r	see v_r
W	the action; see eq. (2.80) $[=\int_{t_1}^{t_2} Ldt]$
(x_1, x_2, x_3)	(x, y, z)
$Y_{lpha}(\cdot)$	Bessel function of the second kind [α is a real nonnegative number]
Greek symbols	
α or α_i	used for definitions of different angles including the phase angle; auxiliary parameters
β	generalized coordinate in Lagrange variational formulation, deadrise angle
β_M	generalized coordinates in Lagrange variational formulation for multidimensional mechanical system, amplitudes of the natural sloshing modes in the modal representation of the free surface [M is integer or a set of integers, e.g., i, j]
χ	void fraction
δ	denotes variation of a functional value or generalized coordinate, e.g., $\delta\beta$, in variational formulations; boundary-layer thickness; a small distance when analyzing proximity effect of structures in Section 4.7.2.2
δ_{ij}	Kronecker delta
ε	formal small parameter in asymptotic analysis; the dimensionless forcing amplitude in multimodal method
$\Phi(x,y,z,t)$	velocity potential of the absolute velocity field v defined in the body-fixed coordinate system $Oxyz$
$\varphi_M(x, y, z)$	natural sloshing modes [M is integer or a set of integers, e.g., i, j]

xxii • Nomenclature

γ	vortex density
$\eta_i(t)$	translatory ($i = 1, 2, 3$) and angular ($i = 4, 5, 6$) components of motions of the tank [body]-fixed coordinate system <i>Oxyz</i> relative to an inertial coordinate system; also used for global ship motions [$i = 1,, 6$]
$\iota_{m,i}$	roots of the equation $J'_m(\iota_{m,i}) = 0$
$\kappa_M = \sigma_M^2/g$	<pre>spectral parameter of the problem on natural sloshing modes [M is integer or a set of integers, e.g., i, j] ratio of the specific heat</pre>
λ	wavelength
μ	dynamic viscosity coefficient
ν	kinematic viscosity coefficient
θ	component of the cylindrical polar coordinate system (r, θ, z)
Θ	angle measuring the wave propagating direction of elementary wave components in the sea relative to a main wave propagation direction
ρ	fluid density
$ ho_l$	liquid density
$ ho_i$	inner and exterior liquid density
$ ho_o$	$ \rho_o $ ullage gas density
$ ho_g$	gas density
$ ho_c$	gas density in the cushion
σ	circular forcing frequency or a frequency of an external wave
σ_M	wave frequencies; for sloshing, natural sloshing frequencies $[M \text{ is integer or a set of integers, e.g., } i, j]$
σ_e	frequency of encounter
$\Sigma(t)$	free surface of a liquid during sloshing
Σ_0	mean free surface = hydrostatic liquid surface = unperturbed free surface
$ au_l$	laminar shear stress
$ au_{ au}$	turbulent shear stress
$\boldsymbol{\tau} = \{\tau_{ij}\}$	viscous stress components along the $(x_i - x_j)$ -components $(i, j = 1, 2, 3)$
$\boldsymbol{\omega}(t)$	instant angular velocity of the tank (the <i>Oxyz</i> -coordinate system) with respect to an inertial coordinate system $[= (\omega_1(t), \omega_2(t), \omega_3(t))]$

Nomenclature • xxiii

$\omega_i(t)$	projections of the angular velocity $\omega(t)$ -vector in the <i>Oxyz</i> -coordinate system; equal to $\dot{\eta}_{i+3}(t)$, $i = 1, 2, 3$, for linear dynamics of the tank
$\boldsymbol{\Omega}(x, y, z, t)$	Stokes–Joukowski potential [= ($\Omega_1(x, y, z, t), \Omega_2(x, y, z, t), \Omega_3(x, y, z, t)$]
$\boldsymbol{\Omega}_0(x, y, z)$	Stokes–Joukowski potential for linear sloshing theory $[= (\Omega_{01}(x, y, z), \Omega_{02}(x, y, z), \Omega_{03}(x, y, z))]$
$\Omega(t)$	gas cushion volume
$\overline{\omega}$	vorticity vector
ω ξ or $ξ_M$	vorticity vector (<i>M</i> is set of integers) damping ratio(s)
ω ξ or $ξ_M$ ζ	vorticity vector (<i>M</i> is set of integers) damping ratio(s) coefficient of bulk viscosity
ω $ξ$ or $ξ_M$ ζ $ζ_a$	vorticity vector(<i>M</i> is set of integers) damping ratio(s)coefficient of bulk viscosityamplitude of linear sea waves
$\boldsymbol{\overline{\omega}}$ $\boldsymbol{\xi} \text{ or } \boldsymbol{\xi}_{M}$ $\boldsymbol{\zeta}$ $\boldsymbol{\zeta}_{a}$ $\boldsymbol{z} = \boldsymbol{\zeta}(x, y, t)$	vorticity vector (<i>M</i> is set of integers) damping ratio(s) coefficient of bulk viscosity amplitude of linear sea waves normal representation of the free surface

Preface and Acknowledgment

Our initial motivation for writing this book was to provide background on the analytically based *nonlinear* multimodal method for sloshing developed by the authors. We soon realized that we had to give a broader scope on sloshing and also present material on computational fluid dynamics (CFD), viscous flow, the effect of internal structures, and slamming. Furthermore, experimental results are to a large degree presented to validate the theoretical results and give physical insight.

A broad variety of CFD methods exist, and other textbooks provide details on different numerical methods. Our focus has been on giving an introduction to the many CFD methods that exist. An important aspect has also been to link the material to practical aspects. Our main application is for ship tanks, where sloshing can be very violent and slamming and coupling between sloshing and ship motions are important aspects. However, we have also emphasized links to other engineering fields with applications such as tuned liquid dampers for tall buildings, rollover of tanker vehicles, oil-gas separators used on floating ocean platforms, onshore tanks, and seiching in harbors and lakes; space applications are not addressed. Whenever possible we have tried to provide examples and have emphasized exercises where we provide hints and solutions. This fact has led to the development of simple analytical methods for analysis of, for instance, transient sloshing in spherical and horizontal circular cylindrical tanks, two-phase liquid flow, the effect of tank deformations, wave-induced hydroelastic analysis of a monotower with sloshing of water inside the shaft, flow through screens and swash bulkheads, and hydrodynamic analysis for automatic control of U-tanks.

Sloshing is a fascinating topic, and the first author was deeply involved in theoretical aspects of sloshing in liquefied natural gas tanks from the beginning of the 1970s, when he worked at Det Norske Veritas. Following that period was an approximately 20-year break in his activities with sloshing until he started again at the end of the past century. The second author has worked on spacecraft applications with particular emphasis on sloshing in fuel tanks, and since the beginning of the 1990s he has been involved with mathematical aspects of sloshing at the Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev. It was their common interest in nonlinear multimodal methods for sloshing that brought them together at the Center for Ships and Ocean Structures (CeSOS), Norwegian University of Science and Technology (NTNU), Trondheim.

Mathematics is a necessity in reading the book, but we have tried to also emphasize physical explanations. Knowledge of calculus, including vector analysis and differential equations, is necessary to read the book in detail. The reader

Cambridge University Press 978-0-521-88111-1 - Sloshing Odd M. Faltinsen and Alexander N. Timokha Frontmatter More information

xxvi • Preface and Acknowledgment

should also be familiar with dynamics and basic hydrodynamics of potential and viscous flow of an incompressible fluid. This book is more advanced from a theoretical point of view than the previous books *Sea Loads on Ships and Offshore Structures* and *Hydrodynamics of High-Speed Marine Vehicles* by the first author. Part of the book has been taught to graduate students at the Department of Marine Technology, NTNU. The book should be of interest for both engineers and applied mathematicians working with advanced aspects of sloshing. A pure mathematical language is avoided to better facilitate communication with readers with engineering backgrounds.

Quality control is an important aspect of writing a book, and we received help from both experts in different fields and graduate students. Dr. Svein Skjørdal of the Grenland Group, Sandefjord, and Dr. Martin Greenhow of Brunel University have been critical reviewers of all three books written by the first author. Dr. Skjørdal was helpful in seeing the topics from a practical point of view. The contributions by Dr. Olav Rognebakke, DNV, to several topics in the book are greatly appreciated.

Yanlin Shao read fastidiously through the text and asked many important questions that enabled us to clarify the text. In addition he has controlled calculations and provided solutions to all exercises. The detailed control of Dr. Hui Sun and Xiangjun Kong is also appreciated.

Professor Dag Myrhaug of NTNU and Professor J. M. R. Graham of Imperial College, London, critically reviewed Chapter 6 on viscous wave loads and damping.

Professor Marilena Greco of CeSOS and INSEAN and Professor G. X. Wu of University College provided important contributions to Chapter 10 on CFD and Chapter 11 on slamming. The expert help from Dr. Ould El Moctar of Germanischer Lloyds in reviewing Chapter 10 and by Professor Alexander Korobkin of University of East Anglia in reviewing Chapter 11 is also greatly appreciated.

Many other people should be thanked for their critical reviews and contributions, including Bjørn Abrahamsen, CeSOS; Professor Jørgen Amdahl, NTNU; Dr. Petter Andreas Berthelsen, CeSOS; Dr. Henrik Bredmose, University of Bristol; Dr. Claus M. Brinchmann, Rolls-Royce Intering Products; Dr. Chunhua Ge, Lloyd's Register of Shipping; Mateusz Graczyk, CeSOS; Xiaoyu Guo, CeSOS; Dr. Kjell Herfjord, StatoilHydro; Professor Changhong Hu, Kyushu University; David Kristiansen, CeSOS; Professor Carl Martin Larsen, CeSOS; Dr. Claudio Lugni, INSEAN; Professor J. N. Newman; Jan Arne Opedal, NTNU and DNV; Dr. Csaba Pakozdi, CeSOS; Professor Bjørnar Pettersen, NTNU; Dr. Hang Sub Urm, DNV; Tone Vestbøstad, CeSOS; and Dr. Zhu Wei, CeSOS.

The tedious work of obtaining permissions to use published material was done by Karelle Gilbert, CeSOS.

Acronyms and Abbreviations

AFRA	average freight rate assessment
AP	after perpendicular
BEM	boundary element method
CFD	computational fluid dynamics
CL	centerline
COG	center of gravity
DLWL	designer's load waterline
DWT	deadweight
FDM	finite difference method
FEM	finite element method
FLS	fatigue limit state
FP	forward perpendicular
FPSO	floating production storage and offloading
FVM	finite volume method
IMO	International Maritime Organization
ISSC	International Ship and Offshore Structures Congress
ITTC	International Towing Tank Conference
JONSWAP	Joint North Sea Wave Project
LNG	liquefied natural gas
LPG	liquefied petroleum gas
O/O	ore/oil
OBO	oil/bulk/ore
RANS	Reynolds-averaged Navier–Stokes
RAO	response amplitude operator
RV	regasification vessel
SOLAS	Safety of Life at Sea
SPH	smoothed particle hydrodynamics
TLCD	tuned liquid column damper
TLD	tuned liquid damper
TLP	tension leg platform
TSD	tuned sloshing damper
ULCC	ultralarge crude carrier
ULS	ultimate limit state
VIV	vortex-induced vibration
VLCC	very large crude carrier

xxvii