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Nomenclature

pair A and A, dominant wave amplitudes in the steady-state analysis of
or Ai nonlinear three-dimensional sloshing, or wave amplitudes in

ocean wave problems

AName
ij added mass coefficients for three-dimensional statement;

Name specifies subject [ i, j = 1, . . . , 6 and Name = frozen,
filled, slosh, etc.]

aName
ij the same as AName

ij , but for a two-dimensional statement

B beam (breadth) of a ship or catamaran
pair B and B dominant wave amplitudes in the steady-state analysis of

nonlinear three-dimensional sloshing
Bt = L2 breadth of tank for three-dimensional sloshing
Bo Bond number
Bij elements of the damping matrix [i, j = 1, . . . , 6]
bij the same as Bij , but for two-dimensional statement

[i, j = 1, . . . , 6]
bs effective sloshing breadth

c0 speed of sound
Ca Cauchy number
CE modified Euler number
CD drag coefficient
CM mass coefficient
Cv modified cavitation number
CName

ij restoring coefficients [i, j = 1, . . . , 6; Name = frozen, filled,
slosh, etc.]

D or d diameter, draft of a ship
D0 = 2R0 diameter of spherical tank
d∗/dt ∗-time derivative of a vector function in the body-fixed

(noninertial) coordinate system; the superscript asterisk
indicates that one should not time-differentiate the unit
vectors (see eq. (2.50))

ei or ex, ey, ez unit vectors of the body (tank)-fixed coordinate system
[i = 1, 2, 3]

e′
i unit vectors of the Earth-fixed coordinate system [i = 1, 2, 3]
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xviii • Nomenclature

E Young’s modulus
E(t), 〈E〉 energy, time-averaged energy
Eg work done by gravitational force; bulk modulus of gas
Ek kinetic energy
Ep potential energy
El bulk modulus of liquid
Ev bulk modulus of elasticity
Eext work done by external forces
Ein internal strain energy of deforming the object
Emem membrane elasticity
Eu Euler number

FName(t) hydrodynamic force, where Name declares specific conditions
on the considered fluid (e.g., filled, frozen) if needed
[= (F1, F2, F3 )]

F Name
i for i = 1, 2, 3, components of FName(t) ; for i = 4, 5, 6,

components of the hydrodynamic moment MO(t) in the
Oxyz-coordinate system

Fn Froude number
f M(x, y) wave patterns defined by the natural sloshing modes,

f M = ϕM(x, y, 0) [M is integer or a set of integers; e.g., i, j ]

g = g gravitational acceleration vector [= g1e1 + g2e2 + g3e3]
g gravitational acceleration [= 9.81 m s–2]
gi components of g in the Oxyz-coordinate system (i = 1, 2, 3)
GO(t) angular fluid momentum relative to the origin O

h liquid depth
h nondimensional liquid depth scaled by tank breadth or length
H wave height
Ht tank height
H1/3 significant wave height

I0 inertia tensor for a frozen liquid [= {I0
ij }]

I second moment of area with respect to the neutral axis for the
beam problem

J 1(t) inertia tensor for sloshing [= {J 1
ij (t)}]

J 1
0 linearized inertia tensor (time-independent) for sloshing

[{J 1
0ij }]

Jα(·) the Bessel function of the first kind [α is a real nonnegative
number]

k or kM wave number; if M (integer or several integer indices, e.g., i, j ,
or a symbol) is present, the wave number for natural
sloshing modes

KC Keulegan–Carpenter number
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Nomenclature • xix

l characteristic linear dimension in two-dimensional statement;
tank breadth for two-dimensional sloshing problem

lb length of a baffle
ls effective sloshing length
L characteristic linear dimension in three-dimensional

statement; the length of a ship; a typical dimension in some
illustrative examples and exercises

L Lagrangian
Lt = L1 length of a tank in three-dimensional analysis
Lm length in model scale
Lp length in prototype scale

M mass of an object in a three-dimensional statement
Ml mass of a contained liquid in three-dimensional

statement
M(t) fluid momentum
MName

O (t) hydrodynamic moment relative to the origin O in the
Oxyz-coordinate system; Name declares specific conditions
on the considered fluid (e.g., filled, frozen) if needed
[= (MO1, MO2, MO3) = (F Name

4 , F Name
5 , F Name

6 )]
m mass of an object in a two-dimensional statement, mass per

unit length
mk spectral moments [k = 0, 1, 2, . . . ]
ml mass of a contained liquid in two-dimensional statement
Ma Mach number

n = (n1, n2, n3) outer normal vector of a fluid volume
n+ normal vector with positive direction into a fluid volume

[= −n]

O origin of the body-fixed coordinate system Oxyz
O(ε) expresses the same order as a small parameter ε � 1
O′ the origin of the Earth-fixed (inertial) coordinate system

O′x′y′z′

Oxyz the body[tank]-fixed coordinate system
O′x′y′z′ the Earth-fixed [inertial] coordinate system
o(ε) expresses higher order than a small parameter ε � 1

P pressure impulse
p(x, y, z, t) pressure
p0 ullage pressure [= const]
pa atmospheric pressure
pv liquid vapor pressure
pD dynamic pressure

Q(t) the liquid domain (in most cases, the tank liquid)
Q0 the tank liquid domain in hydrostatic state
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xx • Nomenclature

r component of the cylindrical polar coordinate system (r, θ, z)
r = (x, y, z) radius vector of a point in the body-fixed coordinate system
r′ radius vector of a point in the Earth-fixed coordinate system

[= r′
O + r]

rlC(t) radius vector of the mobile mass center of a contained liquid
in the Oxyz-coordinate system [= (xlC(t), ylC(t), zlC(t))]

rlC0 radius vector of a contained liquid in the hydrostatic state in
the Oxyz-coordinate system [= (xlC0 , ylC0 , zlC0 )]

R0[= 1
2 D0] radius of a circular cylindrical tank or a circular spherical tank

r0 radius of internal structures (e.g., poles) inserted into the
liquid

rjj , j = 4, 5, 6 radii of gyration
Ra arithmetical mean roughness on the body surface
Rn and RE Reynolds number, different definitions
Rntr transition Reynolds number

S(t) wetted tank surface
S0 tank surface below the mean free surface
St Strouhal number
SQ boundary enclosing the liquid volume Q [e.g., �(t) + S(t)]

t time (s)
t tangential vector
T period
T0, T1, and T2 modal period and mean wave periods
TM for sloshing, natural sloshing periods [M is integer or a set of

integers, e.g., i, j ]
Ts surface tension
Td duration of an external loading
Tsc scantling draft
Tmem membrane tension
Tst tension of a string

u the Ox-component of v

u1, u2, u3 see v

ur see vr

U characteristic velocity
Ug gravity potential [= −g · r = −gz′]
Usn = Un normal velocity component of a fluid surface; see n
un normal component of the fluid velocity on a fluid surface;

see n

v absolute fluid velocity [= ue1 + ve2 + we3 = (u, v, w) =
(u1, u2, u3)]

vr relative (with respect to the Oxyz-system) fluid velocity
[= ure1 + vre2 + wre3]
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Nomenclature • xxi

v the Oy-component of v

vr see vr

vO velocity of the origin O [= vO1e1 + vO2e2 + vO3e3 =
(vO1, vO2, vO3) = (η̇1, η̇2, η̇3)]

V entry (vertical) velocity in slamming problems
Vol fluid volume (area for two-dimensional case)

w the Oz-component of v

w(x, t) beam deflection
Wn Weber number
wr see vr

W the action; see eq. (2.80) [= ∫ t2
t1

Ldt]

(x1, x2, x3) (x, y, z)

Yα(·) Bessel function of the second kind [α is a real nonnegative
number]

Greek symbols

α or αi used for definitions of different angles including the phase
angle; auxiliary parameters

β generalized coordinate in Lagrange variational formulation,
deadrise angle

βM generalized coordinates in Lagrange variational formulation
for multidimensional mechanical system, amplitudes of the
natural sloshing modes in the modal representation of the
free surface [M is integer or a set of integers, e.g., i, j ]

χ void fraction

δ denotes variation of a functional value or generalized
coordinate, e.g., δβ, in variational formulations;
boundary-layer thickness; a small distance when analyzing
proximity effect of structures in Section 4.7.2.2

δij Kronecker delta

ε formal small parameter in asymptotic analysis; the
dimensionless forcing amplitude in multimodal method


(x, y, z, t) velocity potential of the absolute velocity field v defined in the
body-fixed coordinate system Oxyz

ϕM(x, y, z) natural sloshing modes [M is integer or a set of integers,
e.g., i, j ]
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xxii • Nomenclature

γ vortex density

ηi(t) translatory (i = 1, 2, 3) and angular (i = 4, 5, 6) components
of motions of the tank [body]-fixed coordinate system Oxyz
relative to an inertial coordinate system; also used for
global ship motions [i = 1, . . . , 6]

ιm,i roots of the equation J ′
m(ιm,i) = 0

κM = σ2
M/g spectral parameter of the problem on natural sloshing modes

[M is integer or a set of integers, e.g., i, j ]
κ ratio of the specific heat

λ wavelength

µ dynamic viscosity coefficient

ν kinematic viscosity coefficient

θ component of the cylindrical polar coordinate system (r, θ, z)
� angle measuring the wave propagating direction of

elementary wave components in the sea relative to a main
wave propagation direction

ρ fluid density
ρl liquid density
ρi inner and exterior liquid density
ρo ρo ullage gas density
ρg gas density
ρc gas density in the cushion

σ circular forcing frequency or a frequency of an external wave
σM wave frequencies; for sloshing, natural sloshing frequencies

[M is integer or a set of integers, e.g., i, j ]
σe frequency of encounter
�(t) free surface of a liquid during sloshing
�0 mean free surface = hydrostatic liquid surface = unperturbed

free surface

τl laminar shear stress
ττ turbulent shear stress
τ = {τij } viscous stress components along the (xi − xj )-components

(i, j = 1, 2, 3)

ω(t) instant angular velocity of the tank (the Oxyz-coordinate
system) with respect to an inertial coordinate system
[= (ω1(t), ω2(t), ω3(t))]
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Nomenclature • xxiii

ωi(t) projections of the angular velocity ω(t)-vector in the
Oxyz-coordinate system; equal to η̇i+3(t), i = 1, 2, 3, for
linear dynamics of the tank

Ω(x, y, z, t) Stokes–Joukowski potential [= (Ω1(x, y, z, t),Ω2(x, y, z, t),
Ω3(x, y, z, t))]

Ω0(x, y, z) Stokes–Joukowski potential for linear sloshing theory
[= (Ω01(x, y, z),Ω02(x, y, z),Ω03(x, y, z))]

�(t) gas cushion volume

� vorticity vector

ξ or ξM (M is set of integers) damping ratio(s)

ζ coefficient of bulk viscosity
ζa amplitude of linear sea waves
z = ζ(x, y, t) normal representation of the free surface
Z(x, y, z, t) = 0 implicitly defined free surface
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Preface and Acknowledgment

Our initial motivation for writing this book was to provide background on the
analytically based nonlinear multimodal method for sloshing developed by the
authors. We soon realized that we had to give a broader scope on sloshing and
also present material on computational fluid dynamics (CFD), viscous flow, the
effect of internal structures, and slamming. Furthermore, experimental results are
to a large degree presented to validate the theoretical results and give physical
insight.

A broad variety of CFD methods exist, and other textbooks provide details
on different numerical methods. Our focus has been on giving an introduction
to the many CFD methods that exist. An important aspect has also been to link
the material to practical aspects. Our main application is for ship tanks, where
sloshing can be very violent and slamming and coupling between sloshing and
ship motions are important aspects. However, we have also emphasized links to
other engineering fields with applications such as tuned liquid dampers for tall
buildings, rollover of tanker vehicles, oil–gas separators used on floating ocean
platforms, onshore tanks, and seiching in harbors and lakes; space applications
are not addressed. Whenever possible we have tried to provide examples and
have emphasized exercises where we provide hints and solutions. This fact has
led to the development of simple analytical methods for analysis of, for instance,
transient sloshing in spherical and horizontal circular cylindrical tanks, two-phase
liquid flow, the effect of tank deformations, wave-induced hydroelastic analysis
of a monotower with sloshing of water inside the shaft, flow through screens and
swash bulkheads, and hydrodynamic analysis for automatic control of U-tanks.

Sloshing is a fascinating topic, and the first author was deeply involved in the-
oretical aspects of sloshing in liquefied natural gas tanks from the beginning of
the 1970s, when he worked at Det Norske Veritas. Following that period was an
approximately 20-year break in his activities with sloshing until he started again at
the end of the past century. The second author has worked on spacecraft applica-
tions with particular emphasis on sloshing in fuel tanks, and since the beginning
of the 1990s he has been involved with mathematical aspects of sloshing at the
Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev. It was
their common interest in nonlinear multimodal methods for sloshing that brought
them together at the Center for Ships and Ocean Structures (CeSOS), Norwegian
University of Science and Technology (NTNU), Trondheim.

Mathematics is a necessity in reading the book, but we have tried to also
emphasize physical explanations. Knowledge of calculus, including vector analy-
sis and differential equations, is necessary to read the book in detail. The reader
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xxvi • Preface and Acknowledgment

should also be familiar with dynamics and basic hydrodynamics of potential and
viscous flow of an incompressible fluid. This book is more advanced from a the-
oretical point of view than the previous books Sea Loads on Ships and Offshore
Structures and Hydrodynamics of High-Speed Marine Vehicles by the first author.
Part of the book has been taught to graduate students at the Department of
Marine Technology, NTNU. The book should be of interest for both engineers
and applied mathematicians working with advanced aspects of sloshing. A pure
mathematical language is avoided to better facilitate communication with readers
with engineering backgrounds.

Quality control is an important aspect of writing a book, and we received help
from both experts in different fields and graduate students. Dr. Svein Skjørdal
of the Grenland Group, Sandefjord, and Dr. Martin Greenhow of Brunel Uni-
versity have been critical reviewers of all three books written by the first author.
Dr. Skjørdal was helpful in seeing the topics from a practical point of view. The
contributions by Dr. Olav Rognebakke, DNV, to several topics in the book are
greatly appreciated.

Yanlin Shao read fastidiously through the text and asked many important ques-
tions that enabled us to clarify the text. In addition he has controlled calculations
and provided solutions to all exercises. The detailed control of Dr. Hui Sun and
Xiangjun Kong is also appreciated.

Professor Dag Myrhaug of NTNU and Professor J. M. R. Graham of Imperial
College, London, critically reviewed Chapter 6 on viscous wave loads and damp-
ing.

Professor Marilena Greco of CeSOS and INSEAN and Professor G. X. Wu of
University College provided important contributions to Chapter 10 on CFD and
Chapter 11 on slamming. The expert help from Dr. Ould El Moctar of German-
ischer Lloyds in reviewing Chapter 10 and by Professor Alexander Korobkin of
University of East Anglia in reviewing Chapter 11 is also greatly appreciated.

Many other people should be thanked for their critical reviews and contribu-
tions, including Bjørn Abrahamsen, CeSOS; Professor Jørgen Amdahl, NTNU;
Dr. Petter Andreas Berthelsen, CeSOS; Dr. Henrik Bredmose, University of
Bristol; Dr. Claus M. Brinchmann, Rolls-Royce Intering Products; Dr. Chun-
hua Ge, Lloyd’s Register of Shipping; Mateusz Graczyk, CeSOS; Xiaoyu Guo,
CeSOS; Dr. Kjell Herfjord, StatoilHydro; Professor Changhong Hu, Kyushu
University; David Kristiansen, CeSOS; Professor Carl Martin Larsen, CeSOS;
Dr. Claudio Lugni, INSEAN; Professor J. N. Newman; Jan Arne Opedal, NTNU
and DNV; Dr. Csaba Pakozdi, CeSOS; Professor Bjørnar Pettersen, NTNU; Dr.
Hang Sub Urm, DNV; Tone Vestbøstad, CeSOS; and Dr. Zhu Wei, CeSOS.

The tedious work of obtaining permissions to use published material was done
by Karelle Gilbert, CeSOS.
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Acronyms and Abbreviations

AFRA average freight rate assessment
AP after perpendicular
BEM boundary element method
CFD computational fluid dynamics
CL centerline
COG center of gravity
DLWL designer’s load waterline
DWT deadweight
FDM finite difference method
FEM finite element method
FLS fatigue limit state
FP forward perpendicular
FPSO floating production storage and offloading
FVM finite volume method
IMO International Maritime Organization
ISSC International Ship and Offshore Structures Congress
ITTC International Towing Tank Conference
JONSWAP Joint North Sea Wave Project
LNG liquefied natural gas
LPG liquefied petroleum gas
O/O ore/oil
OBO oil/bulk/ore
RANS Reynolds-averaged Navier–Stokes
RAO response amplitude operator
RV regasification vessel
SOLAS Safety of Life at Sea
SPH smoothed particle hydrodynamics
TLCD tuned liquid column damper
TLD tuned liquid damper
TLP tension leg platform
TSD tuned sloshing damper
ULCC ultralarge crude carrier
ULS ultimate limit state
VIV vortex-induced vibration
VLCC very large crude carrier
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