
Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah 
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index

Numbers in italics indicate figures.

Numbers in bold indicate tables.

abstract syntax tree (AST) high-level program

representation, 40

adaptive differential pulse-code modulation

(ADPCM) encoder, 42, 42, 43, 43, 44, 44

adders

adder tree for a FIR filter, 60, 61–2

see also multiple-operandadder,

two-operand addition

address calculation, 17–18

address calculation units (ACUs), 18

algebraic optimization, 99–113

experimental results/comparisons, 113–17:

additions/multiplications, 114, 114; with

hardware constraints, 115–17, 115, 116;

Jouletrack simulator, 114; latency and energy

reduction, 114–15, 114; Synopsis Behavioral

CompilerTM, 115: Synopsis Design

CompilerTM, 115; voltage scaling, 115

terminology explanations: co-kernels, 101;

cube-free expression, 101; cubes, 101;

kernels, 101; literals, 101; sum of

products (SOP), 101

see also divisorextraction methods of

optimization, kernels/co-kernels, rectangle

covering methods of optimization

algebraic transformations see software compilers/

compilation, algebraic transformations in

optimization

algorithmic optimization, with hardware

synthesis, 37, 44–5

analysis stage of compilation, 24

application specific integrated circuits

(ASICs), 3

approximation algorithms, 9–10

architectural synthesis for hardware, 35–7

algorithmic optimization, 37

lexical and syntactic analysis, 37

logic synthesis, 38

physical synthesis, 38

resource allocation, 37

resource binding, 37–8

see also physical synthesis, for architectural

synthesis

arithmetic expressions/operations see algebraic

optimization, integer linear programming

(ILP) solutions for reducing operations

arithmetic logic unit (ALU), 50

as late as possible (ALAP) unconstrained

scheduling, 51–2, 52

as soon as possible (ASAP) unconstrained

scheduling, 51–2, 52

asymmetrical encryption, 16–17

Bezier formulation/vector equation, 95–6

binary signed digit representation, 71–3

Booth’s algorithm, 71

caconical (sparse) form, 71

Hamming weight, 71

nonadjacent form, 71

Parhami’s generalized signed digit

system, 72–3

Reitwiesner optimal algorithm, 71–2, 72

Booth’s algorithm, 71

Buchberger algorithm, 98–9

C language, 39

canonical representation, 71

canonical signed digits (CSDs), 131–2, 132

using the ordered matrix, 100–1

canonical/non-canonical number systems, 70–1

carry look-ahead adder (CLA), 79–82

delay issues, 82

four-bit CLA, 80, 81

three-level eight-bit CLA, 80, 81

two-bit CLA, 79, 80

carry propagate adders (CPAs), 83–5, 84,

138, 139

carry save adders (CSAs), 86–8, 86, 87, 88

with multiple operand addition, 158–60, 159

trees, 158–9, 159

Chatterjee et al. technique, 141

co-kernels, 101

www.cambridge.org/9780521880992
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah 
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

code generation stage for compilation, 25

combinational functional units, 46

common subexpression elimination (CSE)

with computer graphics, 11

with delay-aware optimization, 164–74

for polynomial optimization, 97–8

result comparisons, 114–16, 114, 115

in software compilers, 25–7, 26

with two-operand adder synthesis, 145–7

compilers/compilation see software

compilers/compilation, structure

compressors, 89–90, 89, 90, 91

computer graphics

Horner form, 11

multiply accumulate (MAC) operations, 11

polynomials for, 10–12

quartic spline polynomial optimization, 11–12

spline interpolation, 10–11

two-term CSE algorithm with, 11

concurrent arithmetic extraction (CAX),

112–13, 113

with CSE algorithm, 146

with FIR filter optimization, 153–4

with multiple-operand addition, 162

condense algorithm, 99, 111

configurable logic blocks (CLBs), 155

conjunctive normal form (CNF) to ILP

clauses, 118–19

control data flow graph (CDFG), 26–7

control flow graph (CFG) representation

for hardware synthesis, 40, 41

for software compilation, 23–4, 24

counters and compressors, 89–90

cryptography, 16–17

asymmetrical encryption, 16–17

exponentiation, 18, 19

method of squaring, 18

public key cryptography, 16–17

cube intersection matrix (CIM), 109–11, 110, 111

cube polynomial expressions, 101

cube-free expressions, 101

data flow graph (DFG) representation,

23–4, 24

for hardware synthesis, 37, 40–1, 42, 58–9

dataflow optimization in modern software

compilers, 25–6

CDFG, 26–7

DU chains, 25

flowgraphs, 26, 26

local and global CSE, 25, 26

define use (DU) chains, 25

delay-aware optimization with three-term

CSE, 172–4

delay model, 172–4

delay-aware optimization algorithm, 174

delay-aware three-term CAX, 173, 173

delay-ignorant three-term CAX, 172–3, 173

experimental results, 174, 174

delay-aware optimization with two-term

CSE, 164–72

about the technique, 165

arrival times of the variables, 167, 168

delay calculation, 168–9, 169

delay-aware CSE algorithm, 167–70

divisor’s true value algorithm, 170, 170

experimental results: for multi-variable DSP

transforms, 171–2, 171; with NRCSE,

delay ignorant and delay aware algorithms,

170, 171

impact of optimization on delay, 165–6, 166

problem formulation, 165–7

procedure for calculating delay, 167–8, 168

recursive and nonrecursive CSE, 166–7, 167

digit-based recording algorithms, 135

digital arithmetic see multiple-operand adder;

number representation; two-operand

addition

digital signal processing (DSP), 12–16

FIR filters, 12–13

linear transforms, 13–16

directed acyclic graph (DAG), 41

discrete cosine transform (DCT), 128–9

four-point DCT, 14, 15

for JPEG and MPEG compression, 13–16

discrete Fourier transform (DFT), 127

discrete Hartley transform (DHT), 128

discrete sine transform (DST), 129

distill algorithm, 99, 111

distributed arithmetic, 90–3, 92

divisor extraction methods of optimization,

111–13, 112

concurrent arithmetic extraction (CAX),

112–13, 113

divisor subexpressions, 111–13

embedded computing/systems, 3

design flow, 3–4, 4

exponentiation, 18, 19

field programmable gate arrays (FPGAs),

155–8

finite impulse response (FIR) filter, 12–13,

148–51

architecture with adders and latches,

151–3, 152

L-tap FIR filters, 12, 148–9; direct form,

148–9, 148; distributed arithmetic

implementation, 149–50, 150, 151

with multiple-constant multiplication (MCM),

133–4, 134

reducing the number of registered adders,

152–3, 153

tapped delay line representation, 13

183Index

www.cambridge.org/9780521880992
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah 
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

finite impulse response (FIR) filter case study

for hardware synthesis, 58–64

adder tree, 60, 61–2

area/latency relationship, 62–3, 64

C code for a 64-tap FIR filter, 58, 58

DFG of the unrolled 64-tap filter, 58–9, 59

minimizing area of computational resources,

60–1, 62

most area efficient design, 61–2, 63

resource sharing, 61–2

technological library example, 60

finite impulse response (FIR) filter optimization,

147–58

experimental results using FPGAs, 155–8;

additions before and after optimization,

156, 156; comparisons of slices, LUTs, flip

flops and performance, 156–7, 156;

MAC-based FIR filter comparison,

157, 158; power consumption comparisons,

157, 158; reduction in slices, LUTs and

FFs, 157

FIR filter fundamentals, 148–51

optimization algorithm, 153–5: algorithm for

reducing area, 154, 155; divisor value

approach, 154; fast evaluation with

extra registers, 153, 154; use of CAX

algorithm, 153–4

fixed point number representations, 73–4

accuracy, 73

range, 73

resolution, 73

two’s complement representation, 74

flip flops (FFs), 82

floating point number representations,

3–4, 74–5

advantages/disadvantages, 75

exponent, 74

IEEE 754 standard, 74–5

significand, 74

flow graphs

control data flow graph (CDFG), 26–7

see also controlflow graph (CFG)

representation, data flow graph (DFG)

representation

force directed scheduling (FDS), 54–5, 55

functional units in hardware synthesis, 46–7

H.264 video codec, 14–16

Hamming weight, 71

hardware description languages (HDLs), 4

hardware synthesis, 35–64

algorithmic optimization, 44–5

hardware description languages, 35

resource binding, 56, 57

system specification, 38–9

see also finiteimpulse response (FIR) filter case

study for hardware synthesis

hardware synthesis, design flow, 35–8

DFG program representation, 37

program representation, 37

stages for, 36

see also architecturalsynthesis for

hardware, physical synthesis, for

architectural synthesis

hardware synthesis, operation scheduling, 49–56

constrained scheduling algorithms, 52–6

force directed scheduling (FDS), 54–5, 55

heterogeneous scheduling, 50

homogeneous scheduling, 50

list scheduling, 53–4, 53

problem definition, 50–1

resource constrained scheduling (RCS), 49, 50–1

timing constrained scheduling (TCS), 49, 51, 55

unconstrained scheduling algorithms, 51–2

hardware synthesis, program representation,

39–44

ADCPM encoder, 42, 42, 43, 43, 44, 44

AST high-level program, 40

CFG representation, 40, 41

DFG representation, 40–1, 42

PDG representation, 42–4, 43

RTL description, 44, 44

SSA intermediate representation, 42, 42

hardware synthesis, resource allocation, 45–9

about resource allocation, 45–6

clock periods, 46–7

combinatorial functional units, 46

interconnect logic, 48

nonpipelined sequential function units, 46–7

pipelined sequential function units, 46

potential implementations for multipliers, 47

problem definition, 49

storage elements, 48: on-chip memory blocks,

48; registers, 48

timing attributes, 47

hardware/software choices, 4

heterogeneous scheduling, 50

homogeneous scheduling, 50

Horner form/method

with computer graphics, 11

for evaluating polynomial approximations,

31–3, 96–8: advantages, 31–2: disadvantages,

32–3; limitations, 98; optimization of the

quartic spline polynomial, 98

result comparisons, 114–15, 114, 115

IEEE 754 standard, 74–5

integer linear programming (ILP) solutions for

reducing operations, 117–23

CNF to ILP clauses, 118–19

generalizing the ILP model for redundancy

elimination, 119–23

GenCkt algorithm to generate AND-OR

circuits, 119–23, 120, 122

184 Index

www.cambridge.org/9780521880992
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah 
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

modeling CSE as an ILP problem, 117–19

intellectual property (IP) cores, 39

interconnect logic, hardware synthesis, 48

intermediate code generation for compilation,

23–4

DFG and CFG representations, 23–4, 24

inverse discrete cosine transform (IDCT), 128–9

inverse modified discrete cosine transform

(IMDCT), 129

Jouletrack simulator, 114

JPEG compression, 13–14

kernels/co-kernels, 101–9

co-kernels, 101

examples, 106

expressions after extraction, 109

finding intersections, 106–9, 108

generating kernels of polynomial

expressions, 102–3

kernel generation algorithm, 103–5, 103; divide

function, 104; merge function, 104

kernel-cube matrix (KCM), 106–9: prime

rectangles in, 108, 109; rectangles in, 107

kernelling, 100

kernels algorithm, 99, 105

performing factorizations, 106–9

kill, generate, propagate unit (KGP), 77, 78

L-tap FIR filters see under finite impulse

response (FIR) filter

lexical analysis (lexing/scanning)

for compilation, 22

for hardware synthesis, 37

linear systems

about linear systems, 2, 126, 178

basics, 126–9: additivity, 126–7; familiar linear

transforms, 127–9; homogeneity, 126–7;

transformation matrices, 127

problem formulation, 129–30: for a four-point

DCT, 130

for signal processing, 2

see also multiple-operandaddition, synthesis

for, multiplication, polynomial

expressions/functions

linear systems, optimization of, 140–58

about linear system optimization, 140–2

Chatterjee et al. technique, 141: example, 141

and the MCM problem, 140–1: example, 140

for synthesis using two-operand adders, 143–7:

Boolean expression techniques, 143;

common subexpression elimination (CSE),

145–7; generation of two-term divisors,

143–5, 144; H.264 example, 147; two-term

CAX, algorithm for, 146

with transformation into a polynomial

expression, 142

see also delay-aware optimization. . . , finite

impulse response (FIR) filter optimization,

software optimization

linear transforms, 13–16, 127–9

DCT for JPEG and MPEG compression

example, 13–16

discrete cosine transform (DCT), 128–9

discrete Fourier transform (DFT), 127

discrete Hartley transform (DHT), 128

discrete sine transform (DST), 129

with H.264 video codec, 14–16

inverse discrete cosine transform (IDCR),

128–9

inverse modified discrete cosine transform

(IMDCT), 129

modified discrete cosine transform

(MDCT), 129

multipliers with, 16

real discrete Fourier transform (RDFT), 128

Walsh–Hadamard transform (WHT), 127

list scheduling, 53–4, 53

literals, 101

logic synthesis, for architectural synthesis, 38

look up table (LUT), 150

loop invariant code motion, 28–9

Manchester adder, 77

MATLAB system design language, 39

method of squaring, 17

modified discrete cosine transform (MDCT), 129

MPEG compression, 13–14

multiple-constant multiplication (MCM)

see multiplication

multiple-operand adder, 82–93

about multiple-operand adders, 82–3

carry propagate adders (CPAs), 83–5, 84

carry save adders (CSAs), 86–8, 86, 87, 88

counters and compressors, 89–90

definitions, 83

distributed arithmetic, 90–3, 92

parallel carry propagation summation, 85, 85

redundant digit summation, 86

sequential carry propagation summation, 83–5

signed/unsigned operands, 83

summation of m operands, 83, 84

multiple-operand addition, synthesis for, 158–64

algorithm complexity, 163

with carry save adder (CSA) trees, 158–60, 159

experimental results, 163–4: areas before/after

optimization, 164

iterative CSE algorithm, 162–3, 163; three-term

CAX algorithm, 162, 162

linear transform in linear/matrix/polynomial

form, 160, 160

three-term divisor extraction algorithm,

160–2, 161

multiple-variable multiplication, 137–9

185Index

www.cambridge.org/9780521880992
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah 
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

multiplication

multiple-constant multiplication (MCM),

133–9: with carry propagate adders (CPA),

138, 139; CSE algorithms, 135–7; digit-based

recording algorithms, 135; example with two

constants, 134, 135; with FIR filters, 133–4,

134; graph-based algorithms, 137; multiple-

variable problems, 137–9, 138; with Synopsis

Design Compiler UltraTM, 139, 139

single-constant multiplication, 130–3:

canonical signed digits (CSD) with, 131–2;

decomposition, 130; four-point DCT

transformation, 132–3; not-polynomial (NP)

complete issue, 130–1; optimal case, 132,

133; shifting issues, 131

multipliers, with linear transforms, 16

multiply accumulate (MAC) operations

with computer graphics, 11

with the Horner form, 32

nonadjacent form, 71

not-polynomial (NP) complete, 130–1

number representation, 68–75

binary numbers, 69

binary signed digit representation, 71–3

canonical/non-canonical systems, 70–1

digital vectors, 69

fixed point representations, 73–4

floating point representations, 74–5

negative numbers, 69

number system properties, 68–71

radix systems, 70

redundant/nonredundant systems, 70

weighted systems, 70

on-chip memory blocks, for hardware

synthesis, 48

operation scheduling see hardware synthesis,

operation scheduling

operator strength reduction, 30–1

optimization stage for compilation, 25

ordered matrix for canonical representation,

100–1

parallel carry propagation summation, 85, 85

Parhami’s generalized signed digit system, 72–3

partial-redundancy elimination (PRE), 29–30, 30

physical synthesis, for architectural synthesis, 38

floorplanning, 38

placement, 38

routing, 38

pipelined adder, 82, 82

flip flops (FFs) in the design, 82

pipelined/nonpipelined sequential functional

units, 46–7

polynomial expressions/functions, 95–123

about polynomials, 1, 2, 10, 18–19, 95–6

address calculation, 17–18

approximation algorithms, 9–10

basic purpose/function, 95

Bezier formulation, 95–6

Buchberger algorithm, 98–9

for computer graphics, 10–12, 95

condense algorithm, 99

cryptography, 16–17

distill algorithm, 99

for DSP, 12–16

for function evaluation, 1–2

kernelling algorithm, 99

optimizing, 5–6

problem formulation, 96

simplification modulo set of polynomials, 98–9

using the CSE algorithm, 97–8

see also algebraicoptimization, Horner

form/method, integer linear programming

(ILP) solutions for reducing operations,

kernels/co-kernels, rectangle covering

methods of optimization

processing time issues, 2

program dependence graph (PDG)

representation, 42–4, 43

public key cryptography, 16–17

quartic spline polynomial optimization, 11–12

radix number systems, 70

real discrete Fourier transform (RDFT), 128

rectangle covering methods of optimization,

100–11

for finding single-term subexpressions, 109–11,

110: condense algorithm, 111; cube

intersection matrix (CIM), 109–11, 110, 111;

Distill algorithm, 111

ordered matrix for canonical representation,

100–1

rectangle covering algorithm, 101

see also kernels/co-kernels

redundant digit summation, 86

registers for hardware synthesis, 48

register transfer level (RTL), 4, 36, 44, 44

Reitwiesner optimal algorithm, 71–2, 72

resource allocation, for architectural synthesis, 37

resource binding

for architectural synthesis, 37–8

for hardware synthesis, 56, 57

resource constrained scheduling (RCS), 49, 50–1

resource sharing, FIR filter case study, 61–2

ripple carry adder (RCA), 77, 78

speed/delay issues, 77

scanning (lexical analysis), 22

scheduling see hardware synthesis, operation

scheduling

semantic checking for compilation, 23

186 Index

www.cambridge.org/9780521880992
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah 
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

sequential carry propagation summation, 83–5

signal processing, 2

single-constant multiplication see multiplication

software compilers/compilation, algebraic

transformations in optimization, 25–33

CSE procedure, 26–7, 26

dataflow optimization, 25–6

drawbacks of conventional techniques, 33

Horner form for evaluating polynomial

approximations, 31–3

loop invariant code motion, 28–9

operator strength reduction, 30–1

PRE operation, 29–30, 30

value numbering, 27–8

software compilers/compilation, structure, 21–5

about compilers, 21, 33–4

analysis stage, 24

basic compilation steps, 22

benefits of compilers, 21

code generation stage, 25

intermediate code generation, 23–4

lexical analysis (lexing/scanning), 22

optimization stage, 25

semantic checking, 23

syntactic analysis, 22–3

software optimization, 174–8

after constant expansion, 176–8: H.264’s Luma

interpolation equations, 177, 178; VC-1’s

integer transform equations, 177, 177

without constant expansion, 175–6: 4�4 VC-1

video codec, 175; H.264 video compression

for Luma interpolation, 175–6, 176; use of

two-term CAX algorithm, 175

spline interpolation, 10–11

static single assignment (SSA) intermediate

representation, 42, 42

storage elements, hardware synthesis, 48

sum of products (SOP), 101

Synopsis Behavioral CompilerTM, 115

Synopsis Design CompilerTM, 115

Synopsis Design Compiler UltraTM, 139, 139

syntactic analysis

for compilation, 22–3

for hardware synthesis, 37

Taylor expansion, 9–10

technological library example, 60

three-term divisor extraction algorithm, 160–2

timing constrained scheduling (TCS), 49, 51, 55

timing/clock period issues for hardware

synthesis, 46–7

transformation matrices, 127

trees

abstract syntax tree (AST), 40

adder trees, 61–2

with carry save adder (CSA) trees, 158–60, 159

tree height reduction (THR), 165

two-operand addition, 75–82

addition of two one-bit numbers, 76, 76

carry look-ahead adder (CLA), 79–82

half and full adders, 76–7

kill, generate, propagate unit (KGP), 77, 78

Manchester adder, 77

pipelined adder, 82, 82

ripple carry adder (RCA), 77, 78

speed/delay issues, 77, 82

two’s complement number representation, 74

unisolvence theorem, 9

value numbering, for redundancy elimination,

27–8

voltage scaling, 115

Walsh–Hadamard transform (WHT), 127

weighted number systems, 70

187Index

www.cambridge.org/9780521880992
www.cambridge.org

