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General principles

When the density of a fluid is determined by two components, which diffuse at dif-
ferent rates, the fluid at rest can be unstable even if its density increases downward.
This simple, although seemingly counterintuitive, idea is the cornerstone of the the-
ory of double-diffusive convection. As with any other instability, double-diffusion
requires a finite amount of energy to sustain the growth of perturbations. If the
basic state is motionless, instability can be driven by the potential energy of one of
the density components. The ensuing convection depends very strongly, in terms
of its pattern and dynamics, on whether the destabilizing component is of higher or
lower diffusivity. The configuration in which the required energy is supplied by the
slower diffuser is called salt fingering; the instability driven by the faster diffuser
is known as diffusive convection. Of course, both density components could be
concurrently destabilizing. In this case, the total density stratification is unstable
and the result is top-heavy convection, a very different and much more violent
process, which is beyond the scope of this book.

Because the interest in double-diffusion was originally motivated by oceanic
applications, we follow conventional practice and introduce the key concepts in
the oceanographic context. For instance, the faster diffuser will be conveniently
referred to as temperature (T) and the slower diffuser as salinity (S) – two major
components of seawater density. However, it is our intention to present the basic
theory of double-diffusion in its most general form. Aside from parameter values
and notation, the analysis is generally applicable to a variety of other physical sys-
tems, including double-diffusion in geology, astrophysics and metallurgy. Specifics
of each field are discussed in Chapter 12.

1.1 Salt fingers

In much of the upper kilometer of tropical and subtropical oceans, warm and
salty waters are located above cold and fresh; the mean vertical stratification in
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2 General principles
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Figure 1.1 The vertical profiles of potential density (left), potential temperature
(center) and salinity (right) in the upper kilometer of the ocean, horizontally
averaged over the latitude band from 50° S to 50° N. Potential density (σ ) and
potential temperature (θ ) are used to take into account effects of compressibility
of seawater. Data are taken from the Levitus world ocean database.

the latitude band from 50° S to 50° N is shown in Figure 1.1. Since the density
of seawater decreases with temperature but increases with salinity, the available
potential energy of the system is stored in the salinity component. Vertical mixing
of salinity tends to lower the center of gravity, thereby releasing potential energy,
whilst mixing of temperature does the opposite. If the salinity stratification is losing
energy at a higher rate than the temperature gains it, there will be a continuous
supply of kinetic energy that could maintain and enhance vertical mixing. In the
ocean, the amount of energy contained in the salinity stratification is enormous,
and the release of even a small fraction of it can substantially affect the large-
scale circulation. But does it really happen? So far, we have only argued that
the instability of a two-component bottom-heavy fluid at rest does not contradict
the principle of energy conservation – an intriguing, suggestive, but not exactly
conclusive statement.

The first paper that hints at the possibility of releasing the potential energy of salt
in the gravitationally stable environment appeared in 1956: An Oceanographical
Curiosity: The Perpetual Salt Fountain by Stommel, Arons and Blanchard. The
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1.1 Salt fingers 3

Figure 1.2 Schematic diagram of the salt fountain. From Stommel et al. (1956).

authors inserted a narrow heat-conducting pipe into a tank filled with doubly
stratified water: warm and salty above cold and fresh. They discovered that if the
water in the pipe is pushed upward, the circulation will be maintained for as long
as there is a vertical salinity gradient. The reason was attributed to heat conduction
through the wall of the pipe. As shown in Figure 1.2, the rising water in the
pipe comes into thermal equilibrium with the surrounding fluid while remaining
fresher, therefore lighter, and continues to move upward, reinforcing the initial
circulation pattern. Stommel et al.’s study did not explain the connection between
the laboratory experiment and the ocean – the heat-conducting pipe was considered
to be essential in driving the circulation, and the defensive term “curiosity” slipped
into the title. At this stage, it still seemed like there was a long way to go to take
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4 General principles

Figure 1.3 Illustration of the physical mechanism of salt fingering.

the idea of double-diffusive convection from the “it is not impossible” to the “it
is likely to occur” level. However, the critical step was made only four years later
(Stern, 1960). In a surprisingly simple argument, Melvin Stern showed that not
only can instability naturally arise in the bottom-heavy stratification, but it should
also be very common in the ocean.

The key, Stern argued, is in the two orders of magnitude difference between
the molecular diffusivities of density components: kT � 1.4 · 10−7 m2 s−1 for
temperature and ks � 1.1 · 10−9 m2 s−1 for salt. The significance of unequal T–S
diffusivities can be illustrated as follows. Consider continuously stratified fluid
at rest as shown in Figure 1.3; temperature and salinity do not vary horizontally
and their vertical gradients are positive. Imagine perturbing this basic state by
displacing a small parcel of fluid downward from its equilibrium position (z0). It
rapidly adjusts its temperature (fast diffuser) to that of the surrounding fluid but
largely retains its original salinity (slow diffuser). The parcel is saltier than the
ambient water at the same level and, since density increases with salinity, heavier.
It continues to sink, moving further away from its equilibrium location, which
implies that the basic stratification is unstable. The proposed mechanism is not
unlike that of the perpetual salt fountain and, in retrospect, it becomes clear that
in 1956 Stommel and his collaborators were very close to discovering double-
diffusion. They just failed to realize that Stommel’s pipe is not necessary to release
the potential energy of a doubly stratified system – the low diffusivity of salt can
be almost as effective in preserving the salinity of water parcels.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-88074-9 - Double-Diffusive Convection
Timour Radko
Excerpt
More information

http://www.cambridge.org/9780521880749
http://www.cambridge.org
http://www.cambridge.org


1.2 The early years: from Jevons to Stommel 5

Figure 1.4 Laboratory experiment on fingering convection. An array of salt fingers
is created by setting up a stable temperature gradient and pouring salt solution on
top. From Huppert and Turner (1981).

Since salt fingering is a fundamentally diffusive process, the spatial scale of
convection cells is limited by the range of effective molecular conduction of heat.
In the ocean, salt fingers operate on scales of a few centimeters; in the laboratory,
even smaller. Often, but not always, salt fingers come in the form of vertically
elongated narrow filaments, very much as their colorful name suggests. Figure 1.4
presents an example of a laboratory experiment in which warm salty solution was
poured on top of a stable temperature gradient. The emerging pattern consists of
long parallel fingers with small round jelly-fish eddies forming at their extremities,
a pattern dramatically different from that of ordinary thermal convection.

1.2 The early years: from Jevons to Stommel

While there is no doubt that full credit for the discovery of salt fingers belongs to
Melvin Stern, it is interesting to consider some of the earlier missed opportunities.
The complete account of the pre-Stern history of double-diffusion, rich with fasci-
nating and lively details of scientific missteps, is given by Schmitt (1995a,b). What
is particularly striking in this story is how close science has come to discovering
double-diffusion on so many occasions but failed to make one final step.

The first recorded salt-finger experiment was performed by the English–
Australian Stanley Jevons. To say that Jevons was a talented fluid dynamicist
does not even start to describe his interests – he was a scientist in the broadest
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6 General principles

sense of the word. He was one of the first photographers and an active researcher in
chemistry and meteorology. By the age of twenty-two, Jevons had become a profes-
sor of logic, moral and mental philosophy, and political economy. But the coolest
thing that he ever did was to accidentally create double-diffusion in the laboratory.
After placing warm sugar solute on top of cold and fresh water, he observed an
“infiltration of minute, thread-like streams” (Jevons, 1857). In retrospect, it is clear
that this phenomenon is double-diffusion: sugar is a relatively slow diffuser and
placing it in the upper warmer layer triggers fingering instability. Unfortunately,
Jevons misinterpreted his observations. He viewed his experiment as a form of
top-heavy convection, missing his opportunity to discover double-diffusion more
than a century before Stern. However, we should not feel too sorry for Jevons since
he got himself into a rather distinguished group of scientists who almost solved the
salt-finger puzzle.

In 1880, Lord Rayleigh, perhaps the most prolific and reputable scientist of his
period, reproduced the experiments of Jevons, also observed fingering convection,
and also failed to explain it physically. In a peculiar twist of fate, Rayleigh’s
attempt to understand the origin of the sugar fingers in Jevons’ experiments led
to the first rigorous stability analysis of a stratified non-diffusive fluid (Rayleigh,
1883). His treatment of the top-heavy configuration describes what is now known
as the Rayleigh–Taylor instability. For the bottom-heavy case, Rayleigh predicted
the maximum frequency of free oscillations, arriving at the classical expression
for the buoyancy frequency N2 = − g

ρ
∂ρ
∂z

. However, the failure to recognize the
destabilizing role of thermal diffusion prevented Rayleigh from adding salt fingers
to his string of scientific victories.

The next opportunity to discover double-diffusion presented itself in 1906, when
Vagn Walfrid Ekman, another giant of fluid dynamics, performed laboratory exper-
iments on the “dead water” phenomenon. To visualize the interface displacements,
Ekman used a two-layer system of milk over seawater and observed “a shower of
small vortex-rings” – undoubtedly, milk fingers. Ekman came a bit closer than his
predecessors to pinning down the elusive phenomenon. He pointed out that when
a milk parcel comes into close contact with salty water, it gains, by molecular
diffusion, extra salinity. Salt makes the parcel denser than the surrounding fluid
and it rapidly sinks. While Ekman was right on target in explaining the physics of
milk fingers, he did not realize that the analogous dynamics occur naturally in the
ocean, where heat and salt play the same role as salt and milk in his experiments.
Apparently Ekman considered the analysis of milk fingering by itself to be overly
esoteric and frivolous and did not pursue the subject any further. Another half-a-
century had gone by before two crucial steps were made: Stommel’s salt fountain
idea in 1956 and, finally, Melvin Stern’s salt-finger paper in 1960. It is interesting
that neither Stommel nor Stern was familiar with the earlier experiments. Stern’s
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1.3 Diffusive convection 7

Figure 1.5 Illustration of the physical mechanism of oscillatory diffusive
instability.

paper cites only one study (Stommel et al., 1956) and Stommel’s paper contains
no references at all. The field of double-diffusion was created from scratch.

One can only speculate about possible reasons for a century-long delay between
the first experimental realization of fingering and the first physical model. Would
Rayleigh have discovered salt fingers if a personal encounter had permitted him
to discuss his experiments with Jevons, as suggested by Schmitt (1995a,b)? Was it
familiarity with more advanced mathematical methods that helped Stern to make
the critical connection, or did the salt fountain idea provide the valuable hint?
Could it be that the level of conceptual understanding of hydrodynamic instabili-
ties, developed by the middle of the twentieth century, was a prerequisite for his
discovery? We will never know for sure, but I have always suspected that the reason
is much simpler: Melvin was just a bit sharper than the rest of the group.

1.3 Diffusive convection

In a footnote to his seminal salt-finger paper – perhaps the most important footnote
in the history of fluid dynamics – Stern (1960) suggested the possibility of the
oscillatory diffusive instability of cold and fresh water located above warm and
salty. The dynamics of diffusive convection can be explained by reversing the
arguments used for the fingering case (Section 1.1). The schematic in Figure 1.5
represents a thought experiment in which the diffusively favorable stratification
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8 General principles

Figure 1.6 Laboratory experiment on diffusive convection. The two-layer diffusive
system is created by pouring haline solution on top of a denser sucrose solution.
From Turner (1985).

is perturbed by displacing a small parcel downward. As in the salt-finger case
(cf. Fig. 1.3), it rapidly adjusts its temperature but retains salinity. However, since
the background salinity now increases with depth, the parcel becomes lighter than
the ambient fluid at the same level, and the buoyancy force drives it upward. The
parcel is not only lighter than its surroundings but, because of heat gain, it is
also lighter than it was originally. Thus, on its way back to the point of origin, it
experiences a buoyancy force that is greater than on its way down. As a result,
the parcel gains some energy and overshoots its original equilibrium position.
Above the equilibrium level, the parcel again quickly adjusts its temperature but
not its salinity; it is now saltier and therefore heavier than the surrounding fluid.
Eventually, gravity forces it downward, back to the original location. The parcel
overshoots again, and the process repeats over and over. The energy gain by the
particle at each cycle leads to a gradual increase in the amplitude of oscillations,
resulting in the so-called “overstable” mode of instability.

Since oscillatory modes could be easily damped by viscous drag, diffusive
instability in the uniformly stratified fluid is restricted to a rather narrow range of
parameters (quantified in Chapter 2). More common in nature and in laboratory
realizations is a stepped configuration consisting of well-mixed layers separated by
a thin diffusive interface. Figure 1.6 shows an experiment set up by pouring a layer
of salty water on top of a layer of denser sugar solute. In this case, salt is the fast
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1.4 Scale analysis 9

diffuser and sugar the slow one. The more rapid molecular diffusion of salt across
the interface produces the downward density flux. The region immediately below
(above) the interface becomes denser (lighter), which maintains the top-heavy
convection in both mixed layers. Despite the apparent differences, convection in
layered systems and overstable oscillations in a continuously stratified fluid are
both described by the generic term diffusive convection.

1.4 Scale analysis

The foregoing examples leave us with a sense that double-diffusive convection
operates in a most unusual way. All its forms, fingering and diffusive, are driven by
the net release of potential energy and therefore fluid necessarily lowers its center of
mass: double-diffusive mixing makes the relatively light fluid in upper layers even
lighter; the heavy fluid at depth becomes heavier. The primary instability is driven
by molecular diffusion, a stabilizing agent in most fluid dynamical problems. The
eddy diffusivities of density constituents are different – yet another unexpected
consequence of two-component dynamics. Overall, it seems that our physical
intuition, built on experience with simple one-component fluids, fails miserably
when it comes to double-diffusion. Therefore to fully understand double-diffusive
convection, one has to rely, perhaps more strongly than in other branches of fluid
dynamics, on formal mathematical results.

The analytical explorations throughout this book are based on the well-known
(e.g., Pedlosky, 1979) Boussinesq equations of motion:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�v
∂t

+ �v · ∇�v = −∇p

ρ0
+ g

ρ − ρ0

ρ0
+ ν∇2�v,

∂T

∂t
+ �v · ∇T = kT ∇2T ,

∂S

∂t
+ �v · ∇S = kS∇2S,

∇ · �v = 0,

(1.1)

where �v is the (non-divergent) velocity field, p is the dynamic pressure, ν is
the kinematic viscosity, ρ is the density and ρ0 is a reference value. T and S
represent two scalar quantities affecting the density of the fluid (e.g., temperature
and salinity in the oceanographic context). Molecular diffusivities kT and kS are
assumed to be uniform but unequal (kT > kS). Rotational effects are neglected and
the fluid is regarded as incompressible. We also assume the linear equation of
state:

ρ − ρ0

ρ0
= β(S − S0) − α(T − T0), (1.2)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-88074-9 - Double-Diffusive Convection
Timour Radko
Excerpt
More information

http://www.cambridge.org/9780521880749
http://www.cambridge.org
http://www.cambridge.org


10 General principles

where (α, β) are the constant expansion/contraction coefficients and (T0, S0) are
the reference temperature and salinity.

We now proceed to establish, tentatively at first, the scales relevant to double-
diffusive convection. Typical temporal and spatial scales are denoted as 〈t〉 and
〈L〉; the scales of velocity, temperature, salinity, density and pressure perturbations
are 〈v′〉, 〈T ′〉, 〈S ′〉, 〈ρ ′〉 and 〈p′〉 respectively. We are particularly interested in the
dependence of these quantities on the background vertical temperature and salinity
gradients

(
T̄z, S̄z

)
and therefore the temperature scale is expressed as follows:

〈T ′〉 ∼ 〈L〉 |T̄z|. (1.3)

Because molecular dissipation plays a central role in double-diffusive convection,
the magnitude of the diffusive term in the temperature equation should be compa-
rable to the local rate of change in temperature. Since our focus will be on fully
developed instabilities, it is also reasonable to assume that the nonlinear terms are
equally important:

1

〈t〉 ∼ 〈v′〉
〈L〉 ∼ kT

〈L〉2 . (1.4)

For the equation of state (1.2), we expect comparable effects of temperature and
salinity on density distribution:

〈ρ ′〉
ρ0

∼ α〈T ′〉 ∼ β〈S ′〉. (1.5)

Finally, in the momentum equation, we anticipate that the buoyancy force is of
the same order as viscous dissipation and the pressure gradient term, which is
equivalent to setting

g
〈ρ ′〉
ρ0

∼ ν
〈v′〉
〈L〉2 ∼ 〈p〉

ρ0 〈L〉 . (1.6)

Drawing together Eqs. (1.3)–(1.6), we arrive at the following magnitudes of key
variables:

〈t〉 ∼ d2

kT

, 〈L〉 ∼ d, 〈v′〉 ∼ kT

d
, 〈p′〉 ∼ ρ0νkT

d2
, 〈T ′〉 ∼ d|T̄z|, 〈S ′〉 ∼ α

β
〈T ′〉,

(1.7)

where

d =
(

kT ν

gα
∣∣T̄z

∣∣
) 1

4

. (1.8)

The combination (1.8) can be interpreted as the nominal length scale
expected for primary double-diffusive instabilities. A typical value of T̄z
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