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1 Context: The Point of Departure

In the engineered world (and in a good deal of the natural world), stable equi-

librium, or some kind of stationary or steady-state behavior, is the order of the

day. Systems are designed to operate in a predictable fashion to fulfill their in-

tended functions despite disturbances and changing conditions. Control systems

have been spectacularly successful in maintaining a desirable (stable1) response

given inevitable uncertainty in modeling system physics. However, there are plenty

of examples of systems becoming unstable – and often the consequences of instabil-

ity are severe. This book looks at the interplay between vibrations and stability in

elastic structures.

A brief view of an ecological system provides an effective analogy. The compe-

tition between certain species can be viewed as a coupled dynamic system in a slowly

changing environment. External influences are provided by various factors includ-

ing the climate, disease, and human influence. The delicate interaction is played out

as conditions evolve and populations respond accordingly – usually in a correspond-

ingly slow way also. However, an instability may occur leading to extinction on a

relatively short time scale, perhaps when a disease (or massive meteorite) wipes out

an entire population. This situation is not that dissimilar to the fluctuations of the

stock markets (in which prediction of sudden changes is of concern to individuals

and governments).

In an engineering context, we typically have considerable knowledge about the

underlying physics and governing equations of our systems, are able to test a sys-

tem both analytically and in the laboratory, and thus have a much better chance of

assessing the robustness of a system, especially its propensity to failure. However,

unforeseen circumstances do occur, and it would, of course, be remiss in a book

concerning stability in engineering mechanics not to mention the Tacoma Narrows

suspension bridge disaster. But many other bridges and buildings have collapsed,

aircraft wings and rotorblades have a tendency to flutter, ships sometimes capsize,

the tracks of a railroad will buckle from time to time, electric circuits sporadically

exhibit unintended feedback, machine parts are prone to fatigue, and once in a while

satellites disappear into deep space. What most of these systems have in common is

that they were either subject to external influences with which they could not cope

1 Some aeronautics control systems take advantage of a brief loss of stability for enhanced maneu-

verability.
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2 Context: The Point of Departure

Gravity

Figure 1.1. A deteriorating scenario.

or they changed. Perhaps an encounter with a rogue wave in the case of a ship, or

collision with space debris in the case of the satellite. In this last instance an error

in the units used in trajectory calculations may cause disaster but in the sense that

the system was designed correctly but for the wrong conditions. Of course, there are

always practical limits to how much safety or redundancy can be built into a system;

the World Trade Center provided a sobering example. But it is also likely that a

system is subject to slowly changing conditions, which may, of course, lead to catas-

trophe, but in a gradual deteriorating sense. It is with these systems that we have

scope for monitoring and prediction, as their (dynamic) response may give clues

about future performance.

Hence, given a (structural) system in some state of rest (equilibrium) or steady-

state motion (an oscillation), we seek to understand those conditions that cause a

change in the nominal response, and especially where such a change is large (and

instability falls squarely into this category). The theoretical framework underlying

this statement is of course based on Newton’s laws and subsequent developments

especially concerning concepts of energy. To crystallize this approach, consider the

schematic diagram shown in Fig. 1.1.

Here we might consider the behavior of a small ball allowed to roll (under

the influence of gravity) on a curved surface to represent a generic structural or

mechanical system. The analogy is really brought into focus if we further assume

that the curve is actually associated with the underlying potential energy of the

system and that the surface causes a little energy dissipation as the ball rolls. Hence

the bottom of the energy “well” is identified as a position of stable equilibrium,

with linear theory based on a locally quadratic minimum. Linear stability theory

will also tell us that the “hilltops” are points of unstable equilibrium. In both

cases, the ball will remain at rest at these extremum values of the potential energy

surface. However, the important behavior is observed if the system is subject to a

disturbance. In the stable case, the ball might begin to oscillate but typically return

to rest at the bottom of the well. In the unstable case, the ball picks up speed and

www.cambridge.org/9780521880428
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88042-8 — Vibration of Axially-Loaded Structures
Lawrence N. Virgin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Context: The Point of Departure 3

F(t)

P(t)

Figure 1.2. A slender axially loaded structure and its dynamic response.

departs the local neighborhood of the hilltop. These situations are well covered by

linear stability theory providing the size of the perturbation is small.

Extending this concept further, it is natural to ask what happens

� if the morphology of the potential energy surface changes (typically slowly)

such that the potential energy at a stable equilibrium position ceases to be a

minimum,
� or if the ball is subject to a relatively large perturbation or disturbance that may

push the ball well beyond the local neighborhood of the minimum.

These are the two situations depicted in Fig. 1.1. The former case is the basis

of most studies in classical buckling. The application of an external axial load is as-

sumed to take place quasi-statically, and buckling occurs (typically leading to large

deflections) as the ball can no longer maintain its position. Many practical examples

like this can be handled very effectively by use of statics. Most interest is naturally

focused on the behavior of the system prior to buckling when the system is chang-

ing sufficiently slowly that kinetic energy can safely be ignored in the Lagrangian

description (although it may still be useful to gain information based on dynam-

ics). However, in the latter case, the application of a large (say, sudden or periodic)

perturbation inevitably leads to a dynamic, perhaps unbounded, response. In fact,

even in those cases in which a static approach works well, if we want to track the

postcritical behavior, we may still need to use a dynamic approach, for example,

one in which a system subject to a slowly increasing load results in a fast dynamic

jump at buckling.

Figure 1.2 adds some specificity to the scope of the material covered in this book

using the behavior exhibited by a vibrating thin beam:

� Figure 1.2 illustrates a beam undergoing small-amplitude free vibrations, that

is, with P(t) = F(t) = 0. This is a thoroughly linear situation, with the straight

configuration the only equilibrium and damping causing dynamic behavior to

decay. Exact solutions are available; natural frequencies are constant and scale

with the stiffness of the beam. For example, a longer beam is less stiff and thus

natural frequencies are lower. Clamped boundary conditions lead to higher nat-

ural frequencies than simply supported, and so on.
� The presence of a constant axial load [but with F(t) = 0] tends to reduce the nat-

ural frequencies if the load is compressive and below its critical value. If the ax-

ial load is sufficiently large (i.e., greater than critical), postbuckled (nontrivial)

www.cambridge.org/9780521880428
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88042-8 — Vibration of Axially-Loaded Structures
Lawrence N. Virgin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Context: The Point of Departure

equilibria exist, and natural frequencies can be computed about these nontrivial

equilibria.
� For laterally excited systems (F(t) /� 0 but with P = 0), we can have resonance.

This may also occur about postbuckled equilibria when P > Pcr.
� If the axial load is a function of time (say, periodic), then the system may also

lose stability (depending on the frequency of excitation) through parametric res-

onance.
� If the ends of the beam are both constrained against moving (in-plane) then

membrane, or stretching, forces arise.
� In each of the preceding scenarios the vibration may have large amplitude.
� Many of these scenarios might occur simultaneously. For example, a postbuck-

led beam might snap through if excited laterally.

Thus this range of behavior encompasses both small-amplitude and large-

amplitude motion about both trivial and nontrivial equilibria. Access to analytic

solutions becomes restricted as the complexity (and nonlinearity) of the system in-

creases. Damping oftens needs to be considered also. Although the example of the

prismatic beam has been used here, extensions to other types of axially loaded struc-

tures, like plates and shells is easy to envision. Furthermore, some of these situations

may lead to instability (both static and dynamic), which is of particular concern to

engineers. It is worth mentioning that aerospace structures provide a natural context

for much of this material; the continual quest for lighter vehicles naturally brings

with it issues of vibration and stability.

Some practical examples of slender structures in aerospace engineering in

which axial loads and dynamics may need to be considered are shown in Fig. 1.3.

These images all portray aerospace systems. Spacecraft applications tend to be

very lightweight: Thin-film solar sails designed for deep-space propulsion; high-

altitude unmanned surveillence craft like the Predator; lightweight solar-powered

high-endurance aircraft like the Pathfinder; the shuttle; international space station;

rotorcraft; and military aircraft all possess slender structural components subject to

a variety of loading conditions including vibration and axial-load effects.

Figure 1.4 shows some other examples of slender structures. They range from

bridges to pipelines, telescopes to submarines, oil tankers to high-rise buildings. The

vibrations of axially loaded structures also occur at very small scales, including the

increasingly important range of applications in nanotechnology. The guitar string is

an obvious case. The axial load in this case can only be tensile, but it is interesting

to note the slightly angled bridge of the guitar – this accounts for the slight amount

of bending stiffness in the thicker strings.

Hence this book is broadly divided into two main parts to cover these rather

wide-ranging scenarios. A conventional division in the presentation of vibration

problems is between free and forced vibration. That convention is somewhat fol-

lowed here in the development of the material. However, there are occasions for

which this division is not clear (e.g., an impulsive force can also be viewed as an

initial velocity), but in terms of organizing the material, this seemed to be a natural
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Figure 1.3. Examples of slender structures in an aerospace context. Courtesy of NASA. See color

plates I–IV following page xvi.
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6 Context: The Point of Departure

Figure 1.4. More examples of slender structures. See color plates V–VIII following page xvi.
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Context: The Point of Departure 7

Figure 1.4. (continued) More examples of slender structures. See color plates V–VIII following
page xvi.

choice. The next chapter will provide a brief overview of basic mechanics (which can

be omitted by the more advanced reader), followed by a treatment of the interplay

of dynamics and stability, without introducing too much in the way of mathematics,

but still providing a flavor of the types of more practical structural systems consid-

ered later in the book.
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2 Elements of Classical Mechanics

2.1 Introduction

This chapter develops the theoretical basis for the derivation of governing equations

of motion. It starts with Newton’s second law and then uses Hamilton’s principle to

derive Lagrange’s equations. A number of conservation laws are introduced. The

theory is developed initially for a single particle and extended to systems of parti-

cles where appropriate. The emphasis is placed on building the theory relevant to

the types of physical system of interest in structural dynamics. Other than the usual

limitations regarding relativistic and quantum effects, we also restrict ourselves to

translational (rather than rotational) systems, which is largely a matter of coordi-

nates. The majority of problems in this book involve systems in which the forces

developed during elastic deformation play a crucial role. Certain standard problems

in classical mechanics, for example the central force motion leading to the two-body

problem or particle scattering, are not relevant here and are not considered. We

shall see the important role played by energy methods in studying the dynamics of

structures. Classical mechanics has a long history and in-depth treatment of the sub-

ject can be found in Goldstein [1], Whittaker [2], and Synge and Griffith [3] and, of

course, going back to the early developments of Newton [4], Euler [5], and Lagrange

[6].

2.2 Newton’s Second Law

The natural starting point in any text covering an aspect of classical mechanics are

Newton’s laws of motion. They date back to 1686, with the second being the most

important:

A body acted upon by a force moves in such a manner that the time rate of change

of momentum equals the force.

Mathematically we introduce the concept of a linear momentum vector p defined as

the product of mass and velocity:

p = mv, (2.1)
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2.2 Newton’s Second Law 9

where m is the mass and v is the velocity vector. We can thus write Newton’s second

law as

F =

dp

dt
=

d

dt
(mv), (2.2)

in which F is the force vector.

To apply this law we need to specify motion relative to a reference frame. If

we define an absolute position vector, r, in an inertial frame (i.e., a frame at rest or

moving with a constant velocity relative to the “fixed” stars), then the corresponding

absolute velocity vector is given by

v =

dr

dt
= ṙ, (2.3)

where an overdot signifies a time derivative. Thus we can further express Newton’s

second law in its more familiar form as

F = m
dv

dt
= mr̈ = ma, (2.4)

where a is an absolute acceleration vector and we have assumed m does not vary

with time.

Equation (2.4) is a (set of) second-order ordinary differential equation funda-

mental to the study of mechanics. In general,

F = F(r, ṙ, t), (2.5)

and a solution r(t) that satisfies this equation can be obtained given appropriate ini-

tial conditions r(t0) and ṙ(t0). For the types of systems of relevance to the material

covered in this book, these solutions are unique. The forces entering Eq. (2.5) arise

from a number of different sources in structural dynamics: stiffness, inertia, excita-

tion and damping being the most important. The SI units of force are newtons (N),

where 1 N = 1 kg m/s2.

Clearly, if F = F(t), then it would be a straightforward task to integrate Eq. (2.4)

directly to obtain v(t) and then r(t). However, this will not typically be the case (as

elastic forces tend to depend on the change in position), and a variety of techniques

can be called on to solve differential equations. We observe at this point that so-

lutions to equations of the type (2.4) will often involve oscillations, and also that

there may not be analytic solutions available, especially in those situations in which

nonlinear terms are present. Further discussion of nonlinearity and other aspects

of differential equations are left to later chapters. However, the concept of stability

(which will be developed continuously throughout this book) involves considering

the manner in which closely adjacent solutions of Eq. (2.4) behave as a function of

time, and specifically, when one of those solutions represents some kind of steady

or equilibrium solution.
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10 Elements of Classical Mechanics

2.3 Energy and Work

Now suppose F = F(r). We can obtain information about the solution to Eq. (2.4)

by performing a path integral with respect to r along the trajectory:

∫
r(t)

r(t0)

F(r) · dr =

∫
t

t0

F(r) · ṙdt = m

∫
t

t0

d2
r

dt2
·

dr

dt
dt (2.6)

=

1

2
m

∫
t

t0

d

dt
(ṙ

2)dt =

1

2
mv

2(t) −

1

2
mv

2(t0), (2.7)

which gives the magnitude of the velocity [rather than r(t)] provided the integral on

the left-hand side of Eq. (2.6) can be performed. This is not a straightforward mat-

ter because r(t) (which is unknown) appears in the upper limit and a path integral

depends on the path of integration.

However, if we let the path of this integral [in Eq. (2.6)] be called C, then we

can introduce the work done by the force F moving along this path as

WC =

∫
C

F · dr, (2.8)

and, defining the kinetic energy as

T =

1

2
mv

2
, (2.9)

we can rewrite Eq. (2.7) as

WC = T2 − T1, (2.10)

which is a statement of the work – energy theorem. It turns out that there is a rel-

atively large class of problems for which the work done for any admissible path

between points 1 and 2 depends on only the end points of the path. In these cases

forces are called conservative, and they play a dominant role in the static analysis of

buckling, for example.

For a conservative force F(r), consider two paths C1 and C2 connecting two

points r1 and r2. In this case we can write
∫

C1

F · dr =

∫
C2

F · dr, (2.11)

which implies that
∮

F · dr = 0, (2.12)

where the closed integral is performed from r1 to r2 and back again. We define the

work done by a conservative force in moving a particle from a reference point, r0,

to an arbitrary position r as the potential energy,

V(r) =

∫
r0

r

Fc · dr, (2.13)
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