
I

Outlines

The three parts of this chapter provide outline accounts of three different topics.
While all three are central to the subject of this book, the outlines serve three
different purposes. In Section 1, we give a brief account of the Seiberg–
Witten invariants, or monopole invariants, of smooth, closed 4-manifolds.
These invariants, discovered by Seiberg and Witten and originally described
in Witten’s paper [125], are now the subject of several expository papers, pub-
lished lecture notes and books. Our purpose here is to review the definition
and main properties of these invariants, while establishing our notation and
conventions.
Section 2 covers Morse theory, and specifically the manner in which one can

recover the ordinary homology of a manifold with boundary from a “Morse
complex”, constructed from thedata providedby the critical points andgradient-
flow lines of a suitableMorse function. There are no proofs in this section. In the
main part of this book, the Floer homology of a 3-manifold will be constructed
by taking these constructions of Morse theory and repeating them in an infinite-
dimensional setting. Proofs of the main propositions are presented only in the
more difficult context of Floer homology; the finite-dimensional constructions
are presented here for motivation, to provide a framework that explains the
origin of many arguments. Although some notation is introduced, no essential
use is made of this material in the later chapters.
Finally in this chapter, Section 3 provides an outline of themain results of this

book. We describe the principal features and properties of the monopole Floer
homology groups of 3-manifolds; we explain how their construction is related
to the Morse theory of Section 2, and we explain the role of Floer homology in
computing the monopole invariants of closed 4-manifolds.
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2 I Outlines

1 Monopole invariants of four-manifolds

1.1 Spinc structures

Spinc structures can be considered on manifolds of any dimension, but we will
focus here on dimensions 3 and 4, the two cases we will need. We begin with
3-manifolds.
Let Y be a closed, oriented, Riemannian 3-manifold. A spinc structure on Y

consists of a unitary rank-2 vector bundle S → Y with a Clifford multiplication

ρ : TY → Hom(S, S).

Clifford multiplication is a bundle map that identifies TY isometrically with
the subbundle su(S) of traceless, skew-adjoint endomorphisms equipped with
the inner product 1

2 tr(a
∗b). It also respects orientation, which by convention

means that

ρ(e1)ρ(e2)ρ(e3) = 1

when the ei are an oriented frame. Given any oriented frame at a point y in Y ,
these conditions mean that we can choose a basis for the fiber Sy such that the
matrices of the linear transformations ρ(ei) are the three Pauli matrices σi:

σ1 =
[
i 0
0 −i

]
, σ2 =

[
0 −1
1 0

]
, σ3 =

[
0 i
i 0

]
. (1.1)

The action of ρ is extended to cotangent vectors using the metric, and then to
forms using the rule

ρ(α ∧ β) = 1

2

(
ρ(α)ρ(β) + (−1)deg(α) deg(β)ρ(β)ρ(α)

)
.

We also extend ρ to complex forms, so that it gives, for example, an
isomorphism

ρ : T ∗Y ⊗ C → sl(S).

Our orientation convention means that ρ(∗α) = −ρ(α) for 1-forms α.
Because the tangent bundle of an oriented 3-manifold is always trivial, a spinc

structure always exists: we can simply take S to be the product bundle C
2 × Y

and then define Clifford multiplication globally by the matrices (1.1), using
any trivialization of TY . To understand the classification of spinc structures in
general, the important observation is that if we are given one spinc structure,
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1 Monopole invariants of four-manifolds 3

say (S0, ρ0) on Y , then we can construct a new spinc structure (S, ρ) as follows.
Choose any hermitian line bundle L → Y , and define

S = S0 ⊗ L

ρ(e) = ρ0(e) ⊗ 1L.
(1.2)

The following proposition tells us that any (S, ρ) can be obtained from (S0, ρ0)
in this way, for a uniquely determined L, up to isomorphism.

Proposition 1.1.1. Given a single spinc structure (S0, ρ0), the construction
(1.2) establishes a one-to-one correspondence between:

(i) the isomorphism classes of spinc structures (S, ρ) on Y ; and
(ii) the isomorphism classes of complex line bundles L → Y .

Because line bundles L are classified by their first Chern class c1(L) ∈
H 2(Y ;Z), we can equivalently replace (ii) here by:

(iii) the elements of H 2(Y ;Z).

Proof. Let us show that any (S, ρ) can be obtained from (S0, ρ0) by tensoring
with a suitable line bundle.
Given spinc structures (S ′, ρ′) and (S, ρ) on Y , we can define a vector bundle

L on Y as the subbundle of Hom(S ′, S) consisting of homomorphisms that
intertwine ρ′ and ρ. This L has rank 1 (it is a line bundle): this is a manifestation
of Schur’s lemma and reflects the fact that only the scalar endomorphisms of
S commute with the image of ρ : TX → End(S). We call L the difference
line bundle. If the difference line bundle is trivial, then a global section of unit
length provides an isomorphism between the spinc structures.
To apply this construction, let (S, ρ) be a spinc structure and consider the

difference line bundle L between (S0, ρ0) and (S, ρ). Set S ′ = S0⊗L, and let ρ′
be the Clifford multiplication ρ ⊗ 1L. Then the difference line bundle between
S ′ and S is the trivial bundle L−1 ⊗ L. So (S ′, ρ′) and (S, ρ) are isomorphic
spinc structures. �

We will usually use s to denote a typical spinc structure (S, ρ). If s0 is a
chosen spinc structure and L has first Chern class l ∈ H 2(Y ;Z), then we write

s = s0 + l

for the spinc structure defined by (1.2). The way we have defined it, a spinc

structure depends on a prior choice of Riemannian metric. However, if g0 and
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4 I Outlines

g1 are two metrics on Y , and s0, s1 are corresponding spinc structures, we can
still compare the two: we can ask if there is a path gt in the (contractible) space
of metrics, joining g0 to g1, and a corresponding family (St , ρt), forming a
continuous family over [0, 1]. We can therefore think of the set of isomorphism
classes of spinc structures as being associated to a smooth oriented manifold Y .
On an oriented 4-dimensional Riemannian manifold X , a spinc structure

again provides a hermitian vector bundle SX → X , this time of rank 4, with a
Clifford multiplication

ρ : TX → Hom(SX , SX ),

such that at each x ∈ X we can find an oriented orthonormal frame e0, . . . , e3
with

ρ(e0) =
[
0 −I2
I2 0

]
, ρ(ei) =

[
0 −σ ∗

i
σi 0

]
(i = 1, 2, 3) (1.3)

in some orthonormal basis of the fiber Sx. Here I2 is the 2-by-2 identity matrix
and σi is as above. If we extend Clifford multiplication to (complex) forms as
before, then in the same basis for Sx we have

ρ(volx) =
[−I2 0

0 I2

]

where vol = e0 ∧ e1 ∧ e2 ∧ e3 is the oriented volume form. So the eigenspaces
of ρ(vol) give a decomposition of SX into two orthogonal rank-2 bundles. We
define S+ to be the −1 eigenspace, and write

SX = S+ ⊕ S−.

Clifford multiplication by a tangent vector is an odd linear transformation:
it interchanges the two summands, and we can write

ρ(e) : S+ → S−.

If ν is a 2-form, then ρ(ν) preserves the two summands. In dimension 4, the
bundle of 2-forms	2X decomposes as a sum of the self-dual and anti-self-dual
forms,

	2X = 	+ ⊕ 	−,
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1 Monopole invariants of four-manifolds 5

the +1 and −1 eigenbundles of the Hodge ∗ operator. A short calculation with
the matrices above shows that, if ν ∈ 	+, then ρ(ν) restricts to zero on S−,
and vice versa. We have maps

ρ : 	+ → su(S+)

ρ : 	− → su(S−)
(1.4)

which are bundle isometries. For e ∈ TxX a unit vector, the determinant of
ρ(e) : S+

x → S−
x is a map

det ρ(e) : 	2S+
x → 	2S−

x

that is independent of e. So the complex line bundles 	2S+ and 	2S− are
canonically identified.
Proposition 1.1.1 continues to hold in dimension 4, but the existence of at

least one spinc structure is a slightly more subtle question than in dimension
3. The isomorphisms (1.4) mean that w2(	

+) is equal to the mod 2 reduction
of c1(S+); so the existence of a spinc structure implies the existence of an
integral lift of w2(	

+), or equivalently of w2(X ) since these two are equal.
This condition is also sufficient: the existence of a spinc structure is equivalent
to the existence of an integral lift ofw2(X ). On an orientable 4-manifold,w2(X )

always has an integral lift, see [52], so spinc structures always exist.
In any dimension, anautomorphismof a spinc structure (S, ρ)means a unitary

bundle automorphism of S which commutes with Clifford multiplication. The
group of automorphisms can be identified with the group of G of S1-valued
functions u : X → S1, acting by scalar multiplication. We call G the gauge
group and we call its elements gauge transformations. The gauge group acts
on sections 
 of S by


 �→ u
.

1.2 Dirac operators

Let s = (SX , ρ) be a spinc structure on an oriented Riemannian 4-manifold
X . A unitary connection A on SX is a spinc connection if ρ is parallel. This
implies, in particular, that parallel transport preserves the decomposition of
SX as S+ ⊕ S−. Given such a connection A, one defines the Dirac operator
DA : �(SX ) → �(SX ) as the composite

�(SX )
∇A−→ �(T ∗X ⊗ SX ) −→ �(SX ),
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6 I Outlines

in which the second map is constructed from the Clifford multiplication. The
difference between two spinc connections A and Ã, regarded as a 1-form with
values in the endomorphisms of SX , has the form

Ã− A = a ⊗ 1SX (1.5)

for some a ∈ �1(X ; iR). Conversely, if A is a spinc connection and a ∈
�1(X ; iR), then Ã = A+a⊗1SX is a spin

c connection. In thisway, the spinc con-
nections on SX form an affine space, with underlying vector space �1(X ; iR).
If Ã and A are related as above, then the corresponding Dirac operators are
related by

DÃ − DA = ρ(a).

Because Clifford multiplication by 1-forms interchanges S+ and S−, we can
write

DA = D+
A + D−

A ,

where

D+
A : �(S+) → �(S−)

D−
A : �(S−) → �(S+).

If we are given a spinc connection A, then the associated line bundles 	2S+,
	2S− inherit connections too. The canonical isomorphism between these line
bundles respects the connections. We give this connection a name:

Notation 1.2.1. If A is a spinc connection on the spin bundle SX = S+ ⊕S− on
X , we write At for the associated connection in the line bundle	2S+ = 	2S−.
So if Ã and A are related by (1.5), then

Ãt = At + 2a.

♦

In dimension 3, we define a spinc connection B for the spinc bundle S → Y
in the same way. The spinc connections are again an affine space, now over
�1(Y ; iR), for we can write

B̃ = B+ b⊗ 1S , (1.6)
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1 Monopole invariants of four-manifolds 7

just as in (1.5). For each spinc connection B, we have a Dirac operator

DB : �(S) → �(S).

We write Bt for the associated connection on the line bundle 	2S. There is no
decomposition of this operator as there is in dimension 4.
In any dimension, the full Dirac operator is self-adjoint. In dimension 4, this

means that D−
A is the adjoint of D+

A . The Dirac operator is elliptic, so if the
underlying manifold is compact, then the operator is Fredholm: it has finite-
dimensional kernel and cokernel. In dimension 3, because it is self-adjoint, the
Dirac operator has index zero. On a compact 4-manifold, the complex index of
the operator D+

A (the difference in the complex dimensions of the kernel and
cokernel) is given by the Atiyah–Singer index theorem,

index D+
A = 1

8

(
c1(S

+)2[X ] − σ(X )
)
, (1.7)

where σ(X ) is the signature of X . (We write α[X ], typically, for the evaluation
of a cohomology class α on the fundamental class.)
ThegaugegroupG acts on the space of spinc connectionsAonS, by pull-back.

If u : X → S1 ⊂ C is a gauge transformation, we write the action as

A �→ u(A)

= A− u−1du. (1.8)

1.3 The Seiberg–Witten equations

On an oriented Riemannian 4-manifold X with spinc structure sX , the Seiberg–
Witten equations, or monopole equations, are equations for a pair (A,
)

consisting of a spinc connection A and a section
 of the associated spin bundle
S+. The equations are the following:

1

2
ρ(F+

At ) − (

∗)0 = 0

D+
A
 = 0.

(1.9)

Here F+
At is the self-dual part of the curvature 2-form FAt of the connection A

t ,

FAt = F+
At + F−

At

∈ �+(X ; iR) ⊕ �−(X ; iR),
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8 I Outlines

and (

∗)0 denotes the trace-free part of the hermitian endomorphism 

∗
of the bundle S+,

(

∗)0 = 

∗ − 1

2
tr(

∗)1S+

= 

∗ − 1

2
|
|21S+ .

Note that FAt is an imaginary-valued 2-form, so ρ(FAt ) is hermitian: the map
ρ in (1.4) carries real self-dual forms to skew-adjoint endomorphisms of S+.
If ω is a smooth imaginary-valued 2-form and ω+ its self-dual part, we can

also consider the monopole equations perturbed by ω. These are the equations

1

2
ρ(F+

At − 4ω+) − (

∗)0 = 0

D+
A
 = 0.

(1.10)

The left-hand sides of the two equations in (1.9) define a map

F : A × �(S+) → �(i su(S+) ⊕ S−), (1.11)

where A denotes the affine space of all spinc connections A, and i su(S+) is the
bundle of hermitian endomorphisms of S+. We can then write the monopole
equations as F(A,
) = 0. We write the perturbed equations similarly, as

Fω(A,
) = 0. (1.12)

The set of solutions (A,
) of the perturbed equations is invariant under
the action of the gauge group G. We will write [A,
] to denote the gauge-
equivalence class of a pair (A,
): the orbit of (A,
) under the action of G.
Definition 1.3.1. If X is an oriented Riemannian 4-manifold with spinc struc-
ture sX = (SX , ρ), and ω is an imaginary-valued 2-form, we write N (X , sX )

for the quotient space of the set of solutions of the equations (1.12) by the
action of G:

N (X , sX ) = { [A,
] | Fω(A,
) = 0 }.
This is the monopole moduli space for (X , sX ) with perturbing 2-form ω. It is
a subset of the configuration space

B(X , sX ) = (A × �(S+)
) / G.

♦
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1 Monopole invariants of four-manifolds 9

The configuration space B(X , sX ) is Hausdorff, so the moduli space is
Hausdorff also. The following result reflects the very special nature of the
monopole equations. (It would not be true, for example, if the sign of the
second term in (1.9) were changed.)

Theorem 1.3.2. If the 4-manifold X is compact (without boundary), then the
moduli space N (X , sX ) ⊂ B(X , sX ) is compact. �

1.4 Regularity

From this point on, we will always assume that our 4-manifold X is connected.
Let (A,
) be a solution of the equations Fω(A,
) = 0 on X , as above. We can
take the derivative of the map

Fω : A × �(S+) → i su(S+) ⊕ �(S−),

at the point (A,
) in the affine space A × �(S+), to obtain a linear map

D(A,
)Fω : �1(X ; iR) × �(S+) → �(i su(S+) ⊕ S−),

given by

(a,φ) �→
(
1

2
ρ(d+a) − (φ
∗ + 
φ∗)0,D+

A φ + ρ(a)


)
. (1.13)

Definition 1.4.1. Asolution (A,
) to the perturbed monopole equations Fω =
0 is regular if the linearization (1.13) is a surjective linear operator.We say that
the moduli space N (X , sX ) is regular if all solutions are regular. ♦

Proposition 1.4.2. Suppose that the oriented Riemannian 4-manifold X is com-
pact (without boundary), and let sX be a given spinc structure. Then there is an
open and dense subset of the space of imaginary-valued 2-forms ω for which
the corresponding moduli space N (X , sX ) is regular. �

The action of the gauge groupG onA×�(S+) is free on the set of pairs (A,
)

with 
 non-zero. We call such a pair irreducible. For a reducible configuration
(A, 0), the equations (1.9) reduce to the equations

F+
At = 4ω+.
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10 I Outlines

Suppose κ is a 2-form on X that is both closed and self-dual. Then if A satisfies
the equation above, we have∫

X
ω ∧ κ =

∫
X

ω+ ∧ κ

=
∫
X
FAt ∧ κ

= (2π/i)
(
c1(S

+) � [κ]) [X ]. (1.14)

If κ is non-zero, this is a non-trivial linear constraint on ω, which must be
satisfied if a reducible solution is to exist. The closed self-dual (real) 2-forms
κ form a subspace H+ of the space H2 of harmonic 2-forms, and determine a
metric-dependent subspace

H+ ⊂ H 2(X ;R).

This is a maximal positive-definite subspace for the quadratic form

Q : H 2(X ;R) → R

Q(α) = α2[X ].

Wewrite b+ for the dimension ofH+. Defining b− similarly,we have b++b− =
b2 and b+ − b− = σ(X ). From the calculation (1.14), we deduce:

Lemma 1.4.3. If X is a compact manifold with b+ ≥ 1, then for all ω in
the complement of a proper linear subspace, the corresponding moduli space
N (X , sX ) contains no reducible solutions. �

When the moduli space is regular and contains no reducibles, it is a smooth
manifold whose dimension can be computed as the index of a certain operator
(essentially the sum of the two operators in (27.3); see Lemma 27.1.1):

Theorem 1.4.4. Let X be a closed, connected, oriented Riemannian manifold
with a spinc structure sX . Supposeω is chosen so that themoduli spaceN (X , sX )

is regular and contains no reducible solutions, as we can always do when
b+(X ) ≥ 1. Then the moduli space N (X , sX ) is a smooth, compact manifold,
whose dimension d is given by the formula

d = (
b1(X ) − b+(X ) − 1

) + 2 index D+
A

= 1

4

(
c1(S

+)2[X ] − 2χ(X ) − 3σ(X )
)
. (1.15)

�
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