Absolute age determination: 62, 64
adiabatic: 301
activation energy: 105
abrading: 213
accretion of Earth: 10, 585
accessory minerals: 19, 133
acceleration of gravity: 105

Blocking temperature: 301, 304, 575
Decompression melting: 236, 237, 252
In core, 6

Viscous flow, 25
Metamorphic reactions, 534
Mechanical, 168, 170–176
Thermodynamic mixing properties, 193

Synthesis, 606

formation from hydrous melt: 537
Kyanite photographs, 436, 418, 419, 461, 536
Potassic grid, 420, 452
Relation to geothermal gradient, 414–415
Sillimanite, 13
Photographs, 416, 418, 419, 536
Alteration (see hydrothermal alteration)
Amphibole (see also hornblende)
Photomicrographs, 421, 541, 561

Stability limit coincides with source of subduction-related volcanism, 610
Amphibolite (see metamorphic facies)

Andesite (see Al2SiO5 polymorphs)
Endemic: 611
Associated with convergent plate boundaries, 375, 376
Origin of, 609–611
Blöcky lava flow, McKenzie Pass, High Cascades, Oregon, 68
Definition, 141
In composite volcanoes, 68
Magma, 163
Formed by partial fusion of hydrous Iherzolite, 606
Magma temperatures, 611
Magma viscosity, 24
Phenocrysts in, 376
Dis-equilibrium amongst, 377
Water activity high in source, 611
Xenoliths of lower crustal rocks, 611
Anisotropy of magnetic susceptibility (AMS), 49

Anorthite, beginning of melting (water-saturated), 252
Anorthosite, 141
Formation from hydrous melt, 253

Lunar highlands, 400
Massif-type (Proterozoic, 400–405
Age of, 400, 584
Associated iron-titanium-oxide apatite rocks (nelsite), 402
Associated ilmenite, 402
Associated quartz mangerite, 402
Coarse grain size, 401, 402

Composition of plagioclase, 402
Crystal size distribution in Lake St. John massif, Quebec, 285
Diapiric bodies, 400
Distribution, 400
Europium anomalies, 403, 404
Lack of zoning in plagioclase, 403

© in this web service Cambridge University Press
www.cambridge.org
anorthosite (cont.)
 pressure shift in the plagioclase–pyroxene
 eutectic, 404
 relation to rifting, 405
role of liquid immiscibility, 403
occurrence in alkali ring complexes, Nigr, 394
Antarctica, Ferrar flood basalts and sills, 83, 381
Antarctic, Ferrar flood basalts and sills, 83
apartite, Sr diffusion and metamorphic timescales, 572, 580
aphanitic (see grain size)
aplite, 103, 255, 257
granite size due to sudden decompression
layering in, 256
Archean:
aplites, 103, 255, 257
apatite, Sr diffusion and metamorphic timescales, 305
Antrim, Northern Ireland, flood basalts, 380
Antarctica, Ferrar flood basalts and sills, 83, 381
Arden, 25
assimilation, magmatic, 347
aspect ratio (crystal morphology)
ash, volcanic (see pyroclastic deposits)
aseismic ridge, 370
argon, 40
argon dating, 301
Arboley, 106, 107
Arnon–Arora, 38
Armstrong, 78
Ardenan ring structure, Scotland, 87
argon, 40
Archenius relation:
diffusion, 124
nucleation rate, 269
viscosity, 25
asemic ridge, 370
ash, volcanic (see pyroclastic deposits)
aspex, see (crystal morphology)
assimilation, magmatic, 347–350
and fractional crystallization (AFC), 347, 349
as model of rock crystallization, 304
As model reaction, 348
in layered mafic intrusions, 350
isotopic evidence of, 309, 310, 349
limited by heat of fusion, 347
rate of, determined using short-lived
radioisotopes, 379–380
role of, in formation of calcalkaline series, 310–311, 378
zone melting, 349
asteroids, source of meteorites, 130
asthenosphere (see low-velocity zone)
atmosphere (Earth’s) during Archean, 398
atmosphere (unit of pressure), 6
augen gneiss, 441
augite
 early fractionating phase in continental tholeiitic
magnas, 382
early fractionating phase in MORB magma, 367
exsolution lamellae in orthopyroxene, 230
exsolution lamellae in pigeonite, 230
sector zoning in, 277
aurolite, contact (see metamorphism, contact)
Auvergne, France, volcanoes of (see volcanoes, Auvergne, France)
Avrani equation (see crystal growth)
axial magma chamber (AMC), 50
schematic section through, 374
south East Pacific Rise, 368, 374
south Galapagos spreading center, 50, 368, 374
back-arc spreading, 596
melting associated with, 611
possible source of ophiolites, 372
Baltic Shield, reduced heat flow, 106
banded iron formations (BIF), 398
Banding tuff, New Mexico (see pyroclastic deposits)
bar, e.g. unit of pressure, 6
Barre, Vermont, granite batholiths, 102
Baarvoonian metamorphism (see metamorphism, Baarvoonian; Scottish Highlands)
basalt:
alkali olivine basalt
rare earth element content of, 361
beginning of melting (water-saturated), 252
definition, 141
eutectic composition of, 199
exsolution temperature, 20
flood (see flood basalts)
inclusions (pillows) in granite, 103, 105, 107, 351, 355, 378
inclusions in obsidian and rhyolite, 377
inclusions in obsidian, cause of eruption, 377
inclusions in obsidian, cause of eruption, 377
in island–arc cometites, 360
magma, 16
magma density, 22
magma flow rate, 28
magma viscosity, 24
metamorphism of (see basalt)
scoriaeae, 35
Basin and Range Province:
heat flow, 18
reduced heat flow, 10
basin, extensional sedimentary, 29aruim diffusion in sandstone, 125–127
batch melting (see melting)
bathogl, 469
batholith, 103–108
aral area of, 101
analag (small-scale) in sill near Montreal, 46, 106, 107–108
at convergent plate boundaries, 378
Baarre, Vermont, 102
basalt inclusions in, 103, 107 (see also basalt, inclusions in granite)
bayonet rise of, 102
canazone (deep), 102, 103
Coastal Batholith, Peru, 102, 104, 107
Coast Range, British Columbia, 102
compositional zoning, 103
density of rocks in, 102
diapiric rise, 46, 106
epizon (shallow), 102, 103
extent at depth, 102
mezzone (intermediate), 102
Pilbara, western Australia, 106
rapskivi, southern Finland, 20
rock types in, 102
Sierra Nevada, California, 102
spacing of, 46, 106
Virgin Gorda, British Virgin Islands, 103
White Mountain, New Hampshire, 102
bathozone, 470
Bay of Islands ophiolite, New Zealand, 371
Benard convection cells, 324
Benoff seismic zone, 374
Bergen Arc, Norway, 573–574
Berthelot–Nernst fractionation, 358
berylminium (Be4) evidence for sedimentary contamination of magma, 598
beta (β) particle, 11, 296
Big Maria Mountains, southeastern California, 579
Bingham liquid:
flow rate of, 39–41
viscosity of, 23
bine, 188
bistone, photomicrographs, 418, 146, 541
Bisbee, Arizona, hydrothermal alteration around copper deposit, 70
Bishop tuff, California (see pyroclastic deposits)
black body radiation, 122
black smoker, 9, 373
blastoporphyrine, 435
blocking temperature (see absolute age determination)
blocky lava, 68
blueschist facies (see metamorphic facies)
boiling, resurgent (secondary) (see resurgence boiling)
bomb, volcanic, 35, 65, 70
boundary structure, 258, 546
boundary curve (in phase diagram), 217
Bowen, N. L., 20, 495
fractionation trend, 403
breccia:
diatreome, 89, 90
fault and shear zones, 441
igneous, 80, 102
meteorite impact-generated, 406
Onaping tuff, Sudbury, Ontario, 411
Sudbury breccia, 411
rheomorphic, 100, 102, 347
Bristol, New Hampshire, hot spot, 571–572
Brito-Arctic large igneous province, 52, 368, 380
brittle deformation, 441
brittle–ductile transition, 4, 16, 441, 517
form of batholiths, 103
brittle failure, 4
at tip of dike, 82
on partial melting, 32
Bromn Hill antcliniton, Massachusetts, 485–486, 578
Buchan metamorphism (see metamorphism, Buchan)
buffering, metamorphic fluids (see fluids, metamorphic)
bulk modulus, 22
burial, 560
Bushveld Complex, South Africa (see lopolith)
calciakali igneous rocks, 144 (see also igneous rock associations; igneous rocks)
andesites, origin of, 609–611 (see also andesites)
isotopic composition of, 310–311
isotopic composition of, in Andes of Ecuador and Chile, 311
New Britain island arc, 310
role of water in formation, 253
calcite (see also metacarbonate rock)
calciotaplogonite transformation kinetics, 535
photomicrographs, metasomitic rocks, 434, 541
solubility in metamorphic fluids, 519
transformation to aragonite, 535
twins (deformation), 433, 434
calcite, 494

caldera:
associated with rhyolitic magmatism, 74–76
Long Valley, California, 74, 76
on Kilauea, Hawaii, 60
on Mauna Loa, Hawaii, 74
on Olympus Mons, Mars, 66
on shield volcano, 60
on Sierra Negra, Galápagos, 61
resurgent dome in, 76
subsidence of, 75
Valles, New Mexico, 74, 77
Yellowstone, Wyoming, 74, 75, 76
caldron subsidence (see ring dike)
camptite, 394
Canadian Shield, reduced heat flow, 10
carbonate rock, metamorphism of (see metacarbonate rock)
carbonatite, 396–397
associated rock types, 396
femite, 397
carbonization, 397

carbonaceous chondrites, 131
continental crust, 131

channeled flow (see flow)
chemical potential (μ), 164, 180
and mole fraction in ideal solution, 184
at equilibrium, 181
diagram, 523
gradient and cause for diffusion, 181
chert nodules, metamorphism of, 494, 523

chertite, 418, 436, 438 (see also Al2SiO5 polymorph)
Chixculub, Yucatan, Mexico (see meteorite impact structures)
Chiricahua welded ash-flow tuff, Arizona (see pyroclastic deposits)
chisel marks on columnar joints, 56, 57 (see also columnar joints)
Chiwaukan Schist, Washington State, 438, 439
cryptomicrograph, 416, 419, 421, 439, 461
chloritized, 418, 461
sector zoning in, 277
chondrite-normalized REE analyses, 359
chondritic meteorite (see meteorites)
chondrule, 131, 132 (see also meteorites)
Christmas Mountains, Big Bend, Texas: metacarbonate rocks, 494
chonterrite, 522–525
canthite, 138
formation through magma mixing, 356
in ophiolites, 372
CIPW norm (see norm)
Clapeyron equation, 166
cleavage, metamorphic rocks (see also texture, metamorphic)
axial planar, 429
bedding-cleavage intersection, photograph, 419
crenulation, 431
C-type shear band, 443
C′-type shear band, 443
foliation, general characteristics of, 428–435
refraction, 429
slaty, 428
solution, 430
strain-slip, 431
coefficient of:
diffusion, 124
friction for flow of liquid through fractures, 41
fugacity (μ), 167
interdiffusion, 125
thermal conductivity, 7, 112
thermal expansion of oxide components in mantle, 43
thermal expansion of oxide components in magma, 21
compressibility (β), 6, 22, 161
cosite (high-P polymorph of SiO2), 495
generated by meteorite impact, 409
occurrence in Vredefort ring structure, 495
concentration ratio (CR) diagram, 553
concordia plot (see absolute age determination)
conduction of heat, 7, 20, 111, 112–121
cooling of lava, 110
cooling of lithosphere away from spreading axis, 587
cooling of sheet-like body, 116
heat flow, 112
across a plane contact, 113–121
contact temperature, 114, 115
involving latent heat of crystallization, 114–116
typical values from Earth, 112
metamorphism (see pressure–temperature–time paths)
numerical analysis of, 117–121
lava lake cooling, 117–119
cone sheet (see dike)
congruent melting, 201
conservation equation, 10
conservative (see component)
contact metamorphism (see metamorphism, contact)
contact temperature, 114
contamination of magma (see assimilation)
continental crust, 29
composition of, 131
content of radiogenic isotopes, 11
steady-state geotherm, 12
thickness, 2
continuous metamorphic reactions, 463
convection:
Bénard cells, 324
compositionally driven, 323, 325, 326
double-diffusive, 326, 327, 328
dripping instabilities, 328
forced, 323
formation of pipes, 326
free, 323
heat transfer by, 7, 111 (see also heat flux;
advection)
hydrothermal, 243
in crystal mush, 326, 328, 338
in magma (see magmatic processes)
in magma ocean, 585
in mantle, 6, 7, 11, 15, 586
in outer core, 6, 326
in thermal boundary layer at base of lithosphere, 587
metamorphic fluids (see fluid flow, metamorphic)
plate tectonics, rate of cycling fluids and magmas through, 598–599
density of subducted slab, 610
igneous rocks associated with (see igneous rock associations)
rate of cycling fluids and magmas through, 598–599
perturbed geotherm resulting from crustal thickening, 599
thermal effects, 14, 596, 610
zone of melting in mantle wedge, 611
Conway granite, Ossipee ring complex, New Hampshire, 89
cooling by:
conduction (see conduction)
convection, 324, 325
in early magma ocean, 585
radiation, 121–123
from surface of lava, 122
from surface of turbulent flow, 122
corderite, photomicrographs, 418, 426
core of Earth, 2, 11
formation, 304
age based on He-W, 304
age based on Re-Os, 304
strongly euhedral, 585
Corningware®, 205
cotectic, 216
curvature:
due to nonideal mixing, 223
magma mixing, 219
shape of grain boundaries, 219, 226
Crack–flow–seal sequence, 550
Crack–seal texture, 544
Crack-Nicolson finite difference technique (see numerical analysis)
crater (see meteorite; volcanic crater)
Crater Lake, Oregon
230Th/238U and 236U/238U in ryolodacite andandesite, 379
cumulation:
cleavage, 431
lineation, 431
crescumulate (see igneous cumulates)
critical point on boundary line in phase diagram, 610
critical radius (see nucleation)
cross-derivative rule, 160
crustal contamination of magma (see assimilation)
crust of Earth, 2
Archean 398–399
continental, 29
isotopic composition of, 309–310
extension of, 86
western Scotland, 57
oceanic, 43
thickening and perturbation of geotherm, 599
crystoscopic equation:
with solid solution, 208
with no solid solution, 195, 197
crystal:
growth rates (see also crystal morphology):
Avrami equation, 274
degree of undercooling, 273
dissipation of heat of crystallization and impurities-controlled, 273
dendritic and skeletal crystal forms, 273, 399
factors controlling, 271
in dikes, 274–276
diffusion-controlled, 271
phase boundary reaction-controlled, 272
screw dislocation-controlled, 272
surface nucleation-controlled, 272
morphology (shape):
acicular, 274, 275
aspect ratio, 293
crystalloblastic series, 287, 435
dendritic, 273, 274, 275, 399
determined by rate determining growth process, 274–281, 294
epaxial growth, 288
equilibrium, 286, 287, 294
phenocrysts, 274
porphyroblasts, 435 (see also porphyroblasts)
sector zoning, 258, 277–278, 303
sphenolithic, 274
wetting by magma, 293
zoning due to Rayleigh fractionation, 279
mush, 328
beneath mid-ocean ridges, 16
compaction, 42, 98, 328–331
in Cohasset, Columbia River basalt, 331
in Holsoy basalt, 329–331
in magma source region, 601
in Muskon Intrusion, Northwest Territories, Canada, 339
in Stillwater Complex, Montana, 346
convection through, 326
permeability determined by wetting by melt, 293–294
X-ray CT image of, 329
suspension, 328
nucleation (see nucleation)
sediment, 97 (see magmatic processes)
in ocelli, 343
size distribution (CSD), 281–286 (see also grain size)
crystal growth rate from, 283
in high-Al basalt in Akka volcano, Aleutian Islands, Alaska, 285
in Kiluaea Iki 1959 perteir, Hawaii, 285
in Makaopuhi lava lake, Hawaii, 285
in metamorphic rocks, 285–286
in Sudbury Lopolith, 285
in Waterville formation, Maine, 285
magma mixing, 285
mean length of crystals from, 284
measurement of, from 2-D sections (e.g. thin section), 286
computer program for corrections, 286
population density, 282
resulting from batch crystallization, 284
size, versus mean cooling velocity, 116
crystallization (see also fractional crystallization):
at constant bulk composition, 263
at constant oxygen fugacity, 263
batch, 284
degree of, based on incompatible element concentration in magma, 358
in convecting magma, 325
crystalloblastic series, 287, 435
crystallographic preferred orientation, 432
CT, X-ray scan, 43, 44, 286, 329
cumulates (see igneous cumulates)
cyclical rule for total differentials, 160, 161
D* (D double prime) layer, 3, 7, 15
graveyard for subducted slabs, 589
dacite:
definition, 141
in composite volcanoes, 68
Daily Gap in alkaline rock series, 343, 369, 393, 394
Damköhler-I number, 539 (see also kinetics of metamorphic reactions)
Darcy’s law, 39, 42
metamorphic fluids, 515 (see also fluid flow, metamorphic)
decay constant (see radioactive decay)
Deccan trap, India: age of and possible correlation with K–T boundary mass extinction, 52, 384
basaltic volume, 52
decompression melting (see adiabatic)
defects in crystal structures (see diffusion)
deformation and metamorphism:
heating due to, 443, 574
textures (see texture, metamorphic)
reactions, effect on, 561
twins, 433, 434
deformation lamellae in quartz (see meteorite, planar features in quartz)
degenerate system, 176
degrees of freedom of a system (see variance)
dehydration reactions during metamorphism, 416, 596
activity of water, effect of, 425, 452
dp/dT slope of, 425
fluid pressure (see fractures, metamorphic) muscovite, 416, 448, 452, 469
dehydration rim, 28
delamination, 4, 106, 587
dendritic crystal growth (see crystal growth rates)
density of:
dendritic crystal growth (see crystal growth rates)
depletion mantle (see mantle)
depolymerization of melt by H₂O, 246
development of melt, 119
diabase (dolerite), 85
definition, 141
dike, crystal growth in, 274–276
diamond:
diaper, 28, 45
association with diatremes, 93
associated with meteorite impact, 411
ultrahigh-pressure metamorphism, 425
diamond anvil (high-
diamond:
diapir, 28, 45
differentiation:
diaphase reaction, 348
devolatilization, 415
desilication reaction, 348
diffusion, 123
devolatilization, 415
desilication reaction, 348
diffusion, 123
Soret effect (see magmatic processes)
dehedral angle, 288, 599–600
amount of melt required to remain in magma
source region
between magma and clinopyroxene, amphibole, olivine, and plagioclase, 293
c control over permeability, 293, 600
metamorphism (see fluids, metamorphic)
modification during compaction of crystal mush, 339
dike (dyke), 28, 80–86
diapir, 28, 45
diaper, 28, 45
anorthosite massifs, 400
ballooning, 47
batholiths, 106, 598
cooling of rising, 47
in mafic sill, near Montreal, Quebec, 46, 106, 107–108
in oceanic crust, 46
on segregation sheets in basalt, 59
diatremes (see igneous bodies)
source of gas in, 92–93
World’s Fair site, Montreal, Quebec, 91
differentiation:
differentiation Index (D.I.), 320
magnesium number (M’), 318
magmatic (see magmatic, differentiation)
of early magma ocean, 585
diffusion, 123–127
activation energy for, 124
Arhenius relation, 124
barium diffusion in sanidine, 125–127
characteristic length scale, 127
significant, 127, 192
coefficient, 124
controlled crystal growth rate, 271
Fick’s first law, 145
Fick’s second law, 124
in chemical potential gradient, 181
in formation of adcumulates, 338
in formation of igneous layering, 338
interdiffusion coefficient, 125
in zircon, 300, 303
mean free path, 123
metamorphic fluids (see mass transfer, metamorphic fluids)
metamorphic minerals
apatite (Sr diffusion), peak metamorphic timescales, 572, 580
garnet, peak metamorphic timescales, 572
garnet, thermobarometry, 480–482
of Ti in quartz, 191–193
role of defects and vacancies in crystals, 123
self-diffusion, 124
Soret effect (see magmatic processes)
dehedral angle, 288, 599–600
amount of melt required to remain in magma
source region
between magma and clinopyroxene, amphibole, olivine, and plagioclase, 293
c control over permeability, 293, 600
metamorphism (see fluids, metamorphic)
modification during compaction of crystal mush, 339
dike (dyke), 28, 80–86
diapir, 28, 45
composite, 85
cone sheet, 87, 88
crystal growth in, 274–276
diabase, Pilbara, western Australia, 106
dilation, 84, 85
emplacement by replacement, 85
en echelon sets of, 84, 86
horn, 86
multiple, 85
nucleation rate in, 270
radial swarm, 35, 86
associated with large igneous provinces (LIP), 380
Shiprock, New Mexico, 80, 81
ring, 86
Ardsamurchan, Scotland, 87, 89
associated alkaline rocks, 393
calderon subsidence, 88
Glen Coe, Scotland, 88, 99
Khibina–Lovozevo, Kola Peninsula, Soviet Union, 88
Loch Ba, Mull, Scotland, 109
Niger and Nigeria, 88
Oslo, Norway, 88
Osipee, New Hampshire, 87, 88, 257, 258
Pilanesberg, South Africa, 89, 90
Sara-Fier, Nigeria, 89
Scottish Tertiary, 87
subsidence of central block, 88
White Mountains, New Hampshire, 88
sheeted, complex in ophiolites, 372
Troodos, Cyprus, 373
swarm, 35, 86
associated with flood basalts, 382
at mid-ocean ridges, 85
British Tertiary, 86
crustal extension, 57
eastern North America, 382
Iceland, 69
Krakatau, Iceland, 53
velocity of laminar magma flowing in, 38
velocity of turbulent magma flowing in, 41
width to breadth ratio, 82
dinosaur extinction, association with:
Chicxulub meteorite impact structure, Yucatan, Mexico, 409
Deccan trap, India, 52
diopsode:
beginning of melting (water-saturated), 252
photomicrograph (metacarbonate rock), 541
diorite:
at convergent plate boundaries, 378
definition, 141
in batholiths, 102
in stocks, 99
discontinuities, 2–3
410-km, 3, 211, 590
600-km, 3, 588, 390
core–mantle, 2, 7
inner core–outer core, 2, 6
lithosphere–asthenosphere, 7
Mehorovici (Moho, M) (see Mohorovici discontinuity)
spindle to penvokite, 7
discontinuous magmatic reaction (see petroectic)
discontinuous metamorphic reactions, 462
nontermal, 462–463
terminal, 462
disequilibrum, metamorphic reactions, 425
(see also kinetics of magmatic reactions)
dispersivity, longitudinal, 518
distribution coefficient (Kd) (see Nernst distribution coefficient)
divergence, 526
divergent plate boundaries: decompression melting near, 593–595
metamorphism associated with, 594
thermal effects at, 14
dolerite (see diabase)
dolomite (see metacarbonate rock)
dolostone, 414
dome, volcanic, 71
Dabahau, Ethiopia, 34
endogenous, 71
exogenous, 71
Glass Mountain, California, 71
Dora Maira Massif, western Alps, 479, 577
double-diffusive convection (see convection and magmatic processes)
down-T fluid flow, 532
Dry Valleys region, Antarctica, 800
ductile deformation, 428
at tip of dike, 82
Duluth Gabbro (see lopolith)
dunitite, 44
definition, 141
in layered intrusions, 385
veins in ophiolite, 44, 372, 373
Dutchess County, New York State, 87
eastern North America igneous province, 52 (see also large igneous provinces – LIP)
East Pacific Rise:
 axial magma chamber, 368
depth of melting beneath, 367
heat flux, 8
MELT Seismic Team, 367
eclogite (see metamorphic facies)
formation in sinking mantle plumes, 368
formation in subducting slabs, 590, 598
formation of immiscible carbonate melt in partially melted, 344
near-eutectic composition, 602
nodules (xenoliths) in kimberlite, 395, 602
Einstein limit, 23
element mobility, metamorphism (see mass transfer, metamorphic fluids)
element:
egraphite, 199
electron capture, 11, 296
elastic modulus, 95
Einstein limit, 23
Siderophile, 302
major, minor, and trace, 132
epidote, photomicrograph, 421
endothermic process (+)
endothermic reaction
enthalpy (see also internal, heat)
egradient, 137
enthalpy of formation, 100
enthalpy of fusion, 100
enthalpy of sublimation, 100
enthalpy of vaporization, 100
enthalpy of zeroth law of thermodynamics, 164
error function (erf), 114
error function (of), 114
eruption velocity (see velocity)
ephedra crystals, 272 (see also crystalloblastic series)
epicenter anomaly, 359, 361
in quartz megacrysts associated with massif-type anorthis, 403
in massif-type anorthises, 404
lack of, in continental flood basalts, 382
lack of, in MORB, 367
eutaxitic (see texture)
eutaxitic:
 composition and common igneous rocks, 199
 in binary system, 197
 intergrowths, 199
 graphic granite, 199, 200, 202
 ophiolitic, 198, 199
 in ternary systems, 217
exhumation (see also pressure−temperature−time paths)
 rates 567, 572, 577
exothermic process (−ΔH), 152
exsolution:
 epidote, 302
 intergrowths, 199
 spinel, 198
 spinel, 199, 200, 202
exchange reaction, 190
extinctive
 composition and common igneous rocks, 199
 in binary system, 197
 intergrowths, 199
 graphic granite, 199, 200, 202
 ophiolitic, 198, 199
 in ternary systems, 217
facies, metamorphic (see metamorphic facies)
 fault gouge, 441
 feldspar phase relations (see phase diagrams)
 felsic, 133, 137
 Fen district, Norway (carbonatite), 396
 fertilization (Na metasomatism), 347, 397
 Fenner fractionation trend, 403
 Ferrar, Antarctica, diabase sill, 83 (see also flood basalts)
 flamine (see texture, igneous
 Fick's first law, 39, 124 (see also mass transfer, metamorphic fluids, diffusion)
 crystal growth rate determined by, 271
 homogenization commingled magmas, 354
 Fick's second law, 124, 354 (see also mass transfer, metamorphic fluids, diffusion)
 filter pressing (see magmatic processes)
 fissure, 572, 303
 flaser gneiss, 441
 flinty-crush-rock, 442
 flood basalts, 52–59, 380–384
 Afar, Ethiopia, 381
 Antrim, Northern Ireland, 59
 aphyric nature of, 383
 associated with breakup of Pangea, 381
 association with continental rifting, 380
 association with mantle plumes, 380
 association with red bed sedimentary rocks, 380
 Columbia River, Washington and Oregon, 381 (see also Columbia River flood basalts)
 columnar jointing in, 55–57
 composition of, 381–382
 triparte division, 382
 Coppermine River, Northwest Territories, Canada, 388
 Deccan traps, India, 381 (see also Deccan trap)
 eastern North America and Morocco, 381
 Ferrar, Antarctica and Tasmania, 381
 Karoo, South Africa, 381
 gaseous emanations from, and effects on global climate and mass extinctions, 384
 inflation of flows, 53
 isotopic composition
 in δ24S–δ34S plots, 308, 309
 Keweenaw, Lake Superior, 381
 Greenland, Michigan, 57
 volume of, 52
 North Mountain basalt, Nova Scotia, vesicle cylinders in, 59
 Parana, Brazil, 381
 parental magma to, 382
 rare earth element concentration in, 381
 Snake River, Oregon and Idaho, 381
 Thulean, UK and Greenland, 381
 volume of, 52–53
 Zig-Zag Dal, northeastern Greenland, 380
 flow (see also flux, fluid flow, metamorphic):
 alignment of phenocrysts by, 49, 85
 average laminar velocity in dke, 38
 average laminar velocity in pipe, 37
 average turbulent velocity in dke, 41
 average turbulent velocity in lava flow, 38
 channel, 43–45
 in compacting crystal mush, 326
 in Oman ophiolite, 44
 channelized by deformation, 44–45, 601, 608
 choked (overpressured), 93
 diapiric, 45–47
 differentiation (see magmatic processes)
 focused, 44
 friction coefficient, 41
 igneous textural evidence of, 48–49
 laminar, 24, 37
 minimum, required for intrusion of sheet, 84
 plug flow of Bingham liquid, 40
 porous, 41–43
 shear induced, 45
 steady state flow in vertical pipe, 36–38
 steady state flow of lava, 25–26
 rate of basaltic magma at Pali-Aike, Chile, 28, 129
 rate of Bingham liquid, 39–41
 rate of kimberlite magma, 28
 rate of magma at convergent plate boundaries, 598
 rate of Newtonian magma, 35–39
 turbulent, 24, 37, 41
 in ash flows, 77
 viscous pressure drop, 31, 39
 flowage differentiation (see magmatic processes)
 fluid content, metamorphic protoliths, 415–416
 fluid flow, metamorphic (see also fluids, metamorphic; mass transfer, metamorphic fluids):
 across-layer inflation, 529, 530, 540–544
 advection, 511
 channel (flow in model fracture), 515
 convection, 516

© in this web service Cambridge University Press
www.cambridge.org
Davies’s law (flow in porous rock), 515
depth in crust:
middle and lower crust, 517
upper crust, 516, 517
down, 7, 532
fluids (see time-integrated fluid flow)
focused (channelized), 555
fractures (see fractures, metamorphic; veins, metamorphic)
heat transfer (see pressure–temperature–time paths)
hydrostatic pressure gradient, 514
importance of, 511
layer-parallel, 516, 529, 530, 543
lithostatic pressure gradient, 515
permeability of rock (see permeability)
porous (see porosity)
Rayleigh number, convection and, 516
porosity of rock (see porosity)
Rayleigh number, convection and, 516
viscosity of fluid, 514
up, 7, 532
fluid inclusions in:
metamorphic rocks, 436, 532, 562
olivine in mantle xenoliths, 604
fluidization, 43
in ash flows, 76
in diatremes, 92
fluid pressure, 4
fluid:rock ratio (see fluids, metamorphic)
fluids, magmatic:
concentrated in initial magma by fractional melting, 608
cycling through subduction, 593, 595
effect on melting (see carbon dioxide and water)
flow regimes in crust, 593
perturbations in composition and flux, 592
release during subduction, 595, 610
role in mantle metamorphism, 611
fluids, metamorphic, 415–417
Al concentrations in, 520
buffering capacity of, of reaction, 503
buffering, external, 502, 504
buffering, internal, 502, 503, 504
carbonaceous organic matter, C–O–H fluids
and, 493
Cl concentrations in, 520
dihedral angles, 513
equation of state, 490
fluid:rock ratio, 506, 508, 529
flow (see fluid flow; metamorphic; mass transfer, metamorphic fluids; time-integrated fluid flux)
kinetics of reactions, effect on (see kinetics of metamorphic reactions)
ideal gas law, 490
Lewis and Randall rule, 493
mixing of H$_2$O–CO$_2$
ideal, 493
nonideal, 493
modified Redlich–Kwong equation, 491
molality, definition of, 520
mole fraction–concentration conversion, 533
solubility of minerals in, 519–521
supercritical, 490, 511
van der Waals equation, 491
viscosity, 514
water, activity of, 425, 450–451, 452
water, effect of activity on partial melting during metamorphism, 453–454
wetting behavior, 513–514
X_{CO_2} estimation for carbonatite rocks, 504
fluid of fluid through:
dike in turbulent flow, 41
pipe in laminar flow, 37
fluxion structure, 442
foliation (see also cleavage, metamorphic rocks; texture, metamorphic):
in rhylolite, 73
magnetic, 49
forbidden zone in pyroxene quadrilateral, 232
Fourier’s equation, 113
Fourier’s law, 39, 112
fractional crystallization, 199, 210, 213, 219
Bowen trend, 404
calculated by least squares fit to rock analyses, 321
degree of, based on incompatible element concentration in magma, 358
Fenner trend, 403
in system diopside–albite–anorthite, 226
of hydrous magma, 254–259
fractionation, Rayleigh, 280
during garnet melting, 279, 291
during partial melting of lherzolite, 601
in magma source region, 601, 608
trace elements in magmas, 358
fractures, metamorphic, 514, 610
earthquakes and, 538
fluid flow in, 515
hydrofracturing, 515, 517, 537, 538, 544–546
permeability, 547
strength of rock, 515
Rayleigh fractionation of Mn during growth of, 279
photomicrographs, 291, 416, 418, 419, 421, 431, 433, 436, 438, 459, 461
Rayleigh fractionation of Mn during growth of, 279
snowball structure, 437, 438, 439–440
textural sector zoning, 289, 291
zoning and thermobarometry, 278–281,
480–482
gas, volcanic (see volcanic gases)
geobarometry, 179, 190
metamorphic (see thermobarometry, metamorphic rocks)
geothermal fluid:
geochemical front, 529 (see also time-integrated fluid flux)
geochemical gradient, 6, 7
adiabatic gradient in convecting:
core, 6
mantle, 325
mantle, 11, 236, 237, 589
at convergent plate boundary, 596, 610
continental steady-state geotherm, 12, 261
calculated from mantle nodules in kimberlite, 395, 602
in Archean, 397, 400
oceanic steady-state geotherm, 12, 261
perturbation of, 14, 591–592
steepening due to lithosphere extension, 593
possible whole Earth, 589
steady-state geotherm, 11–13
greenschist, 6, 406
geothermometer, metamorphic (see thermobarometry, metamorphic rocks)
geothermometry, 179, 180
coeexisting ilmenite–hematite and magnetite–ulvospinel, 265
coeexisting pyroxenes, 232
metamorphic (see thermobarometry, metamorphic rocks)
nickel in augite and olivine in basalt, 357
stable isotope fractionation, 312
34S between sulfide minerals, 314
34S between sulfide minerals, 314
18O between quartz and magnetite, 314
38O between quartz and magnetite, 314
titanium in quartz, 191–193
gysers, 76
Old Faithful, Yellowstone, Wyoming, 75
Gibbs equation, 159–161
Gibbs–Duhem equation, 180, 200
metapelitic rocks and, 458
Gibbs free energy (G), 159
apparent free energy of formation, as function of pressure, 160
as function of temperature, 160
at equilibrium, 159
equilibrium constant, 190
of formation, 161–162
ideal solution, 183
nonideal solution, 184 (see also regular solution model)
of ideal solution, 181–184
of mixing, 181
excess due to interactions, 185
ideal solution, 183
interchange energy, 185
Index

hornfels, 422, 428
hot spot, 368
deep source required for fixed position, 369
Galapagos, 50
Hawaii–Emperor seamount chain, 368
Iceland, 381
Reunion, 381
Triton da Cunha, 381
White Mountains of New England and New England seamount chain, 393
Yellowstone–Snake River, 76
Hutton, James, 19, 397
hydrogen isotopes, 313
hydrofracturing (hydrodynamic front, 527
hydrothermal alteration:
Iceland:
hydrothermal solutions, composition of, 323
hot spot, 368
hornfels, 422, 428
hydrosolutions, 313–314
δH (δD) correlation with latitude, 313
hydrostatic pressure, gradient, 5, 514
hydrothermal alteration:
around igneous bodies, 70
of ocean floor rocks, 595 (see also metamorphism, seafloor hydrothermal)
of ophiolites, 372 (see also ocean water circulation)
hydrothermal solutions, composition of, 323
hydrous mineral, stability and melting relations, 254
hydrovolcanism, 92 (see also diatreme)
hydroxyl groups in silicate melts, 246
hypabyssal rock (IUGS classification, 139–143 (see also lamprophyre)
hypersolvus crystallization, 214, 227 (see also granite)
Iceland:
Askja, eruption of, 33
columnar jointing:
Aldeyjarfoss, 56
Kirkjubæjarklaustur, 55
Krafla, 53, 54
Lakagigar 1783 eruption flux, 25, 52, 79, 84
mantle plume beneath, 365, 381, 589
Mid-Atlantic Ridge, 53
width of feeder dikes, 36, 81
ideal gas law, 34, 490
ideal solution, 181
igneous bodies:
extrusive 52–77 (see also central volcanoes)
continental alkaline rocks, 390–394
associated with East African rift, 392
association with mantle plume, 393
associated with Montedorian Province (see Montedorian Province)
continental flood basalt, 380–384 (see also flood basalts)
associated diabase sills, 381
convergent plate boundaries, 374–380
andesite, 375, 376 (see also andesite)
basalt, andesite, dacite, rhyolite (BADR), 375, 379
boninite, 375, 376
calcalkali series, 375
conditions of formation, 378–380
dacite, 377
diorite, 378
degree of melting related to thickness of lithosphere, 377
geochemical signature of, 375
granite, 378
granodiorite, 378
high-alumina basalt, 376
high-K series, 375
island arc tholeiite, 375
I-type granite, 378
plutonic rocks associated with, 378
porphyry copper deposits, 378
potassium versus depth of source, 377
rhyolite, 377
shoshonites, 375
S-type granite, 378
large igneous province (LIPs), 380–384 (see also large igneous province)
large layered igneous complexes, 384–390 (see individual intrusions)
oceanic regions, 365–374
aesculic ridges, 370
intraplate oceanic islands, 368–370
mid-ocean ridge basalts (MORBs), 366–368 (see also MORB)
plateaus, 370
ophiolite suites, 370–374
Precambrian associations, 397–405
anorthosites, 400–405 (see also anorthosite)
Archean crust, 398–399
komatitites, 399–400 (see also komatiite)
ultra-alkaline and silica-poor associations, 394–397
alkaline lamprophyres, 394–395
carbonatites, 396–397
depth of origin, 605, 607
Kimberlites, 395–396
igneous rocks, 1, 14 (see also individual rock names)
acid, 137
alkaline, 143, 220–223, 606
early crystallizing minerals in, 369
formed by partial fusion of fluid-saturated lherzolite, 606
basanite, 369
basic, 137
brecchia, 80
carbonatite, 261
formed by partial fusion of CO2-saturated lherzolite, 606
calcalkali, 144
classification of Irvine and Baragar, 143–144
(classification of (see IUGS classification)
comagmatic/consonjugal, 316
conditions necessary for formation, 591–599
accumulates (see igneous cumulates)
feldspar, 137
ferrodiorite segregation in basalt, 281
mafic, 137
ferrodiorite segregation in basalt, 281
monomineralic, formation through magma mixing, 219
names of, in IUGS classification, 141
oversaturated (SiO2), 138, 143, 202, 220–223, 261
partial fusion in basalt, 281
periods of abundant formation in Earth history, 584
plagiogranite, 367
subalkaline, 143, 220–223
tectonic association, 144
textual evidence of flow, 48–49
tholeiitic, 144, 606
ultrabasic, 137
ultramafic, 137
classification of, 138
undersaturated (SiO2), 138, 143, 202, 220–223, 261
associated with oceanic islands, 369
igneous texture (see texture, igneous)
ignimbrite (see pyroclastic deposits)
image analysis (see National Institutes of Health (NIH) Image)
immiscibility (see liquid immiscibility)
incompatible element, 357 (see also Nemat distribution coefficient)
íncongruent melting of metamorphic minerals, 520
íncongruent melting, 201, 202–205
index mineral, 417
index mineral zones:
Barrovian, 417
Buchan, 417
general, 447
metacarbonate rocks, contact metamorphic example, 495
metacarbonate rocks, regional metamorphic example, 451
infiltration metamatism resulting from compaction of crystal mush, 339
inflation of flood-basalt flows, 53, 58
initial isotopic ratio, 298
inner core of Earth, 2
InSAR (see interferometric synthetic aperture radar)
instability:
gravitational, 45
near wall of cooling magma body, 323
Rayleigh–Taylor, 45 (see also Rayleigh–Taylor instability)
texture, igneous
interchange energy of mixing in solution, 185
interface energy, 269 (see also Gibbs surface free energy)
interferometric synthetic aperture radar (InSAR), 541
International Union of Geological Sciences (IUGS)
International Heat Flow Commission, 8
intergranular
interfacial energy, 269
interchange energy of mixing in solution, 185
interchange energy of mixing in solution, 185
interfacial energy, 269
isochron, 217
isobaric conditions, 201, 215
isochron (see absolute age determination) isograd, 417, 447, 457, 462–465
isopleth, 198
isostatic equilibrium, 592
depth of ocean floor, 9
isotherm on liquidus surface, 217
isothermal and isobaric sections in ternary phase diagrams, 217, 231
isotope geochemistry, 295–315
isotopes (see also radioactive decay; individual elements):
definition, 295
evidence of crustal contamination of mantle-derived magma, 307, 349
initial ratio of radioactive, 298
long-lived radioactive, 10
short-lived radioactive, 10
stable (H, He, O, S), 312–315
delta value (°), 312
isotopic reservoir, evolution in the Earth, 304–312
chondritic ratio of \(^{146}\)Nd/\(^{144}\)Nd and Sm/Nd in bulk Earth, 305
evidence of time of core formation, 304
evidence of time of mantle formation, 305
Iowa, Greenland:
grey gneisses (trondhjemites), 398
metasediments:
\(^{146}\)Nd/\(^{144}\)Nd in, 305
\(^{146}\)Nd/\(^{144}\)Nd in, 305, 306
L-type granite (see granite)
Jack Hills, Western Australia:
oldest zircons (4.4 Ga), 305
oxygene isotopes, 398
jíkálaap, 66
Kamchatka volcanic belt, Russia, volcano
Kansu sills (dolerites), South Africa, 80
Kamui, Alaska (see volcanoes)
K,\(\alpha\) abundance distribution coefficient between metapelitic minerals, 474
K\(_0\), partition coefficient by volume, 528
Kenya dome, alkaline magmatism, 392
Daly Gap in rock series, 393
early phonolite flows associated with, 392
keratophyre, 139
definition, 141
Keweenaw flood basalts, 380
Greenstone flow, 53
columnar jointing in, 55
volume of, 52
Khibina–Lovozero ring complex, Kola Peninsula, Soviet Union, 88
Kiglapait, Labrador (see lepoliths)
Kilauea, Hawaii, 50, 61
1974 eruption, 60
1983 eruption, 62
analyses of lavas from, 317
Differentiation Index (D.I) plot, 320
FMI plot, 317, 319
Harker (silica) plot, 320
oxide versus magnesium number, 318
annual influx of magma, 62
augite phenocrysts, problem with scarcity of, 319
caldera, 60
compositional variation and differentiation of lavas, 317–321
depth of magma source, 317
elevation, 50
forecasting eruptions, 62
immiscible liquids in basaltic glass, 205, 300
liquidus temperatures of lava, 319
magma chamber, 62, 317
magma conduit, 61
magma density, 22
Pu’u ‘O’O, 62
rift zones, 317
Kilauea Iki lava lake, Hawaii, 20
1959 eruption rate, 51
cooling, 20, 114
crystal size distribution in 1959 pietre, 285
fissure eruption, 86
olivine phenocrysts in lava lake, 319
segregation sheet in, 319
Kilbourne Hole, New Mexico, spinel lherzolite from, 603
high-P melting experiments, 606
kilobar, 6
kimberlite, 89, 338, 395–396 (see also igneous bodies, diatreme)
association with diatremes, 93
compositional classification of, 93, 395
definition, 141
diamond-graphite stability relations in source of, 396
elevated contents of incompatible elements, 396
formed by partial fusion of fluid-saturated lherzolite, 606
generation from carbonated peridotite, 261
isotopic composition in \(^{87}\)Sr/\(^{86}\)Sr plot, 308
magma viscosity, 24, 93
mantle nodules, 395
depth of origin, 395
occurrence, 395
kinematic viscosity, 24
kinetics of metamorphic reactions:
advection-hydrodynamic dispersion-reaction, with kinetics, 539–540
Al\(_2\)O\(_3\) polymorphs:
kinetics, 452, 535
reaction paths, 521–522
calcite–argonite transformation, 535
Dammköhler-I number, 539
calcite facies, 573–574
fluids and, 535
fluid composition and (H\(_2\)O–CO\(_2\) fluid, 538–539
fluid infiltration and, 539–540
overstepping, 534, 536, 574
devolatilization reaction, 536–538
Index

rate law, devolatilization reactions, 535
rate law, general, 534
activation energy, 534
activity of fluid species, 534
Gibbs free energy dependence, 534
intrinsic rate constant, 534
reactive mineral surface area, 534, 535
ratelimiting step, 534
reaction order
linear, 536
nonlinear, 536
reaction paths, Al2SiO5 polymorphs, 521–522
retrograde metamorphism, 560
strain, effect of, 561
surface-controlled, 534
transport-controlled, 534
komatiite, 399–400
composition, 399
crustal contamination of, 348, 400
definition, 141, 399
depth of source, 400, 606
in Archean greenstone belts, 399
in Caribbean, 399
liquidus temperature, 399
magma viscosity, 24
nickel sulfide deposit (Kambalda, Western Australia) associated with, 400
of Munro Township, Ontario, 273, 399
rare earth element(see Earth)
crystal, 13 (see Al2SiO5 polymorphs) to andalusite reaction, 167
laccolith, 93–95
Henry Mountains, Utah, 94
terminations on, 95
Maverick Mountain, west Texas, 93
peripheral shape of, 94
radius–depth relation, 94
radius–thickness relation, 95
lahar, 68
Mount Hood, Oregon, 69
Lakagigar fissure eruption (see Iceland)
Lake St. John, Quebec, anorthosite, 434 (see also anorthosite, massif-type)
laminar flow, 24
lamproite, 396
lamprophyres:
alkaline lamprophyres, 394–395
alnöite, 394
camptonite, 292, 394
classification, 139, 143
monchiquite, 394
laminite, 70
lithostatic pressure gradient, 3
lineation, 430
law of sines, 288
layer-parallel fluid flow, 516, 529, 530, 543
layered intrusion (see also fluid flow, metamorphism)
lithosphere, 3
locative reaction, 29
lithophile elements, 305
in carbonatite, 343
sulfide–silicate liquids, 248, 344
in core formation, 585
in gabbro, Sudbury, Ontario, 249
in komatite, Kambalda, Western Australia, 400
in Merensky Reef, Bushveld Complex, South Africa, 388
in mesotaxis of Hōoloe basalt, Connecticut, 249
in tholeiitic basalts, 291
liquidus, 119, 195
law of sines, 288
in Kilauea basaltic glass, 205, 206, 341
in anorthosite
in alkaline basalts, 342
in eclogite, 344
in mantle, 342
in anorthosite–quartz mangerite series, 403
in experimentally melted carbonated eclogite, 344
in Kilauea basaltic glass, 205, 206, 341
in layered intrusions, 385
in lunar samples, 340
in MORB, 367
in simple binary systems, 205–207
in layered ultramafic rocks, 387
in system fayalite–leucite–silica, 223
in ternary systems, 223–224
role in formation of carbonatite, 343
sulfide–silicate liquids, 248, 344
in core formation, 585
in gabbro, Sudbury, Ontario, 249
in komatite, Kambalda, Western Australia, 400
in Merensky Reef, Bushveld Complex, South Africa, 388
in mesotaxis of Hōoloe basalt, Connecticut, 249
in tholeiitic basalts, 291
liquidus, 119, 195
function of Δ T of fusion, 195
lithophile elements, 305
lithosphere, 3
extension and deformation melting, 593, 594
section through, 3
thickness of, 13
control on partial melting above Benioff zone, 377
in Archean, 378
lithostatic pressure gradient, 5, 515
local equilbrium, 523
Loch Ba ring dike, Mull, Scotland (see dikes)
lofítheith (layered intrusions), 95–99, 384–390 (see also Skæggaard)
age of large, 384
Bjerkreim–Sokkadal Intrusion, Norway, 350
anorthosite block in, 97
rhythmic layer and channels in, 97
Bushveld Complex, South Africa, 96, 384, 387–388
age of, 384
chromite layers, Dwars River, 385
layered ultramafic rocks, 387
magma mixing, 388
Main Zone, 388
Merensky Reef (chromite), 387, 388
possible meteorite impact origin of, 411
Upper Zone, 388
composition of magma, 384
multiple surges of fresh magma, 385
Dalholt gabbro: age of, 384
association with midcontinent gravity high, 381
Foteng–Hyllingren Intrusion, Norway, 350
Great Dyke of Zimbabwe (Rhodesia), 81, 97, 384
age of, 384
pyroxene and plagioclase cumulates, 332
lutetium (layered intrusion) (cont.)
Haukvik Intrusion, Norway, 350
isotopic evidence of crustal contamination of, 310, 350
Kalka Intrusion, central Australia, 310
Kiglapait, Labrador:
age of, 384
isotopic evidence of assimilation and fractional crystallization, 350
layering, 96, 333
layering of rocks in, 96, 97, 333
graded layers, 97
Musket Intrusion, Northwest Territories, Canada, 96, 384, 388–390
age of, 384
compaction of crustal mush in, 339
cyclic units in, 389
feeder dike to, 81, 97
Ram Complex, northwestern Scotland, 98
deformed layers of troctolite, 98
harrsitic texture, 98, 333
layered ultrabasic rocks on Hallival, 96
sequence of crystallization in, 385
Stavanger, Norway, 335
graded layering, 99, 334
Stillwater Complex, Montana, 97
age of, 384
chromitite layer, 96
doublet layering, 337, 338
inch scale layering, 337
magnatic lineation, 98
olivine–orthopyroxene reaction texture, 203, 222
poikilitic texture, 339
reaction texture, 338
sulphide (PGE) deposit, 346
Sudbury, Ontario, 97, 384, 410
age of, 384
breccia, 410, 411
crystal size distribution in, 285
immiscible sulfide ore in gabbro, 249
magmatic sulfide deposits, 248, 410
meteorite impact origin of, 410
typical rock types in, 385
Lord Kelvin, 6
low-T, high-p metamorphism, 4, 14 (see metamorphic facies series)
age of, 584
low-velocity zone (an hombre), 3, 7, 13
intersection of geotherm with garnet herzolite solidus, 591
melting in, 261
luteum:
176Lu decay to 176Hf, 303
176Lu–176Hf and provenance of magma, 311
maar, 89, 90
mafic, 133, 137
magma, 19
accumulation in source, 599–601
ascent rate at convergent plate margins, 598 (see also flow)
assimilation (see assimilation)
bulk density of vesicular, 33
buoyant rise, 15, 28–32, 83
in batholiths, 102
chamber, 62
cooling rate of convecting and nonconveetcing, 324, 325
chamber, axial (AMC), 50
compressibility, 30
contamination (see assimilation)
crystal mush, 20
density, 21–23
role in magma mixing, 351
density increase with pressure, 23
depth to source, 31
derived from crust, 146Nd/144Nd and 87Sr/86Sr signature, 306
derived from depleted mantle 146Nd/144Nd and 87Sr/86Sr signature, 306
Lorraine
diapirc intrusion of, 45–47
differentiated – evolved, 42
direct measurement of temperature of, 19
disruption by expanding vesicles, 34, 69
flow rate of Bingham, 39–41
flow rate of turbulent, 41 (see also flow)
flow textures, 48–49
flow through channels, 16
flow through pores, 16
flux through pipe, 37
fool’s gold, 44
gases (see volcanic gases)
solubility (see water; carbon dioxide and sulfur)
generation, 599–601
intrusion, 28
intrusion rate of laminar Newtonian magma, 35–39
intrusion rate of turbulent magma, 41
level of neutral buoyancy, 31, 47
melting range, 19
mixing, 219, 350–356
cause of eruption, 377
com mingling, 351, 352–354, 377
effect on phase relations, 356
evidence from crystal size distribution, 285
evidence from phenocrysts, 355
formation of economic deposits, 356, 385
in anodesite, 377
in Bushveld Complex, South Africa, 388
in calcalkali series (BADR), 379
in dacite and rhyolite, 377
in andesites, 377
formation of economic deposits, 356, 385
in MORBs, 367
in Mount Desert Island, Maine, 353
isotopic evidence of, 309, 349, 355
Paricutin Volcano, Mexico, 355
Rayleigh number for, 351
role of magma density, 351
Reynolds number for, 351
Soret diffusion, 316, 345
solidification of, 591
parental, 316
primary, 316
rise by ballooning, 47
source region composition for basaltic magma, 601–604
based on mantle xenoliths, 601–604
pyrolyte model mantle, 604
steady-state laminar flow in vertical pipe, 36–38
superheat, 20, 115, 200
suspension, 20
tectonic pressure on, 35
temperature lowered by H$_2$O, 20
temperatures, 19–20
turbulent flux through dike, 41
turbulence, 33
viscosity, 16, 23–25 (see also viscosity)
role in magma mixing, 352
yield strength, 23, 317
maganatic processes, 316–364
assimilation (see assimilation)
compaction (see crystal-mush compaction)
convection, 317, 323–328
computation, 323, 325
double-diffusive, 326, 328
dripping instabilities, 328
forced, 323
free, 323
Nusselt number, 324
dense crystal suspensions, 328
rate near vertical wall, 323
rate of in sheet-like body cooled from
above, 325
Rayleigh number, 324
thermal, 323
turbulent flux through, 326
crystal-mush compaction, 328–331
in CoHassett, Columbia River, flood-basalt flow, 331
in Holyoke flood-basalt flow, Connecticut, 329–331
IRIDUIM program for modeling, 331
crystal settling, 317, 321–323
in ocellus, 343
Stokes law, 322–323
yield strength, 322
differentiation, 316
calculation using least squares computer fit to rock analyses, 321
rate determined using short-lived radiotopes, 379–380
filter pressing, 317, 340 (see also compaction)
flowage differentiation, 317, 340
fractionation:
Berthollet–Nemst (equilibrium), 358
crystal–liquid, 316
liquid, 316
Rayleigh, 358
liquid immiscibility, 316, 340–345
mel productivity under adiabatic decompression, 238
mixing (see magma mixing)
pneumatic action, 317, 346–347
resurgent boiling (second boiling), 259, 346
Soret diffusion, 316, 345–346
trace element fractionation, 356–361
during partial melting in source region, 601
vapor-phase separation (see pneumatic action)
zone melting, 349
magmam, 601
magnesium number M$_r$ (differentiation index), 318
of MORB, 367
magnetic field, 2, 326
magnete:
crystallization, effect on vanadium content of magma, 359
skelatal form of, 273
with fayalite and quartz as oxygen buffer (see oxygen)
with ilmenite as oxygen buffer (see oxygen)
major element, 132
mantle of Earth, 2
array in cca-εq plot, 308
composition, 131
density, 29
depleted, 309
rare earth element signature of, 361
fertile, from Kilbourne Hole, New Mexico, 603
isotopic signature of magma sources in, 312
depleted MORB mantle (DMM), 312
enriched mantle I (EM I), 312
enriched mantle II (EM II), 312
focus zone (FOZO), 312
high μ (HIMU), 312
layered (upper, lower), 588–589
metamatosis, isotopic evidence for, 311
prior to ocean island magmatism, 593, 594, 631
nODULES (see mantle xenoliths)
plume, 52, 368
association with large igneous provinces (LIP), 368
association with alkaline igneous rocks, 367
beneath:
Afar triangle, Ethiopia, 392
Hawaii, 365, 589
Iceland, 365, 381, 580
depth of origin, 365
diameter of plume head, 368

dressed as H2 and He, 369
excess temperature, 368
flood basalts associated with, 380
isotopic signature, 309, 312
superplume, 589
thermochemical, 368
pyrolite, model, 604
tensile strength of upper, 32
time of formation based on 44Nd/144Nd in, 305
viscosity of, 23, 26
wedge above subduction zone, 310–311

temperature distribution in, 596
xenoliths:
eclogite, 602
in alkaline rocks, 601–604
in anolite, 395
in duitremes (kimberlite), 93
in kimberlite, 395
in ocean island nephelinites, 370
peridotinites (garnet lherzolite, spinel lherzolite, harzburgite), 602
marble, 494 (see also metacarbonate rock)
Margules’ formulation (asymmetric regular solution model), 187
Marx:
Olympus Mons, 66
volcanoes on, 66
mass balance analysis (see mass transfer, metamorphic fluids)
metamorphic fluids (see also fluid flow, metamorphic):
advection of mass, 516, 526
conservation of mass:
advection-hydrodynamic dispersion, 526
advection-hydrodynamic dispersion-reaction, general form, 528
advection-hydrodynamic dispersion-reaction, with kinetics, 539–540
solution to partial differential equation, example, 527
diffusion, 511, 517, 518
cross coefficients, 524
Fick’s first law, 517
Fick’s second law, 518
interdiffusion coefficients, 524
lense scales, 518, 543
Onsager diffusion coefficients, 524
fluxes (see time-integrated fluid flux)
H2O–CO2 transport-reaction across lithologic contacts, 540–544
hydrodynamic dispersion, 518, 526, 540
large ion lophiolite elements (LILE), 544
mechanical dispersion, 518
metasomatic zonation, 522–525, 544
metasomatism, examples of element mass transfer:
chert nodules, 522–525
mélange zones, 544
subduction zones, general, 544
vein selvages, 550–555 (see also veins, metamorphic)
metasomatism, mass balance analysis of:
concentration ratio (CR) diagram, 553
interpretation of elemental ratios, 550–551
interpretation of mass and volume changes, 553
mass change, overall for rock, 552
mass changes for individual elements, 552
partial melting, 552
precursor rock, 550
pseudomorphs and volume change, 551
residual framework, 551
residual dilution, 554
statistical treatment, 553–554
volume change for rock, 552
wedge diagram, 544, 555
rare earth element (REE) mobility, 553
Mauna Loa, Hawaii (see volcanoes)
mean free path (see diffusion)
mechanical dispersion (see mass transfer, metamorphic fluids)
Melford dike, Massachusetts, 85
mélange zones, 544
melanoseric, 137
melanosene, 44
melting (see also partial melting)
beginning of melting curves (H2O-saturated) for common minerals and rocks, 251, 252
convect, 28, 580
decompression, 15, 236–239 (see also adiabatic)
fluxing with H2O, 15, 17
hydrous mineral, 254
incongruent melting, 201
productivity resulting from adiabatic decompression, 238 (see also adiabatic)
range of igneous rocks, 19
temperature lowered by H2O, 20, 250–254
volume expansion on, 22, 32
zone, 349
MELTS, 194, 239–240
density calculation, 22
viscosity calculation, 23
use in normative mineral calculation, 136–137, 148
MELTSeismic Team (East Pacific Rise), 367
Merrimack synclinorium, Massachusetts and Connecticut, 481, 485–486, 578
mesosome (see igneous cumulates)
metabasalt:
ACF diagrams for, 455
blocks in mélange zones, 544
metamorphic facies, 419–424
petrography of, 423
pseudosection example, 489
metacarbonate rock:
calsicarbonate, 494
common reactions, 495, 499–501, 506, 541
contact metamorphism, 494
fluids (see fluids, metamorphic; mass transfer, metamorphic fluids; time-integrated fluid flux)
H2O–CO2 transport-reaction across lithologic contacts, 540–544
index mineral zones, contact metamorphism example, 495
index mineral zones, regional metamorphism example, 541
metasomatism and mass transfer, 522–525, 540–544, 550–555
petrogenetic grid (see T-XcO2 diagram)
petrography of, 541
petrologic characteristics, 490
vein selvage metamassotomism, 550–555
metamorphic core complex, 573
metamorphic facies, 419–424, 455
albite–epidote hornfels, 422
amphibolite, 422
blueschist, 422
eclogite, 422
granulite, 422
greenschist, 422
hornblende hornfels, 422
prehnite–pumpellyite, 422
pumpellyite–actinolite, 422
pyroxene hornfels, 422
sandinite, 422
zoilite facies, 422
metamorphic facies series, 562
high-temperature, high-pressure (Bachan, Abukuma) type, 417, 470, 485, 562, 568, 579–580
intermediate, 562
low-temperature, high-pressure (LT/HP) type, 562, 569, 575–587
moderate-temperature, moderate-pressure (Barrovian) type, 417, 486, 562, 572, 580
metamorphic field gradient, 562, 563
metamorphic geotherm, 562
metamorphic grade, 417
metamorphic mineral facies, 419, 451
metamorphic rocks, 1, 14
crustal volume of, 414
mapping of, 417–419
model terrane map and interpretation, 447–454
metamorphic reaction overstepping, 270, 293 (see also kinetics of metamorphic reactions)
metamorphic subfacies, 424
metamorphic textures (see texture; metamorphic metamorphism:
Barrovian, 417 (see also Scottish Highlands for more detail)
Buchan, 417 (see also high-T, low-P metamorphism)
contact, 1, 14, 414, 427
marble at contact with dike, Montreal, Quebec, 82
nucleation rate of garnet near dike, County Mayo, Ireland, 270
result of advective transfer from mantle by magma, 594
definition, 414
facies series (see metamorphic facies series) high-T, low-P metamorphism, 4, 258 (see also metamorphic facies series)
high-T, high-P metamorphism, 4 (see also metamorphic facies series)
low-T, high-P metamorphism, 4, 14 (see also metamorphic facies series)
partial melting and, 448, 453–454
prograde, 414, 474–454
regional, 1, 14, 17, 414
due to heat advectively introduced by magma into crust, 598
low-grade, due to lithospheric extension, 594
retrograde, 414, 417
preservation of mineral assemblages during exhumation, 560–562
seafloor hydrothermal, 414, 422, 424, 516
ultrahigh pressure (UHP), 425, 459
ultrahigh temperature (UHT), 425
age of, 584
formed after removal of melt, 599
metapelite (see also Scottish Highlands):
AFM diagram (Thompson projection), 457–462
common mineral formulas, 457
components in, 459
petrogetic grid, 467–469
petrography of, 468
protolith (shale) composition, 457
pseudosection example, 482–485
solid solutions, 457–467
thermobarometry (see thermobarometry) variance of assemblages, 458, 460
metasomatism (see also mass transfer, metamorphic fluids, replacement):
dike emplacement by, 85
fertilization, 347
of mantle (see mantle, metasomatism)
sodium (on ocean floor), 139
metastable (see also stability):
reaction, 425, 560
Meteor Crater, Arizona (see meteorite)
meteors, 130–132
chondrule, 132
flux as function of time, 405
from Mars, 132
from Moon, 132
kinetic energy of, 405
impact-generated rocks and minerals, 405–411
breccia, 406, 411
coesite, 409
diamond, 407, 410
lechatelierite, 407
melt, 406, 407, 411
maskelynite, 407, 408
Onaping tuff, Sudbury (fall back breccia), 411
planar features in quartz, 408
pseudotachylyte, 409, 410, 411
shatter cones, 406, 407
stishovite, 409
Sudbury breccia, 411
tekites, 407
impact (explosion) structures, 409
central uplift, 406
Bushveld Complex, South Africa, 411
Charlevoix, Quebec, 407
Chichuahua, Yucatan, Mexico, 408, 409
Clearwater Lakes, Quebec, 408
crater diameter as function of kinetic energy, 406
craters, 405, 406
decompression melting associated with, 409
greenstone belts, 398
large Precambrian layered intrusions, 384
Manicouagan, Quebec, 407, 408, 409
Meteor Crater, Arizona, 406
shatter cones, 406, 407
Sudbury impact, Ontario, 410
Vredfedorf, South Africa, 408
iron, 131, 132
stony, 131
achondrites, 131
chondrites, 11, 131, 132
accretion following core formation, 304
carbonaceous, 131
eucrite, 131
ordinary, 131
stony iron, 131, 132
velocity, 405
mariote, 103, 259
Mid-Atlantic Ridge:
Iceland, 53, 54
textural variation across pillow from, 273
midcontinent gravity high, 381, 405
Midland Valley of Scotland, alkaline rocks associated with, 391
mid-ocean ridge (see also Pacific Ridge; Mid-Atlantic Ridge):
axial magma chamber (AMC), 50
basalt (MORB) (see MORB)
fracture erosion, 405
volume of, 52
fracture zone, 366
heat flux, 4, 8
potential temperature, 366
shallow thermal anomaly in mantle, 589
migmatite, 44, 45, 252, 414, 448, 608 (see also partial melting)
lucosomite, 44
melanosome, 44
Milankovitch cycles (see oxygen isotopes)
Minas Gerais, Brazil, carbonatite, 396
minerals:
accessory, 19, 133
rock-forming and accessory, 19, 133
minimum (on liquidus), 212, 227
minor element, 132
mode, 133
determination by point counting, 133
determination from image analysis, 133 (see also National Institutes of Health (NIH) Image)
modified Redlich-Kwong equation, 246, 491
Mohorovičić discontinuity (Moho, M), 2, 370
in ophiolite, 373
mineral transformations at, 17
mobility, definition of, 520
molar volume, 22
partial, 21
mole fraction, 22
monazite:
absolute dating of, by electron microprobe analysis, 303
closure temperature of, 303
zoning in, 303
monchique, 394
Montenegrin igneous province, southern Quebec, 101
alkaline rock distribution, 392–393
assimilation in, 347
bimodal (mafic–felsic) composition of rocks in, 343
possible role of liquid immiscibility, 393
Daily Gap in rock series, 393
diabase breccia, Ile Bizard, 90
dikes and sills, 82
isotopic evidence for crustal contamination of mantle-derived magma, 307
layering in gabbros, 337
Oka carbonatite, 396
Rb–Sr isochron, 299
Moon:
anorthosite in lunar highlands, 400
formation from giant impact on Earth, 10, 304
age of, 304
liquid immiscibility in lunar rocks, 340
maria basalt, 398
rise of basaltic magma on, 31
MORB (mid-ocean ridge basalt), 366–368
classification on basis of isotopic signatures, 148
depleted source of, 367
depth of source, 367, 605, 607
fractionate, 367
role of augite in, 367
immiscible glasses in, 367
isotopic composition of, 311–312
in Nd–Sr, Sr plot, 308
magma mixing, 367
magnesium number of, 367
N-type, 312
phenoocrysts of olivine and plagioclase in, 366
product of depressional melting, 594
rare earth element concentration in, 361
Soret diffusion in, 345
volume of, 53
Mount Desert Island, Maine, basalt inclusions in granite, 105
Mount Johnson, Quebec, layering in, 337
Mount Pelée, Martinique (see volcanoes)
Mount Royal, Montreal, Quebec, dike bridges and horns, 86
Mount St. Helens, Washington State, 28, 67, 69, 73, 74
explosion velocity, 28
zoned plagioclase phenocryst in andesite, 376
Mounts granite, Northern Ireland, 89 (see also dike, ring)
mudflows (volcanic), 68 (see lahars)
null, Isle of, Scotland: cone sheet, 88
isotopic composition of basalt from, 309
^{18}O around central complex, 313
Loch Ba ring dike, 109
muscovite (see dehydration reaction)
Muskox Intrusion, Northwest Territories, Canada (see lopolith)
mylonite, 442
grain size of, 271
National Institutes of Health (NIH) Image program, 108, 133
use in measuring mode, 148
skeletonize function in, 330
use in measuring mode, 148
natrocarbonatite (Na$_2$CO$_3$), Oldsinyo Lengai, Tanzania, 392
Naxos, Greece, 573
donutymumum: εNd, 308
143Nd/144Nd evidence of crustal contamination, 349
143Nd/144Nd evolution in bulk Earth, 305–306
143Nd/144Nd evolution in crust, 306
143Nd/144Nd evolution in mantle, 306
143Nd/144Nd in MORB, 306
143Nd/144Nd in primordial Earth, 305
nepheline:
monzonite dikes, 46
phenocrysts, 200
nuclei, eutectic composition of, 202
nepheline, overstepping required for, 268, 269
overheating (metamorphic), 270
strain, 271
undercooling (igneous), 270
nuclei (see nucleation)
muñez ardentés (glowing clouds), 74
numerical analysis:
Crank–Nicolson finite-difference method, 119–121
Crank–Nicolson finite-difference method (P–T–t paths), 565, 566
of heat conduction, 117–121
Nusselt number, 324 (see also magmatic processes, convection)
observation, 571
obduction, 57, 371
obisidian, 72
dome, Glass Mountain, California, 71, 377
flow, Little Glass Mountain, California, 72
flow, Newberry Volcano, Oregon, 71
ocean floor:
age of, 365
depth versus age, 9, 114, 586
MORB (see MORB)
hydrothermal alteration of, 4, 9, 234, 372,
595 (see also metamorphism, seafloor hydrothermal)
rate of formation, 365
sediments:
contribution to island-arc magmatism, 311
isotopic composition of, 310
ocean water:
circulation through ocean floor, 4, 9, 243, 372
Sr and Nd isotopic composition of, 310
standard mean, (SMOW), values of 16O/18O and 3H/2H, 313
oceanic crust, 29, 43
content of radiogenic isotopes, 11
layer 2A, 30
olivine-rich veins, 44
steady-state geotherm, 12
stratigraphy, 43
thickness, 2
ocean island basalts:
alkali olivine basalt, 369
depth of origin, 369
trace element composition of, 369
basanite, 369
composition of 369
depth of origin, 369
early crystallizing minerals in, 369
high 3He/4He, 369
isotopic composition in εNd/εHd plot, 308
tholeiites, 369
ocelli, 292
carbonate, in kimberlite and alnoite, 397
crystal settling in, 343
deformation of melting crystals, 344
occurrence in lamprophyres, 342, 343, 349
origin as immiscible liquid globules, 342, 343
wetting of hornblende crystals, 292
Oka carbonatite, Quebec, 396 (see also Monzegian Province)
oikocryst, 338, 339
Old Faithful geyser, Wyoming, 76
olivine:
α–β transformation at depth of 400 km, 590
alignment of α-axis in:
harzburgite in ophthalmite, 372
oceanic mantle, 370
dendrites in komatite, 273, 399
floating in magma at 10 to 15 GPa, 591, 592
fluid inclusions in mantle olivine, 604
liquids, 208–210
reaction with garnet to form perovskite at depth of 670 km, 590
reaction with magma to form orthopyroxene, 203
Olympus Mons, Mars, 67
Oman, Persian Gulf:
olivine veins in peridotite, 44
ophiolite, 371
ophiolitic (pyroxene), 422, 603
photomicrographs, 421, 426, 561
Ontong Java plateau, 370
ophiolite, 43, 370
associated rocks, 371
hydrothermal alteration, 372
Oman (see Oman)
striatigraphic succession, 371–372 (see also oceanic crust)
chromitite, 372
dunite veins, 372, 373
harzburgite (deformed and serpentinitized), 371
layered gabbros, 372
Mohorovičić discontinuity, 373
pillow lavas, 372
plagiogranite, 372
shoestring dike complex, 373
strata-bound sulfide deposits, 372
transition zone, 372
Troodos, Cyprus, 373
ophitic (see texture)
sferro:
associated with Khibina–Lovozero ring complex, Kola Peninsula, Soviet Union, 88
chromite layers in lopoliths, 96
Dwars River, Bushveld Complex, South Africa, 385
formation through magma mixing, 356, 385
Merensky Reef chromitite layer with PGE, 387
Stillwater, Complex, Montana, 96
diamond, 395–396
hydrothermal, 70, 234, 346
iron–titanium–oxide apatite rocks (nelsite) in massif-type anorthosites, 402
magmatic sulfide deposits, 248, 346
formed through magma mixing, 356
nickel sulfide deposit associated with komatite, Kambalda, Western Australia, 400
nickel sulfide deposit associated with Sudbury meteoorite impact crater, Ontario, 249, 410
niobium and rare earth deposits associated with carbonatite, 397
pegmatite, 255, 346
platinum group elements (PGE), 346
in Merensky Reef, Bushveld Complex, South Africa, 388
porphyry copper deposit, 89, 378
strata-bound sulfide deposit in ophiolites, 372
Skouriotissa, Cyprus, 373
sulfur isotopes in, 314
tin and niobium associated with granitic ring complexes, 88, 393
Orijarvi, Finland, 419
orthocumulate (see igneous cumulates)
diopside–albite–anorthite, 224–226
diopside–anorthite, 196–197, 198
diopside–anorthite–H₂O, 235
diopside–forsterite–anorthite–silica, 234
diopside–nepheline–silica, 220
fayalite–leucite–silica, 223–224
feldspars, 228–230
forsterite–anorthite–silica, 220–223
magma mixing in, 356
forsterite–diopside–silica–H₂O, 233
forsterite–diopside–pyrope, 607
forsterite–nepheline–silica, 606
gedenite–akermanite, 66
nepheline–quartz, 200, 201–202
plagioclase–H₂O, 253
pyroxenes, 230–233
subsolidus phase diagrams (metamorphic) (see activity diagram, 58; chemical potential diagram; petrogenetic grid; pseudosection; T-X CO₂ diagram)
(Mg,Fe)₂SiO₄–CaSiO₃, 211
chlorite + quartz + garnet + H₂O, 278
phase rule, modified (metamorphism), 451 (see also Gibbs phase rule)
phase triangle, 226 (see also tie triangle)
phenocryst, 19, 137
imbrication of, 48
lineation, 48
relation to eutectic composition, 199
rotation near igneous contact, 48
phlogopite: occurrence in alnöite, 394
occurrence in kimberlite, 395
stability limit and reaction products, 394, 591, 604
phonolite flows associated with early rifting, Kenya, 392
phreatomagmatism, 92 (see also diatremes)
phylite, physical characteristics of, 428
phylonite, 441
picrite, 144
definition, 141
piercing point (in phase diagram), 234
piezometric head, 42
pigonite (see also pyroxenes)
exsolution lamellae in augite, 230
inversion to orthopyroxene, 211, 230
Pilanesberg ring complex, South Africa, 89, 90
Pilbara, western Australia (see batholiths)
pillow lava, 57
in mid-ocean axial valley, 366
in ophiolites, 371, 372
Troodos, Cyprus, 373
in Precambrian ocean floor basalt, Ungava, northern Quebec, 34
in Talcott basalt, Connecticut, 58
pipes, segregation in compacting crystal mush, 326
pipe-stem vesicle (see vesicle)
plagioclase: crystallization in the system diopside–albite–anorthite, 224–226
density, 22
growth rate in Makaopuhi lava lake, 285
inclusions of Fe-Ti oxides in, 401
maximum crystal growth rate from melt, 274
neutral buoyancy in basaltic magma, 321
phenocrysts in andesite, 376
reactions with olivine to form spinel and pyroxene, 603
sector zoning in, 277, 278
plagiogranite, 467
in ophitite, 372
plastic deformation, 428
plateau basal, 52
plate tectonics, 4, 15
plate tectonic boundaries: convergence, 14
divergent, 14
transform, 1, 14
platinum group elements (PGE), 346
in Mesensky Reef, Bushveld Complex, South Africa, 388
pleochroic halos, 296, 297
plinian volcanic activity, 35, 69, 73
plug flow of Bingham liquid, 40
plume: see mantle plume
plutonic igneous rock classification (see IUGS)
poikilitic texture (see texture, igneous)
poikolitic, 436
pois (gcs unit of viscosity), 24
Poisson’s ratio, 39, 95
polymerization of magma, 25, 206
polymorphism:
effect on phase transitions with solid solutions, 210–211
high-pressure, due to meteorite impact, 409
of Al₂SiO₄ (see Al₂SiO₄ polymorphs) of enstatite, 230
of quartz and nepheline, 202
transformation of kyanite to andalusite, 167 (see also Al₂SiO₄ polymorphs)
Pompeii (see volcanoes, Vesuvius)
population density (see crystal size distribution)
porosity, 516
pores, 42
intergranular region, 512
metamorphic rocks, 512–514
partially melted mantle, 44
reduction, in sediments, 415
porous flow, 41–43
porphyritic texture (see texture, igneous)
porphyroblastic texture, 435
porphyryblasts, 435

garnet zoning and thermobarometry, 480–482
growth of, 435
inclusions in, 436–440
textures (see texture, metamorphic)
porphyrastinit, 441
porphyry copper deposit, 89, 378
post-tectonic crystal, 438
posttectonic alteration, 532
potassium:
content of magnesian versus depth to Benioff zone, 377
isotopes of, 296
KI in Earth’s core, 11
potential temperature, 237, 366, 370
Precambrian igneous rock associations, 497–405
preferred crystallographic orientation, 432
pressure:
diamond anvil experiments (high P), 6
fluid, 4
generated by vesiculation, 33
gradient, 5
perturbation in, 592
gradient, excess, 28, 31, 36
hydrostatic, 5
in Earth, 4–6
inside bubble due to surface tension, 289
lithostatic, 5
piezometric head, 42
shadows, 430
shock experiments (high P) 6
solution, 289, 415, 430
formation of planar fabric, 340
reduction of porosity in crystal mush, 339
unit of (pscalar), 6
pressure-temperature-time (P-T-t) paths, 481, 482, 560
anticklockwise (counterlockwise), 486, 578
at convergent plate boundaries, 599
clockwise, 486
Cp(T) value of, 570
Cp(T)/ρ value of, 570
crustal thickening, 565
equations for:
avulsion of fluid and magma, 569–570
conduction, 564
conduction-mass transport heating:
radiogenic heating, 565
Crank–Nicolson solution method, 565, 566
excess (exhumation) rates, 567
heat consumption inventory, 575
mass transport (exhumation or burial) heating, 564
radiogenic heating, 564
reaction (chemical), 574
evasion delay preceding exhumation, 568
example of possible path, 562
examples, field:
Ardronbacks, New York State, 578
Barrovian zones, Scotland (magnatism and fluid flow), 572, 580
Bergen Arcs, Norway (eclogite facies), 573–574
Big Maria Mountains, southeastern California, 579
Bristol, New Hampshire, hot spot, 571–572
Bronson Hill antclinorium, Massachusetts, 485–486, 578
continent–continent collision, 578
Dora Maira Massif, western Alps, 577
Franciscan complex, California, 577
granulite facies, 578–579
high-temperature, low-pressure metamorphism, 485, 568, 579–580
Los, Greece, 573
low-temperature, high-pressure (LT/HP) metamorphism, 575–577
Merrimack synclinorium, Massachusetts, 485–486, 578
Naxos, Greece, 573
Papua New Guinea, 577
Pyrenees, 579
Taufin window, eastern Alps, 567, 578
UHP metamorphism, 575
Waterville Formation, Maine, 485
Woguwan Schist, Connecticut, 481, 571
pseudotachylite: pseudosection, 473
pseudoleucite, 207, 208
propylitic alteration, 532
pyroclastic deposits, 34, 70, 73
PyroCeram®, 205
pumpellyite, photomicrograph, 421
pumice, 34, 74, 77
–– 512
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
––
Pompeii, 73
Valley of Ten Thousand Smokes, Alaska, 77
welded ash-flow tuff, 77, 78
Yellowstone, Wyoming, 76, 79
pyroclastic model mantle, 604
pyroxene (see also augite; orthopyroxene;
exsolution lamellae in orthopyroxene,
187, 229
photomicrograph (granulite facies), 421
quadrilateral, 229, 230
forbidden zone in, 232
omphacite, 603
quartz: β phenocrysts in rhyolite, 207
deformation lamellae resulting from meteorite impact, 408
maximum crystal growth rate from melt, 274
preferred crystallographic orientation, 432
reaction effects, 574
in fault zones, 443, 444
formed by meteorite impact, 409
metapelite example, 482
North Island, New Zealand, 77
Chiricahua tuff, Arizona, 77
Bishop tuff, California, 76, 77
geothermometry (Ti in quartz), 192
oscillatory zoning of Ti in quartz phenocrysts, 191, 192
Chiricahua tuff, Arizona, 77
basalt inclusions in pumice, 105
igneous: 141
in alkali olivine basalts, 361
in igneous rocks, 359
in island arc basalts, 360
in komatites, 361
in volcanic rocks, 359
in tectonic continental flood basalts, 361
lantbranni construction, 305, 359
mobility, 553 (see also mass transfer,
metamorphic fluids)
Rayleigh fractionation, 280 (see also fractionation)
Rayleigh number (Ra), 324 (see also magmatic
processes, convection)
critical (Ra), 324
for a sheet generating its own heat, 586
Rayleigh–Taylor instability, 45
at periphery of laccolith, 94, 95
in wine glass, 45
oil–honey model, 46
on edge of fried egg, 95
on spheric sheet in basaltic sill, Montreal, Quebec, 107
spacings of batholiths, 106
spacings of volcanoes in island arc, 46, 51
reaction, continuous and discontinuous, 210,
211–212, 338 (see also peritectic
reaction infiltration instability, 44
reaction paths (see kinetics of metamorphic
reactions)
reaction progress variable, 504, 533, 575
reaction rind, 544
reconstructive phase transition, 535
Redlich–Kwong equation (modified),
246, 491
Red Sea rift (see rift valleys)
reduced heat flow, 10
regular solution model, 185–187
asymmetric, 187
symmetric, 185–187
unmixing, 187–189
replacement: 85
pipe in pegmatites, 255
residual dilution, 554
residual enrichment, 554
resurgent boiling (second boiling), 259, 346
resurgent dome, 76, 99
retrograde metamorphism (see metamorphism,
retrograde)
reversible thermodynamic process, 151
Reynolds number (Re):
37, 38
for flow in dikes, 38
for flow in open channel, 38
for flow in pipe, 37
for fountain into magma chamber, 351
for sinking or floating sphere, 322–323
for turbulent flow in dikes, 41
rapakivi granite (see also texture; igneous): 141
basalt inclusions in, 105
batholiths, southern Finland (see batholith)
definition, 141
rare earth elements (REE), 305
abundance in common volcanic rock types, 361
chondrite-normalization of analyses of, 359
europium anomaly, 359
fractionation of, by common minerals, 360
in alkali olivine basalts, 361
Anthony R. Philpotts and Jay J. Ague

Index

barium diffusion in, 125
barrovian type locality:

A. Ferrar, Antarctica, 39

Al2SiO5 polymorphs)

Al2SiO5 polymorphs and kinetics, 416, 419, 521–522, 535

heat transfer and timescales, 572, 580

index mineral zones, 417

isograds, 417

buechian type locality, 417

screen, 103, 106

screw dislocation, 272

seaflow hydrothermal metamorphism (see

metamorphism, seaflow hydrothermal)

seawater (see ocean water)

second boiling (see resurgent boiling)

sector zoning in crystals, 277–278

houchglass, 277

in titanaugite, 277

in alkali feldspar, 258

in clinotilite, 289

in garnet, 289

due to growth far from equilibrium, 289, 291

sedimentary:

basin, extensional, 29, 593

rocks, 1, 14

seismic discontinuities (see discontinuities)

 selvages (see veins, metamorphic)

serpentines, photomicrograph, 416, 419

settling of crystals (see crystal settling)

shatter cones (see meteorite, impact (explosion)

structures)

shear:

heating, 592

modulus, 39

simple and pure, 593

strain, 23

stress, 4

thinning, 24, 45

shard band cleavages, 443 (see also cleavage,

metamorphic rocks)

shear sense indicators, 442, 443

shear zones, 440–444, 573–574

sheeted dike complex (see dike swarm)

shield (Precambrian), 398

shield volcano, 59–65

ShipeRock, New Mexico, 80, 81

shock experiments (high P), 6

Siberian rift, 381

flood basalts possibly associated with mass

extinctions, 384

siderophiles, 302

core formation, 304, 585

Sierra Nevada batholith, California (see batholith)

siere texture, 436

silica activity in magma, 355

sill, 80–86 (see also dike)

dilation due to buoyancy, 85

Ferrar, Antarctica, 83

stillmanite (see Al2SiO5 polymorphs)

Silly Puny’s viscosity, 24

sines, law of, 288

Skargaard Intrusion, East Greenland, 386–387

crescumulates in Marginal Border Group, 333, 386

crystallization of, 387

δ18O in rocks affected by circulating

groundwater, 313–314

graded layers, 334

immiscible liquids in, 342

layered series, 335, 386

Sandwich Horizon, 387

Upper Border Group, 387

skeletal crystal form (see crystal growth rates)

Skye, Isle of, Scotland:

granite, isotopic evidence for origin of, 310

isotopic composition of basalts from, 309

slaty cleavage, 428

slip direction, 433

slip plane, 433

Snake River flood basalts, Oregon and Idaho, 381

volume of, 52

snowball structure, in garnet, 437, 438, 439–440

soliflucus, 70

solid–solid reaction, 415, 425 (see also

solids, 119, 198

solubility of minerals in metamorphic fluids,

519–521

solute front, 527

solution transfer, 415, 430

solutions, 188, 213

Soret effect (see magnatic processes)

South Sandwich Islands, abundance of silicic

rocks, 378

spatter cone, 65

Bartholomew Island, Galapagos, 66

spiltte, 139, 367, 372

definition, 141

spine, volcanic, 71, 72

spinel:

Iherzolite from Kilbilsque Hole, New Mexico,

603

strength transition to perovskite, 7

spindex (see texture; igneous)

spindole, 189

stability, stable, unstable, metastable, 168

standard heat (enthalpy) of formation (see

enthalpy)

state property (thermodynamic), 152

staurolite:

equilibrium crystal morphology, 287

photomicrographs, 418, 433, 461

sector zoning in, 277

steady-state flow, 26

of magma in vertical pipe, 36–38

sustaining, 47–48

Stefan–Boltzmann law (see radiation)

Steenmann trinity, 371 (see also opholite)

stereology, 286

Stillwater Complex, Montana (see opholite)

Stirling’s approximation, 157–158, 182

stishovite (high- P polymorph of SiO2) generated

by meteorite impact, 499

occurrence in Vredefort ring structure, South

Africa, 409

stock, 99–103

associated with calderas, 99–100

density of associated rocks, 100

associated with rift valleys, 99, 100

density of associated rocks, 100

layering in, 100, 102

mantle source of magma, 100

Monteregan intrusions, Quebec, 100–101

Snakes’ law, 322–323

effect of yield strength, 322

stone iron meteorites (see meteorites)

stopping, magmatic, 80, 348

strato volcano, 66, 67

strength, tensile, 4

stromatolitic limestone (Precambrian), 398

Strombolian volcanic activity, 35

...
sulfur:

- Isotopes, 314
- Deposition in black smokers, 372
- Deposit formed through magma mixing, 356
- Solubility as function of FeO content of melt, 248
- Solubility in silicate melts, 247
- 87Sr/86Sr vertical variation in continental crust, 309
- 87Sr/86Sr of bulk Earth, 309
- 87Sr/86Sr evolution in mantle, 306
- 87Sr/86Sr evolution in crust, 306
- Isotopes of, 296
- Metasomatism and mass transfer, general, 544
- Mélange zones, 544
- Effect on geothermal gradient, 596
- Angle of, 374, 597
- Sr, 308
- With liquid immiscibility, 223
- With binary solid solution with a minimum, 205
- With binary and ternary compounds, 233
- Plotting ternary compositions, 215
- Isothermal-isobaric sections, 217
- Plotting ternary compositions, 215
- With binary and ternary compounds, 233
- With binary solid solution with a minimum, 226
- With binary solid solution without a minimum, 224
- With congruent melting phase, 218
- With incongruent melting phase, 220
- With liquid immiscibility, 223
- With multiple solid solutions, 228
- 4-component, 233
- Flowchart, 235
- Adiabatic, 236
- System, thermodynamic, 149
- Closed, 149
- Degenerate, 176
- Isolated, 149
- Open, 149
- Talcott basalt, Connecticut, 58
- Tambora, Sumbawa, Indonesia
death toll from 1815 eruption, 33
- Taurern window, eastern Alps, 567
- Taylor series expansion, use of in: calculating geotherm, 11–12
- Numerical calculation of heat conduction, 120
- Tectonic pressure on magma, 35
- Tekites, 407
- Temperature:
 - Geothermal gradient, 6, 7
 - In Earth, 6–10
 - Of magma, 19–20
 - Tensile strength, 4, 32
 - Of upper mantle, 32
 - Tephra, 59, 68, 70 (see also pyroclastic deposits)
- Tephrochronology, 74
- Tertiary Brito-Arctic igneous province, 52
- Texture:
 - Exsolution, 187
 - Perthite, 213
 - Igneous, 19, 47, 275
 - Diabase, 139
 - Dolerite, 139
 - Equilibrium-controlled, 287, 294
 - Eutectic, 77
 - Fission, 77
 - Folution, 49
 - Granophyre, 33, 198, 202, 258
 - Graphic granite, 199, 200, 202, 255, 258
 - Growth or kinetic-controlled, 294
 - Hanritic, 99, 333
 - Interginal, 276
 - Lineation, 48, 49, 97
 - Of fission, 35
 - Optic, 139, 198, 199, 226, 276, 338
 - Planar fabric due to compaction, 340
 - Poikiloblastic, 338, 339
 - Porphyroblastic, 16, 49, 137, 198, 199
 - Protoclastic, 401
 - Psuedoleucite, 207
 - Rapakivi, 215, 230
 - Reactite, 203, 222
 - Spinifex texture, 273, 399
 - Subphotic, 276
 - Vitrophic, 199, 207, 276
 - Metamorphic:
 - Metapelites, 441
 - Beards, 430
 - Blastoporphyrity, 435
 - Cataclastic, 441
 - Cleavage (see cleavage, metamorphic rocks)
 - Crack-seal texture, 544
 - Crack-flow-seal sequence, 550
 - Creulation:
 - Cleavage, 431
 - Lineation, 431
 - Crystalloblastic series, 287, 435
 - Flaser gneiss, 441
- Flinty-crush-rock, 442
- Flaxion structure, 442
- Folution (see cleavage, metamorphic rocks)
- Folution due to pressure solution, 289
- Gneiss, physical characteristics of, 428
- Grain coarsening, 286, 289, 435
- Granoblastic-polygonal, 288
- Helicitic folds, 438
- Interstektonic crystal, 439
- Lineation, 430
- Crenulation, 431
- Stretching, 443
- Mylonite, 442
- Phyllite, physical characteristics of, 428
- Phyllonite, 441
- Psikolith, 436
- Porphyroblastic, 435
- Porphyroclast, 441
- Post-tektontic crystal, 438
- Preferred crystallographic orientation, 432
- Pressure shadows, 430
- Precrystalline crystal, 436
- Precumulus, 442
- Pseudotachylite, 443, 444
- Schist, physical characteristics of, 287, 428
- Schistosity, 436
- Snowball structure, in garnet, 437, 438
- syntectonic crystal, 437
- Twins (deformation), 433, 434
- Ultramylonite, 442
- Thermal conductivity (K), 112
- Value, for crustal rocks, 566
- Thermal diffusivity (d), 112, 564
- Value, for crustal rocks, 567
- Thermal entrance length, 37, 84
- With turbulent flow in dike, 93
- Thermal expansion, coefficient of (D), 21
- Thermal gradient, 112 (see also geothermal gradient)
- Isentropic adiabat, 257
- Potential temperature, 237
- Thermal maximum on liquidus in phase diagrams, 202
- 205, 220, 606 (see also Alkemade's theorem)
- Changes with pressure, 606
- Thermobarometry, metamorphic rocks, 473
- Albite-jadeite-quartz geobarometer, 476
- Calcite-dolomite solvus geothermometer, 478
- Distribution coefficient (Kd), 474
- Examples (see also pressure-temperature-time (P–T–t) paths)
- Bronson Hill anticlinorium, Massachusetts, 485, 486
- Dora Maira Massif, western Alps, 479
- Merinack synclinorium, Massachusetts, 485, 486
- New England, petrologic grid-based geobarometer, 469, 470
- Waterville Formation, Maine, 485, 486
- Wepawaug Schist, Connecticut, 481
- Fe–Mg exchange potential, 474
- Fe–Mg exchange reaction, 473
- Garnet-biotite (GARB) geothermometer, 474
- Garnet-clinoxyroxene geothermometer, 476
- Garnet-clinoxyroxene-phengite geobarometer, 476
- Garnet-ultramylonitic-plagioclase-quartz (GASP) geobarometer, 475

© in this web service Cambridge University Press

Cambridge University Press
Anthony R. Philpotts and Jay J. Ague
Index
More information
Index

thermodynamics, 149

tie triangle (in phase diagram), 217, 226
Thulean igneous province, 52
thorium, disturbance of decay series and dating subduction-zone processes, 598–599
Thulean igneous province, 52
tie line (in phase diagram), 217 metamorphic compatibility diagrams and, 449
switching reaction, 452, 462
tie triangle (in phase diagram), 217, 226 metamorphic compatibility diagrams and, 449
time-integrated fluid flux (q_int): decarbonation reactions, 533, 557
devolatilization of crustal column, 427
estimates for rocks, 529, 530, 555–556
equations for, 527, 529, 531, 532, 533 geochemical fronts, 525–530 asymmetry of, 530 isotopes and, 529 kinetic treatment of, 539, 540
partial differential equation for, 528
simple time-integrated fluid flux expression, 529
Sr geochemical front, interpretation of, 530 Na-K metasomatic reactions, 532–533 quartz veins, 530–532, 550, 571 Timos, Greece, 436, 561 titanite, sector zoning in, 277 titanium in quartz geothermometer, 191–193 tomato ketchup, viscosity, 24
tomography:
seismic, 3
seismic, beneath Kilauea volcano, 61–62 X-ray CT image of basalt, 43, 329 tortuosity factor, 517
total differential of Gibbs free energy, 160
tourmaline in pegmatite, 257
trace element, 132
fractionation in magmas, 356–361 Berthelot–Nemst (equilibrium), 358
Rayleigh, 358
Henry’s law and distribution of, 184 trachyte, occurrence on ocean islands, 369
transform plate boundaries: exposure of, on ocean floor, 370
thermal effects of, 1, 14 Vema transform, 370 translation gliding, 433
trap rock, 52
texture and strength of, 55 tridymite, 207
trolite, in metasomites, 131, 132
trondhjemite (low K Na), preponderance during Archean, 398
derived from partial melting of theesitic basalt, 398
Troodos Massif (ophiolite), Cyprus, 371, 373 strata-bound sulfide deposits, 372, 373
sulf, 70, 74 (see also pyroclastic deposits): welded ash-flow, 77
tuff, 89
West Cork, Ireland, 91
tungsten 184W, formation from decay of 184Hf, 302
turbulent flow, 24
through dike, 41
tuya, 66
Herdisrubel Mountain, Iceland, 66 twin gliding, 433, 434

T–XCO2 diagram (see also fluids, metamorphic):
common reactions, 495, 499–501, 506, 541
H2O–CO2 transport-reaction across lithologic contacts, 542
isobaric invariant point, 541, 501, 504
Schreinemakers rules and, 500
topology of, 497–499
ultra-alkaline undersaturated igneous rocks (see igneous rock associations)
ultrahigh-pressure (UHP) metamorphism (see metamorphism, ultrahigh temperature)
ultrahigh-temperature (UHT) metamorphism (see metamorphism, ultrahigh temperature)
ultramafic igneous rock, 137
melilite zones, 544
metamorphism of, 424
ultramylonite, 442
underplating, 4, 15, 31, 106
uniformitarianism, 97, 397
unstable (see stability)
uplift of rock, 560
up-T fluid flow, 532, 533
uranium: disturbance of decay series and dating subduction-zone processes, 598–599 isotopes of, 296
vacancies in crystal structures (see diffusion)
vanadium, concentration in magma affected by magmatic crystallization, 359
van der Waals equation, 491
van’t Hoff equation (Gibbs–Helmholtz), 191
variance (degrees of freedom) of a system, 164, 165, 170, 201
variation diagrams, 317–321
Differentiation Index (D.I.), 320
FeO, MgO, Na2O + K2O (FMA), 317
Harper (silica), 320
magnesium number (M), 318
quantitative use of, 320
veins, 544
abundance, in outcrop, 546
crack–seal texture, 544
crack-flow–seal sequence, 550
dunite, in orthosite, 44, 372, 373, 601
fracturing (see fractures, metamorphic) grain size, 550
heat transfer, 571–572
mass precipitated in, 550
mineral progression with grade, Dutchess County, New York, 520
photographs, 419, 547, 549
silvages, 547, 548, 550–555
sequences of vein-forming events, 550
solubility of minerals and, 519–520
time-integrated fluid flux, quartz veins, 530–552, 550, 571
timescales of fluid flow, 548
timeting of formation, 548
wall rock, 547
velocity of:
ascent of basalt at Pali-Aike, Chile, 28
eruption of basalt at Lakagigar, Iceland, 79
eruption of diatreme, 91
eruption of Kilauea, 51
eruption of kimberlite, 28
laminar flowing magma in dike, 38
laminar flowing magma in pipe, 37
turbulent flowing kimberlite magma in pipe, 93
turbulent flowing magma in dike, 41
turbulent flowing magma in lava flow, 38
Vema transform, 370
vesicle, 33, 64
pyroclastic deposits): cylinders, 58, 59, 326
defined by flow, 48, 49
in aa, 64
in flood basalt, 58
in pahoehoe, 64
pipe-stem, 58, 59, 64
vesiculation of magma, 24
Vesuvius, Italy (see volcanoes)
Vinalhaven, Maine, basalt inclusions in granite, 105
Vitamin Gorda, British Virgin Islands, basalt inclusions in granite, 105
viscosity, 23
andesite magma, 24
basalt magma, 24
Bingham liquid, 23
bulk, 23
calculation from chemical analysis, 25
calculation from MELTS, 25
calculation from chemical composition control of, 25
Einstein limit, 23
granite magma, 25
kimberlite magma, 24
kinematic, 24
komatite magma, 24
magma, 23–25
effect of solubility of H2O, 25, 246
Newtonian, 23, 40
non-Newtonian, 23
pseudoplastic, 24
rhyolite magma, 24
shear thinning, 24
viscosity, (cont.)
temperature effect on, 25
temperature range, 24
values for magmas and common
substances, 23
water, effect of, 25
yield strength, 23
vitrophytic (see texture, igneous)
VolatilesCalc (software program), 246
volatiles:
composition in fumaroles, 70
concentration in anodesites, 611
enrichment toward top of
batholith, 108
in kimberlite, 93
metamorphic, 415–417 (see also fluids,
metamorphic)
origin of in diatremes, 91–92
release during metamorphism, 15
release from volcanoes, 70
release of H2O from subducting slab,
17, 593
volcanic:
ash (see pyroclastic deposits)
bomb, 35, 65, 70
Explosivity Index (VEI), 71
gases, 243
Explosive Index (VEI), 71
bomb, 35, 65, 70
release of H2O from subducting slab,
17, 593

More information
zircon:
lutetium in, 303
oldest (4.4 Ga), Jack Hills, Western Australia, 305
use in absolute dating by U–Pb method, 300
zone melting, 349
zonation, chemical, in metamorphic minerals:
apatite, metamorphic timescale estimation, 572, 580
garnet:
diffusion, metamorphic timescale estimation, 572
disequilibrium growth, 289, 291
Mn growth zoning, 279, 291
zoning and thermobarometry, 480–482
general discussion, 480, 561, 562
glaucophane, 561
zones, metamorphic
(see index mineral zones)
zoning (of crystals) (see also sector zoning):
branched, in garnet, 291
hourglass, 277
normal, 210
oscillatory, 49, 191, 277, 376
resulting from Rayleigh fractionation, 279
sector, 258, 277–278, 303