Tropical Geomorphology

Although similar geomorphic processes take place in other regions, in the tropics these processes operate at different rates and with varying intensities. Tropical geomorphology therefore provides many new insights regarding geomorphic processes. This textbook describes both the humid and the arid tropics. It provides thoroughly up-to-date concepts and relevant case studies, and emphasises the importance of geomorphology in the management and sustainable development of the tropical environment, including climate change scenarios. The text is supported by a large number of illustrations, including satellite images. Student exercises accompany each chapter.

The book highlights three areas:

- · Geology, landforms and geomorphic processes in the humid and arid tropics
- · Source-to-sink passage of water and sediment from the mountains to the sea
- Anthropogenic alteration of natural geomorphic rates and processes, including climate change.

Tropical Geomorphology is an ideal textbook for any course on tropical geomorphology or the tropical environment, and is also invaluable as a reference text for researchers and environmental managers in the tropics.

Avijit Gupta is a Honorary Principal Fellow at the University of Wollongong, Australia and a Visiting Scientist at the Centre for Remote Imaging, Sensing and Processing, National University of Singapore. He was educated at Presidency College, Kolkata, and Johns Hopkins University. He has held university positions in India, the USA, Singapore and the UK. His research interests focus on fluvial geomorphology in the tropics, rivers with high-magnitude floods, large rivers, urban geomorphology and the application of remote sensing in geomorphology. Dr Gupta has served as a Committee Member of the International Geographical Union Commission on Measurement, Theory and Applications in Geomorphology (COMTAG) and the International Association of Geomorphologists (IAG). He is currently the Chair of the IAG Working Group on the Effect of Climate Change on Large Rivers and Deltas. He is a member of the American Geophysical Union, the Association of American Geographers, the Society of Sedimentary Geologists and the International Association of Hydrological Sciences. He is also a corresponding member of the Académie Royale des Sciences d'Outre-Mer, Belgium. He is on the editorial board of two journals on geomorphology. Dr Gupta has written eight books and over seventy research papers. He recently edited The Physical Geography of Southeast Asia (2005) and Large Rivers: Geomorphology and Management (2007).

Tropical Geomorphology

AVIJIT GUPTA

Centre for Remote Imaging, Sensing and Processing National University of Singapore and School of Earth and Environmental Sciences University of Wollongong, Australia

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521879903

© Avijit Gupta 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2011

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Gupta, Avijit. Tropical geomorphology / Avijit Gupta. p. cm. Includes bibliographical references and index. ISBN 978-0-521-87990-3 (hardback) 1. Geomorphology–Tropics. I. Title. GB446.G87 2011 551.410913–dc22 2011011810

ISBN 978-0-521-87990-3 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In Memory of Reds

Contents

Preface

Part I The tropical environment

1	Introduction	3
	1.1 Geomorphology in the tropics	3
	1.2 Traditional tropical geomorphology	7
	1.3 Modernisation of tropical geomorphology	8
	1.4 Structure of tropical geomorphology	9
	1.5 Structure of the book	11
2	Geological framework of the tropical lands	13
	2.1 Introduction	13
	2.2 A brief introduction to plate tectonics	13
	2.3 Major landforms across the tropics	20
	2.4 Interrelationships: plate tectonics, landforms, erosion and sediment	
	production	27
	Questions	29
3	Tropical hydrology	31
	3.1 The tropical climate: a brief review	31
	3.2 Temperature	31
	3.3 Wind circulation	32
	3.4 Precipitation	34
	3.5 Tropical disturbances	37
	3.6 Miscellaneous factors	43
	3.7 Water balance	44
	3.8 Climate and geomorphology in the tropics	47
	Questions	48
4	Erosion and land cover in the tropics	49
	4.1 Erosion from tropical rainfall	49
	4.2 Distribution of natural vegetation in the tropics	52
	4.3 Tropical rain forests	52
	4.4 Tropical deciduous forests, grasslands and deserts	55

vii

viii	Contents	
	4.5 Anthropogenic alteration of the tropical vegetation	57
	Questions	58
	Part II Process geomorphology in the tropics	
	5. Weathering in the tropics	61
	5.1 Introduction	61
	5.2 Sub-processes of weathering: a brief review	63
	5.2 Sub processes of weathering	69
	5.4 Weathering and vertical zonation	75
	5.5 Pans and crusts	73
	5.6 Effects of weathering	78
	5.7 Tropics and weathering	80
	Questions	81
	6 Slopes: forms and processes	82
	6.1 Properties of a slope	82
	6.2 Mass movement on hillslopes	84
	6.3 Running water on hillslopes	93
	6.4 Storage and transfer of surficial material on tropical slopes	94
	6.5 A general description of tropical slopes	99
	Questions	99
	7 Rivers in the tropics	101
	7.1 Components of a river system	101
	7.2 Water in river channels	101
	7.3 Sediment in river channels	104
	7.4 Channel geometry	108
	7.5 Channel network and nodes	119
	7.6 River systems of the humid tropics	120
	Questions	127
	8 Alluvial valleys	129
	8.1 Fluvial depositional environment	129
	8.2 The alluvial valley	130
	8.3 The channel alluvium	132
	8.4 Bars	135
	8.5 Floodplain	136
	8.6 Terrace	139
	8.7 Valley margins	140
	8.8 Sediment transfer along the valley axis	141
	Questions	141

іх	Contents	
	9 Large rivers in the tropics	143
	9.1 Introduction	143
	9.2 Characteristics of a large river	143
	9.3 The Amazon	147
	9.4 The Zambezi	152
	9.5 The Ganga–Brahmaputra system	155
	9.6 The Mekong	164
	9.7 The importance of major tropical rivers	169
	Questions	169
	10 The tropical coasts	170
	10.1 Introduction	170
	10.2 Types of coast	171
	10.3 Moving water: tides, waves and currents	172
	10.4 Rocky coasts	179
	10.5 Non-rocky coast	181
	10.6 Coastal sand dunes	186
	10.7 Coastal tropics	186
	10.8 Coral reefs	189
	10.9 Tropical coasts and time	191
	Questions	194
	11 Deltas in the tropics	195
	11.1 Introduction	195
	11.2 Distribution of deltas in the tropics	196
	11.3 Age and evolution of deltas	197
	11.4 Delta morphology	201
	11.5 Delta sediments and sedimentary structures	202
	11.6 The Ganga–Brahmaputra Delta: a case study	203
	11.7 Deltas in the tropics: a summary	207
	Questions	208
	12 The arid tropics	209
	12.1 Arid areas	209
	12.2 Geological characteristics of arid lands	210
	12.3 Arid hydrology	211
	12.4 Arid landforms	215
	12.5 The rock desert	215
	12.6 Running water in arid lands	216
	12.7 Aeolian geomorphology of sandy areas	223
	12.8 Conclusion	230
	Questions	230

x	Contents	
	13 Tropical highlands	232
	13.1 Importance of highlands	232
	13.2 Glaciation in tropical mountains	234
	13.3 Mechanics of mountain glaciation	236
	13.4 Glacial forms and processes	240
	13.5 Slopes and valley floors in high mountains	246
	13.6 Rivers in the tropical mountains	247
	13.7 Sediment from tropical mountains	249
	13.8 Conclusion	251
	Questions	252
	14 Volcanic landforms	254
	14.1 Introduction	254
	14.2 Types of volcano and the related landscape	254
	14.3 Lava and pyroclastic deposits	257
	14.4 Volcaniclastic flows: debris avalanches and flows	262
	14.5 Landscape on flood basalts	266
	14.6 Conclusion	268
	Questions	268
	15 Tropical karst	270
	15.1 Introduction to karst	270
	15.2 Karst in the tropics: the geographical distribution	271
	15.3 Karst hydrology	272
	15.4 Dissolution of karst rocks	273
	15.5 Karst landforms	274
	15.6 Karst in the tropics	281
	15.7 Tropical karst as an environment	284
	Questions	286
	16 Quaternary in the tropics	287
	16.1 Introduction	287
	16.2 History and structure of the Quaternary	288
	16.3 Quaternary glaciation in the tropics	290
	16.4 Climate change	292
	16.5 Sea-level change	295
	16.6 The Ganga River system: Quaternary adjustments	298
	16.7 Quaternary changes around the Sunda Shelf	299
	16.8 Conclusion	302
	Questions	303

xi	Contents	
	Part III Anthropogenic changes	
	17 Anthropogenic alteration of geomorphic processes in the tropics	307
	17.1 The beginning	307
	17.2 Deforestation, land use changes and rural migration	311
	17.3 Temporal and seasonal patterns of sediment transport	314
	17.4 Spatial transfer of sediment	315
	17.5 Impoundments along rivers and their effects	319
	17.6 Application of geomorphology towards a better environment	323
	Questions	324
	18 Urban geomorphology in the tropics	325
	18.1 Introduction to urban geomorphology	325
	18.2 Urbanisation in developing countries	328
	18.3 Three examples of geomorphic hazards and their amelioration	330
	18.4 The general nature of urban geomorphological problems	337
	18.5 Geomorphology and urban management	338
	Questions	341
	19 The future with climate change	342
	19.1 Climate change and the future	342
	19.2 A robust prediction of the effects of climate change in the tropics	343
	19.3 Geomorphological adjustments in the tropics from climate and sea-level	
	changes	345
	19.4 The noise effect of anthropogenic changes	346
	19.5 Tropical geomorphology in the near future	347
	Questions	348
	References	349
	Index	374
	Colour plates appear between pages 212 and 213.	

Preface

This is an introduction to a very large part of the world's surface with rich and varied landforms. The tropics include high mountain ranges, major rivers, ancient surfaces, large alluvial plains and deltas, arid landscapes, and wonderful examples of volcanic landforms. The tropical oceanic coverage is huge and it influences the world's climate. It is surprising that, in spite of a recent spurt in case studies, our knowledge regarding the geomorphology of the tropics remains limited and that case studies from the tropics have hardly been used for generalisation and theory construction. This lacuna is fascinating, especially as all world maps on sedimentation rates indicate that huge amounts of sediment are pouring into the oceans from certain parts of the tropics, as a result of events happening inland.

No single template can exist for tropical geomorphology given the wide variations in regional geology, climate, and land cover. A major part of the tropics carries old subdued landscapes that have evolved since the Gondwana era, whereas other parts, including active plate boundaries and large alluvial plains, are much younger and may record a rapid rate of erosion and sedimentation. The original land cover is changing drastically and the current rates of geomorphic processes are no longer natural everywhere. The old images of a chemical-weathering driven, deep regolith-covered landscape of large plains and isolated hills are only partly correct.

This book is an attempt to present the tropics in their rich and varied reality. This objective has determined the selection and arrangement of topics included for discussion and the level at which they have been covered. The book updates the concept of tropical geomorphology in stressing the increasingly important anthropogenic alterations of the landscape. The book ends with an attempt to look into the future of the tropics, given current modifications such as climate change. The approach of the book also defines the expectations from its users. It is written primarily as an advanced undergraduate textbook and assumes that the readers already have a basic background in physical geography or geology. It makes no further demands apart from an interest in the tropics.

Two aspects of the book should be mentioned. It is well illustrated, as a book in geomorphology should be, and the illustrations are of equal importance to the text. The illustrations include several high-resolution satellite images from IKONOS. Given the 1 m resolution of these images, they are a wonderful tool for future geomorphological studies, a tool which is probably not as well used as it should be. We now even have commercial satellites capable of providing images at 50 cm resolution. The second aspect of the book is the set of questions at the end of the chapters. These are a mixed batch; some for problem solving, others encouraging the reader to think in more detail beyond the text. Like the illustrations, these questions complement the text.

xiii

CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-87990-3 — Tropical Geomorphology Avijit Gupta Frontmatter More Information

xiv

Preface

The formulation of this book started decades ago, when I was a student in Presidency College, Kolkata and had trouble matching what I read in books with the landscape around me or even with the landscape displayed on the topographical sheets of India. I am immensely grateful to the late M. G. Wolman for allowing me to do my PhD fieldwork in Jamaica which was a liberating educational experience. A long stay in Singapore permitted field access to Southeast Asia. My various friends and colleagues completed my education by allowing me to work with them in the field in various parts of the tropics. I am indebted to all of them.

The introductory chapter has benefited tremendously from the comments of Professor Wolman. Parts of the book were also read and commented on by Liew Soo Chin, Jean-Claude Thouret, Richard Corlett, and Anthea Fraser Gupta. The Centre for Remote Imaging, Sensing and Processing (CRISP), National University of Singapore very kindly allowed me to use satellite images from their archives. I have also been permitted to use illustrations from a number of publications, which are acknowledged in specific places. I should acknowledge the kindness of Lee Li Kheng in drafting the figures and of David Appleyard in transforming my photographs into publishable material. I am grateful to Jean Rollinson for her careful copy-editing and to Laura Clark of Cambridge University Press for guiding me through the production stage.

Avijit Gupta