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Preliminaries: networks and graphs

In this chapter we introduce the reader to the basic definitions of network and graph
theory. We define metrics such as the shortest path length, the clustering coefficient,
and the degree distribution, which provide a basic characterization of network sys-
tems. The large size of many networks makes statistical analysis the proper tool for
a useful mathematical characterization of these systems. We therefore describe the
many statistical quantities characterizing the structural and hierarchical ordering
of networks including multipoint degree correlation functions, clustering spec-
trum, and several other local and non-local quantities, hierarchical measures and
weighted properties.

This chapter will give the reader a crash course on the basic notions of net-
work analysis which are prerequisites for understanding later chapters of the book.
Needless to say the expert reader can freely skip this chapter and use it later as a
reference if needed.

1.1 What is a network?

In very general terms a network is any system that admits an abstract mathemat-
ical representation as a graph whose nodes (vertices) identify the elements of the
system and in which the set of connecting links (edges) represent the presence of a
relation or interaction among those elements. Clearly such a high level of abstrac-
tion generally applies to a wide array of systems. In this sense, networks provide a
theoretical framework that allows a convenient conceptual representation of inter-
relations in complex systems where the system level characterization implies the
mapping of interactions among a large number of individuals.

The study of networks has a long tradition in graph theory, discrete mathema-
tics, sociology, and communication research and has recently infiltrated physics
and biology. While each field concerned with networks has introduced, in many
cases, its own nomenclature, the rigorous language for the description of networks

1

Cambridge University Press
978-0-521-87950-7 - Dynamical Processes on Complex Networks
Alain Barrat, Marc Barthélemy and Alessandro Vespignani
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9780521879507
http://www.cambridge.org
http://www.cambridge.org


2 Preliminaries: networks and graphs

is found in mathematical graph theory. On the other hand, the study of very large
networks has spurred the definitions of new metrics and statistical observables
specifically aimed at the study of large-scale systems. In the following we pro-
vide an introduction to the basic notions and notations used in network theory and
set the cross-disciplinary language that will be used throughout this book.

1.2 Basic concepts in graph theory

Graph theory – a vast field of mathematics – can be traced back to the pioneering
work of Leonhard Euler in solving the Königsberg bridges problem (Euler, 1736).
Our intention is to select those notions and notations which will be used throughout
the rest of this book. The interested reader can find excellent textbooks on graph
theory by Bergé (1976), Chartrand and Lesniak (1986), Bollobás (1985, 1998) and
Clark and Holton (1991).

1.2.1 Graphs and subgraphs

An undirected graph G is defined by a pair of sets G = (V, E), where V is a
non-empty countable set of elements, called vertices or nodes, and E is a set of
unordered pairs of different vertices, called edges or links. Throughout the book
we will refer to a vertex by its order i in the set V . The edge (i, j) joins the vertices
i and j , which are said to be adjacent or connected. It is also common to call
connected vertices neighbors or nearest neighbors. The total number of vertices in
the graph (the cardinality of the set V) is denoted as N and defines the order of
the graph. It is worth remarking that in many biological and physical contexts, N
defines the physical size of the network since it identifies the number of distinct
elements composing the system. However, in graph theory, the size of the graph
is identified by the total number of edges E . Unless specified in the following, we
will refer to N as the size of the network.

For a graph of size N , the maximum number of edges is
(N

2

)
. A graph with

E = (N
2

)
, i.e. in which all possible pairs of vertices are joined by edges, is called

a complete N-graph. Undirected graphs are depicted graphically as a set of dots,
representing the vertices, joined by lines between pairs of vertices, representing the
corresponding edges.

An interesting class of undirected graph is formed by hierarchical graphs where
each edge (known as a child) has exactly one parent (node from which it origi-
nates). Such a structure defines a tree and if there is a parent node, or root, from
which the whole structure arises, then it is known as a rooted tree. It is easy to
prove that the number of nodes in a tree equals the number of edges plus one, i.e.,
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1.2 Basic concepts in graph theory 3

N = E +1 and that the deletion of any edge will break a tree into two disconnected
trees.

A directed graph D, or digraph, is defined by a non-empty countable set of ver-
tices V and a set of ordered pairs of different vertices E that are called directed
edges. In a graphical representation, the directed nature of the edges is depicted
by means of an arrow, indicating the direction of each edge. The main difference
between directed and undirected graphs is represented in Figure 1.1. In an undi-
rected graph the presence of an edge between vertices i and j connects the vertices
in both directions. On the other hand, the presence of an edge from i and j in a
directed graph does not necessarily imply the presence of the reverse edge between
j and i . This fact has important consequences for the connectedness of a directed
graph, as will be discussed in more detail in Section 1.2.2.

From a mathematical point of view, it is convenient to define a graph by means
of the adjacency matrix X = {xi j }. This is a N × N matrix defined such that

xi j =
{

1 if (i, j) ∈ E
0 if (i, j) /∈ E

. (1.1)

For undirected graphs the adjacency matrix is symmetric, xi j = x ji , and therefore
contains redundant information. For directed graphs, the adjacency matrix is not
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Fig. 1.1. Adjacency matrix and graphical representation of different networks.
In the graphical representation of an undirected graph, the dots represent the ver-
tices and pairs of adjacent vertices are connected by a line (edge). In directed
graphs, adjacent vertices are connected by arrows, indicating the direction of the
corresponding edge.
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4 Preliminaries: networks and graphs

symmetric. In Figure 1.1 we show the graphical illustrations of different undirected
and directed graphs and their corresponding adjacency matrices.

An important feature of many graphs, which helps in dealing with their structure,
is their sparseness. The number of edges E for a connected graph (i.e., with no
disconnected parts) ranges from N − 1 to

(N
2

)
. There are different definitions of

sparseness, but we will adopt the convention that when the number of edges scales
as E ∼ Nα with α < 2, the graph is said to be sparse. In the case where E ∼ N 2,
the corresponding graph is called dense. By defining the connectance or density of
a graph as the number of existing edges divided by the maximal possible number
of edges D = E/[N (N − 1)/2], a graph is then sparse if D � 1. This feature
implies, in the case of large graphs, that the adjacency matrix is mostly defined by
zero elements and its complete representation, while costly, does not contain much
relevant information. With large graphs, it is customary to represent the graph in
the compact form defined by the adjacency lists �(i, v ∈ V(i)), where the set of all
neighbors of a fixed vertex i is called the neighborhood (set) of i and is denoted by
V(i). The manipulation of these lists is obviously very convenient in computational
applications because they efficiently store large sparse networks.

In many cases, we are also interested in subsets of a graph. A graph G ′ = (V ′, E ′)
is said to be a subgraph of the graph G = (V, E) if all the vertices in V ′ belong to V
and all the edges in E ′ belong to E , i.e. E ′ ⊂ E and V ′ ⊂ V . A clique is a complete
n-subgraph of size n < N . In Figure 1.1 we provide the graphical and adjacency
matrix representations of subgraphs in the undirected and directed cases. The abun-
dance of given types of subgraphs and their properties are extremely relevant in the
characterization of real networks.1 Small, statistically significant, coherent sub-
graphs, called motifs, that contribute to the set-up of networks have been identified
as relevant building blocks of network architecture and evolution (see Milo et al.
[2002] and Chapter 12).

The characterization of local structures is also related to the identification of
communities. Loosely speaking, communities are identified by subgraphs where
nodes are highly interconnected among themselves and poorly connected with
nodes outside the subgraph. In this way, different communities can be traced back
with respect to varying levels of cohesiveness. In directed networks, edge direc-
tionality introduces the possibility of different types of local structures. A possible
mathematical way to account for these local cohesive groups consists in examin-
ing the number of bipartite cliques present in the graph. A bipartite clique Kn,m

identifies a group of n nodes, all of which have a direct edge to the same m

1 Various approaches exist to determine the structural equivalence, the automorphic equivalence, or the regular
equivalence of subnetworks, and measures for structural similarity comprise correlation coefficients, Euclidean
distances, rates of exact matches, etc.
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1.2 Basic concepts in graph theory 5

nodes. The presence of subgraphs and communities raises the issue of modularity
in networks. Modularity in a network is determined by the existence of specific sub-
graphs, called modules (or communities). Clustering techniques can be employed
to determine major clusters. They comprise non-hierarchical methods (e.g., sin-
gle pass methods or reallocation methods), hierarchical methods (e.g., single-link,
complete-link, average-link, centroid-link, Ward), and linkage based methods (we
refer the interested reader to the books of Mirkin (1996) and Banks et al. (2004)
for detailed expositions of clustering methods). Non-hierarchical and hierarchical
clustering methods typically work on attribute value information. For example, the
similarity of social actors might be judged based on their hobbies, ages, etc. Non-
hierarchical clustering typically starts with information on the number of clusters
that a data set is expected to have and sorts the data items into clusters such that an
optimality criterion is satisfied. Hierarchical clustering algorithms create a hierar-
chy of clusters grouping similar data items. Connectivity-based approaches exploit
the topological information of a network to identify dense subgraphs. They com-
prise measures such as betweenness centrality of nodes and edges (Girvan and
Newman, 2002; Newman, 2006), superparamagnetic clustering (Blatt, Wiseman
and Domany, 1996; Domany, 1999), hubs and bridging edges (Jungnickel, 2004),
and others. Recently, a series of sophisticated overlapping and non-overlapping
clustering methods has been developed, aiming to uncover the modular structure
of real networks (Reichardt and Bornholdt, 2004; Palla et al., 2005).

1.2.2 Paths and connectivity

A central issue in the structure of graphs is the reachability of vertices, i.e. the
possibility of going from one vertex to another following the connections given by
the edges in the network. In a connected network every vertex is reachable from
any other vertex. The connected components of a graph thus define many properties
of its physical structure.

In order to analyze the connectivity properties let us define a path Pi0,in in a
graph G = (V, E) as an ordered collection of n + 1 vertices VP = {i0, i1, . . . , in}
and n edges EP = {(i0, i1), (i1, i2), . . . , (in−1, in)}, such that iα ∈ V and
(iα−1, iα) ∈ E , for all α. The path Pi0,in is said to connect the vertices i0 and in .
The length of the path Pi0,in is n. The number Ni j of paths of length n between two
nodes i and j is given by the i j element of the nth power of the adjacency matrix:
Ni j = (Xn)i j .

A cycle – sometimes called a loop – is a closed path (i0 = in) in which all
vertices and all edges are distinct. A graph is called connected if there exists a path
connecting any two vertices in the graph. A component C of a graph is defined
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6 Preliminaries: networks and graphs

as a connected subgraph. Two components C1 = (V1, E1) and C2 = (V2, E2) are
disconnected if it is impossible to construct a path Pi, j with i ∈ V1 and j ∈ V2.

It is clear that for a given number of nodes the number of loops increases with
the number of edges. It can easily be shown (Bergé, 1976) that for any graph
with p disconnected components, the number of independent loops, or cyclomatic
number, is given by

� = E − N + p. (1.2)

It is easy to check that this relation gives � = 0 for a tree.
A most interesting property of random graphs (Section 3.1) is the distribution

of components, and in particular the existence of a giant component G, defined
as a component whose size scales with the number of vertices of the graph, and
therefore diverges in the limit N → ∞. The presence of a giant component implies
that a macroscopic fraction of the graph is connected.

The structure of the components of directed graphs is somewhat more complex
as the presence of a path from the node i to the node j does not necessarily guar-
antee the presence of a corresponding path from j to i . Therefore, the definition
of a giant component needs to be adapted to this case. In general, the component
structure of a directed network can be decomposed into a giant weakly connected
component (GWCC), corresponding to the giant component of the same graph in
which the edges are considered as undirected, plus a set of smaller disconnected
components, as sketched in Figure 1.2. The GWCC is itself composed of several
parts because of the directed nature of its edges: (1) the giant strongly connected

Giant weakly
connected component

Giant
in-component

Giant
out-component

Giant strongly
connected component

Disconnected
components

Tube Tendril
Tendril

Tendril

Fig. 1.2. Component structure of a directed graph. Figure adapted from
Dorogovtsev et al. (2001a).
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1.2 Basic concepts in graph theory 7

component (GSCC), in which there is a directed path joining any pair of nodes;
(2) the giant in-component (GIN), formed by the nodes from which it is possible to
reach the GSCC by means of a directed path; (3) the giant out-component (GOUT),
formed by the nodes that can be reached from the GSCC by means of a directed
path; and (4) the tendrils containing nodes that cannot reach or be reached by the
GSCC (among them, the tubes that connect the GIN and GOUT), which form the
rest of the GWCC.

The concept of “path” lies at the basis of the definition of distance among ver-
tices. Indeed, while graphs usually lack a metric, the natural distance measure
between two vertices i and j is defined as the number of edges traversed by the
shortest connecting path (see Figure 1.3). This distance, equivalent to the chemi-
cal distance usually considered in percolation theory (Bunde and Havlin, 1991), is
called the shortest path length and denoted as �i j . When two vertices belong to two
disconnected components of the graph, we define �i j = ∞. While it is a symmet-
ric quantity for undirected graphs, the shortest path length �i j does not coincide in
general with � j i for directed graphs.

A B

C

C = 0 C = 0.5 C = 1

1

2
3

4

k

Fig. 1.3. Basic metrics characterizing a vertex i in the network. A, The degree
k quantifies the vertex connectivity. B, The shortest path length identifies the
minimum connecting path (dashed line) between two different vertices. C, The
clustering coefficient provides a measure of the interconnectivity in the vertex’s
neighborhood. As an example, the central vertex in the figure has a cluster-
ing coefficient C = 1 if all its neighbors are connected and C = 0 if no
interconnections are present.
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8 Preliminaries: networks and graphs

By using the shortest path length as a measure of distance among vertices, it
is possible to define the diameter and the typical size of a graph. The diameter is
traditionally defined as

dG = max
i, j

�i j . (1.3)

Another effective definition of the linear size of the network is the average short-
est path length,2 defined as the average value of �i j over all the possible pairs of
vertices in the network

〈�〉 = 1

N (N − 1)

∑
i j

�i j . (1.4)

By definition 〈�〉 ≤ dG , and in the case of a well-behaved and bounded shortest
path length distribution, it is possible to show heuristically that in many cases the
two definitions behave in the same way with the network size.

There are also other measures of interest which are related to the characterization
of the linear size of a graph. The eccentricity of a vertex i is defined by ec(i) =
max j 
=i �i j , and the radius of a graph G by radG = mini ec(i). These different
quantities are not independent and one can prove (Clark and Holton, 1991) that the
following inequalities hold for any graph

radG ≤ dG ≤ 2 radG . (1.5)

Simple examples of distances in graphs include the complete graph where
〈�〉 = 1 and the regular hypercubic lattice in D dimensions composed by N
vertices for which the average shortest path length scales as 〈�〉 ∼ N 1/D. In
most random graphs (Sections 2.2 and 3.1), the average shortest path length
grows logarithmically with the size N , as (〈�〉 ∼ log N ) – a much slower
growth than that found in regular hypercubic lattices. The fact that any pair of
nodes is connected by a small shortest path constitutes the so-called small-world
effect.

1.2.3 Degree and centrality measures

When looking at networks, one of the main insights is provided by the impor-
tance of their basic elements (Freeman, 1977). The importance of a node or edge
is commonly defined as its centrality and this depends on the characteristics or
specific properties we are interested in. Various measurements exist to character-
ize the centrality of a node in a network. Among those characterizations, the most

2 It is worth stressing that the average shortest path length has also been referred to in the physics literature as
another definition for the diameter of the graph.
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1.2 Basic concepts in graph theory 9

commonly used are the degree centrality, the closeness centrality, or the between-
ness centrality of a vertex. Edges are frequently characterized by their betweenness
centrality.

Degree centrality

The degree ki of a vertex i is defined as the number of edges in the graph incident
on the vertex i . While this definition is clear for undirected graphs, it needs some
refinement for the case of directed graphs. Thus, we define the in-degree kin,i of the
vertex i as the number of edges arriving at i , while its out-degree kout,i is defined as
the number of edges departing from i . The degree of a vertex in a directed graph is
defined by the sum of the in-degree and the out-degree, ki = kin,i + kout,i . In terms
of the adjacency matrix, we can write

kin,i =
∑

j

x ji , kout,i =
∑

j

xi j . (1.6)

For an undirected graph with a symmetric adjacency matrix, kin,i = kout,i . The
degree of a vertex has an immediate interpretation in terms of centrality quantifying
how well an element is connected to other elements in the graph. The Bonacich
power index takes into account not only the degree of a node but also the degrees
of its neighbors.

Closeness centrality

The closeness centrality expresses the average distance of a vertex to all others as

gi = 1∑
j 
=i �i j

. (1.7)

This measure gives a large centrality to nodes which have small shortest path
distances to the other nodes.

Betweenness centrality

While the previous measures consider nodes which are topologically better con-
nected to the rest of the network, they overlook vertices which may be crucial
for connecting different regions of the network by acting as bridges. In order to
account quantitatively for the role of such nodes, the concept of betweenness cen-
trality has been introduced (Freeman, 1977; Newman, 2001a): it is defined as the
number of shortest paths between pairs of vertices that pass through a given vertex.
More precisely, if σh j is the total number of shortest paths from h to j and σh j (i) is
the number of these shortest paths that pass through the vertex i , the betweenness
of i is defined as

bi =
∑

h 
= j 
=i

σh j (i)

σh j
. (1.8)
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10 Preliminaries: networks and graphs

A similar quantity, the load or stress centrality, does not discount the multiplic-
ity of equivalent paths and reads as Li = ∑

h 
= j 
=i σh j (i). The above definitions
may include a factor 1/2 to avoid counting each path twice in undirected networks.
The calculation of this measure is computationally very expensive. The basic algo-
rithm for its computation would lead to a complexity of order O(N 2 E), which
is prohibitive for large networks. An efficient algorithm to compute betweenness
centrality is reported by Brandes (2001) and reduces the complexity to O(N E) for
unweighted networks.

According to these definitions, central nodes are therefore part of more shortest
paths within the network than less important nodes. Moreover, the betweenness
centrality of a node is often used in transport networks to provide an estimate of
the traffic handled by the vertices, assuming that the number of shortest paths is a
zero-th order approximation to the frequency of use of a given node. Analogously
to the vertex betweenness, the betweenness centrality of edges can be calculated as
the number of shortest paths among all possible vertex couples that pass through
the given edge. Edges with the maximum score are assumed to be important for the
graph to stay interconnected. These high-scoring edges are the “bridges” that inter-
connect clusters of nodes. Removing them frequently leads to unconnected clusters
of nodes. The “bridges” are particularly important for decreasing the average path
length among nodes in a network, for speeding up the diffusion of information, or
for increasing the size of the part of the network at a given distance from a node.
However, networks with many such bridges are more fragile and less clustered.

1.2.4 Clustering

Along with centrality measures, vertices are characterized by the structure of their
local neighborhood. The concept of clustering3 of a graph refers to the tendency
observed in many natural networks to form cliques in the neighborhood of any
given vertex. In this sense, clustering implies the property that, if the vertex i is
connected to the vertex j , and at the same time j is connected to l, then with a
high probability i is also connected to l. The clustering of an undirected graph can
be quantitatively measured by means of the clustering coefficient which measures
the local group cohesiveness (Watts and Strogatz, 1998). Given a vertex i , the clus-
tering C(i) of a node i is defined as the ratio of the number of links between the
neighbors of i and the maximum number of such links. If the degree of node i is ki

and if these nodes have ei edges between them, we have

C(i) = ei

ki (ki − 1)/2
, (1.9)

3 Also called transitivity in the context of sociology (Wasserman and Faust, 1994).
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