Thermodynamics of Surfaces and Interfaces

An accessible yet rigorous discussion of the thermodynamics of surfaces and interfaces, bridging the gap between textbooks and advanced literature by delivering a comprehensive guide without an overwhelming amount of mathematics.

The book begins with a review of the relevant aspects of the thermodynamics of bulk systems, followed by a description of the thermodynamic variables for surfaces and interfaces. Important surface phenomena are detailed, including wetting, crystalline systems (including grain boundaries), interfaces between different phases, curved interfaces (capillarity), adsorption phenomena, and adhesion of surface layers. The later chapters also feature case studies to illustrate real-world applications. Each chapter includes a set of study problems to reinforce the reader's understanding of important concepts, with solutions available for instructors online via www.cambridge.org/meier.

Ideal as an auxiliary text for students and as a self-study guide for industry practitioners and academic researchers working across a broad range of materials.

Gerald H. Meier is the William Kepler Whiteford Professor of Materials Science at the University of Pittsburgh. He has authored or co-authored two books and 175 articles, and has worked as a research collaborator or consultant with many companies in the gas turbine and aerospace industries. He has been a Fellow of ASM International since 1996.

Cover Description

A collection of EBSD images (brightly colored) from several steels and SEM micrographs of the same areas overlayed with misorientation points to describe the misorientation across the grain boundaries.

The author gratefully acknowledges Ms. Rita Patel and Dr. Raymundo Ordonez of the University of Pittsburgh for providing these images.

Thermodynamics of Surfaces and Interfaces

Concepts in Inorganic Materials

Gerald H. Meier University of Pittsburgh

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521879088

© Gerald H. Meier 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Meier, Gerald H., 1942– author. Thermodynamics of surfaces and interfaces : concepts in inorganic materials / Gerald H. Meier, University of Pittsburgh. pages cm Includes bibliographical references and index. ISBN 978-0-521-87908-8 (hardback) 1. Surfaces (Physics) 2. Surface chemistry. 3. Interfaces (Physical sciences) 4. Thermodynamics. I. Title. QC173.4.S94M45 2014 530.4'17 – dc23 2013049905

ISBN 978-0-521-87908-8 Hardback

Additional resources for this publication at www.cambridge.org/9780521879088

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This book is dedicated to my loving wife, JoAnn, with much affection and appreciation.

Contents

	Preface	<i>page</i> xiii	
	Acknowledgements	XV	
1	Summary of basic thermodynamic concepts	1	
	1.1 Basic thermodynamics	1	
	1.1.1 Extensive and molar properties of a		
	thermodynamic system	1	
	1.1.2 The first law	3	
	1.1.3 The second law	5	
	1.1.4 The third law	6	
	1.1.5 Combined first and second laws	7	
	1.2 Multicomponent systems – solution		
	thermodynamics	10	
	1.2.1 The ideal-solution model	12	
	1.2.2 Non-ideal solutions	12	
	1.3 Multiphase equilibria	17	
	1.3.1 Unary systems	18	
	1.3.2 Multicomponent systems	21	
	1.4 Chemical reactions	30	
	1.4.1 Chemical reactions involving gases	32	
	1.5 Summary	34	
	1.6 References	34	
	1.7 Study problems	35	
	1.8 Selected thermodynamic data references	38	
2	Introduction to surface quantities	40	
	2.1 Description of a surface/interface	40	

vii

Cambridge University Press
978-0-521-87908-8 - Thermodynamics of Surfaces and Interfaces: Concepts in Inorganic
Materials
Gerald H. Meier
Frontmatter
More information

viii contents

	2.2 Thermodynamic properties	43
	2.2.1 Creation of a surface	45
	2.2.2 Extension of a surface	45
	2.2.3 Relations among surface quantities	47
	2.2.4 Relations between γ and σ	50
	2.2.5 Determination of surface parameters	54
	2.2.6 Description of surface contributions to	
	the thermodynamic description of	
	material systems	67
	2.3 Summary	69
	2.4 References	70
	2.5 Study problems	71
3	Equilibrium at intersections of surfaces: wetting	73
	3.1 Non-reactive versus reactive wetting	73
	3.2 Non-reactive wetting	74
	3.2.1 The contact angle on an ideal solid surg	face
	(Young's equation)	74
	3.2.2 Work of adhesion	77
	3.2.3 Capillary rise	78
	3.2.4 Small droplets	80
	3.2.5 Non-ideal surfaces	80
	3.3 Reactive wetting	87
	3.4 Selected values of interfacial energies	91
	3.5 Summary	91
	3.6 References	91
	3.7 Study problems	92
4	Surfaces of crystalline solids	94
	4.1 Surface energy for crystalline solids	94
	4.1.1 Equilibrium crystal shape	98
	4.2 Internal boundaries	102
	4.2.1 Types of grain boundaries	102
	4.2.2 Intersections of grain boundaries with	
	free surfaces	113

contents ix

		4.2.3 Intersections of grain boundaries	115		
	4.3	Faceting	116		
	4.4	4 Measurement of surface and grain-boundary			
		energies	120		
		4.4.1 The zero-creep technique	120		
		4.4.2 The multiphase-equilibrium (MPE) technique	123		
		4.4.3 Selected values of high-angle grain-boundary			
		energies	124		
	4.5	Summary	124		
	4.6	References	125		
	4.7	Study problems	126		
5	Interphase interfaces				
	5.1	Interface classifications	128		
		5.1.1 Coherent interfaces	128		
		5.1.2 Semicoherent interfaces	132		
		5.1.3 Incoherent interfaces	133		
		5.1.4 Interface mobility	133		
	5.2	2 Interaction of second phases with grain			
		boundaries	134		
	5.3	Thin-film formation	135		
		5.3.1 Growth of thin oxide films	137		
		5.3.2 Formation of metal films by evaporation	143		
	5.4	Summary	145		
	5.5	5.5 References			
	5.6	Study problems	147		
6	Curved surfaces				
	6.1	Derivation of the Laplace equation	148		
		6.1.1 Techniques that use the Laplace equation to			
		measure surface energy	151		
	6.2	The effect of curvature on the chemical potential	153		
		6.2.1 Grain growth	156		
	6.3	Phase equilibria in one-component systems	158		
		6.3.1 The relation between μ_S and μ_L (or μ_V)	158		

Cambridge University Press	
78-0-521-87908-8 - Thermodynamics of Surfaces and Interfaces: Concepts in Inorgania	С
Aaterials	
Gerald H. Meier	
Frontmatter	
Aore information	

X CONTENTS

		6.3.2 The vapor pressure of a pure liquid	160
		6.3.3 The vapor pressure of an isotropic solid	
		particle	162
		6.3.4 The melting point of a one-component solid	164
	6.4	Nucleation	165
		6.4.1 Homogeneous nucleation	166
		6.4.2 Heterogeneous nucleation	168
	6.5	Phase equilibria in multicomponent systems	168
		6.5.1 The vapor pressure of a component over a	
		multicomponent liquid	168
		6.5.2 The effect of particle size on solubility	170
		6.5.3 Precipitate coarsening	176
	6.6	Summary	179
	6.7	References	180
	6.8	Study problems	181
7	Adsorption		184
	7.1	The Gibbs adsorption equation	186
		7.1.1 Applications of the Gibbs adsorption equation	188
	7.2	The Langmuir adsorption equation	191
	7.3	The effects of adsorption on the fracture of solids	195
		7.3.1 The effect of water vapor on the fracture of	
		ceramics	195
		7.3.2 The effect of grain-boundary segregation on	
		the fracture of metals	198
	7.4	Summary	207
	7.5	References	207
	7.6	Study problem	209
8	Adhesion		
	8.1	The origin of stresses in multilayer systems	211
		8.1.1 Formation stresses	211
		8.1.2 Thermal stresses	212
		8.1.3 Applied stress	214

CONTENTS xi

8.2	Resp	onse to stress	215
	8.2.1	The relation of the fracture energy and the	
		work of adhesion	218
	8.2.2	The effect of adsorption on the work of	
		adhesion and fracture energy.	220
8.3	3 Case study – protective layers on superalloys in		
	gas turbines		221
	8.3.1	Formation and adhesion of protective oxide	
		layers	221
	8.3.2	Multilayer systems – thermal barrier coatings	226
8.4	Sumr	nary	233
8.5	References		234
8.6	Study	/ problems	235
Inde	ex		237

Preface

There are two objectives of writing this book. Firstly, the subject of thermodynamics, as it is usually taught in undergraduate courses in Materials Science, Chemistry, Chemical Engineering and Mechanical Engineering, does not include a treatment of surfaces and interfaces, or includes only a cursory treatment. The major reason for this is the lack of a suitable text. Some books do not include the subject at all and others contain only a single chapter. The treatment in the latter is often very condensed. On the other hand, there are excellent monographs on the subject, but these are too large, intimidating and/or expensive for use in undergraduate and lower-level graduate courses. The purpose of this book is to bridge the gap by providing a text that is complete and rigorous enough to be the basis for an auxiliary section in a basic second thermodynamics course. Alternatively, it may be the primary text for a course dedicated to the thermodynamics of surfaces and interfaces in which the instructor would present case studies in addition to those already in the text.

Secondly, there are many young and middle-aged professionals whose formal education lacked a substantial treatment of the thermodynamics of surfaces and interfaces for the reasons described above. Nevertheless, an understanding of the subject is important in their day-to-day activities. These include professionals working in aqueous and high-temperature corrosion, coatings, microelectronics, welding and brazing and various applications of nanostructures. This book provides a straightforward discussion of the thermodynamics of surfaces and interfaces that such professionals should find useful.

xiii

XIV PREFACE

In order to keep to the two objectives, there has been no attempt to provide an exhaustive review of the literature. This would increase the factual content without necessarily improving the reader's understanding of the subject and would, therefore, increase both the size and the price of the book without enhancing its usefulness as an introduction to the subject. Extensive literature quotation is already available in books previously published on the subject and in review articles. Similarly, the treatment of techniques of investigation of surfaces and interfaces has been restricted to a level that is sufficient for the reader to understand how the subject is studied without involving an overabundance of experimental details. Such details are available elsewhere, as indicated. The prime intent is to provide a background for reading the literature and further independent study.

The book begins with a review of the relevant aspects of the thermodynamics of bulk systems (Chapter 1). It then includes a description of the thermodynamic variables employed to describe the behavior of surfaces and interfaces (Chapter 2). In this chapter the distinction between *surface energy* and *surface stress* is made. Then important surface phenomena are described. These include wetting (Chapter 3), surfaces and interfaces in crystalline systems, including grain boundaries (Chapter 4), interfaces between different phases (Chapter 5), curved interfaces (Chapter 6), adsorption phenomena (Chapter 7) and adhesion of surface layers (Chapter 8). The later chapters also contain case studies to illustrate the application of the concepts that are developed. Each of the chapters contains a set of study problems to reinforce the reader's understanding of important concepts.

Acknowledgements

Dr. M. A. Helminiak and Dr. N. M. Yanar of the University of Pittsburgh are thanked for their assistance in preparing figures for this book. Dr. M.-J. Hua, also of the University of Pittsburgh, kindly provided several high-quality micrographs for inclusion in the book. Ms. Eileen Burke is acknowledged for assistance in preparing the manuscript.

The author also greatly appreciates helpful discussions with Professors A. J. DeArdo and G. Wang of the University of Pittsburgh.

The author acknowledges the many discussions on thermodynamics over the years with his colleague W. A. Soffa, Professor Emeritus of the University of Virginia, which inspired the preparation of this text.

Finally, the author gratefully acknowledges the patience and support of his wife, JoAnn, to whom this book is dedicated.