
1 Summary of basic thermodynamic
concepts

This chapter provides a summary of the three laws of thermodynamics

and the important defined functions and relations for applying these

laws to materials systems. It is assumed that the reader has completed

an introductory course on thermodynamics. The purpose of this chapter

is to bring the reader back “up to speed”. An extensive reference list of

thermodynamic data sources is also provided.

1.1 Basic thermodynamics

The subject of thermodynamics is based on three empirical laws and

their application, generally through the use of specially defined func-

tions. A summary of the three laws and the various defined functions

follows. The reader is referred to one of the many comprehensive texts

on thermodynamics for a more detailed treatment [1–4].

1.1.1 Extensive and molar properties of a thermodynamic system

The properties (state functions) which refer to the entire system and,

therefore, are dependent on size (e.g. mass, volume) are termed extensive

and may be represented by a generic quantity, Q′. Those properties which

are independent of the size of the system (e.g. temperature, pressure) are

termed intensive. The ratio of any two extensive properties becomes

an intensive property. A particularly useful quantity of this type arises

when a particular Q′ is divided by the number of moles of material in
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2 summary of basic thermodynamic concepts

the system, yielding a molar quantity, Q:

Q = Q′

n
(1.1)

For example, V = V ′/n is the molar volume of the system.

The contribution of each component to an extensive property of the

system under isobaric and isothermal conditions is described by the

partial molar quantities, Q̄i :

Q̄i ≡
(

∂ Q′

∂ni

)
T,P,n j

(1.2)

where ni represents the number of moles of component i and nj represents

the numbers of moles of the other components in the system. Q̄i is that

part of Q′ which is contributed by one mole of component i. This is

expressed as follows:

Q′ =
∑

i

ni Q̄i (1.3)

The important Gibbs–Duhem relation between the partial molar quanti-

ties [5] is obtained by combination of the definition of Q′ in differential

form,

d Q′ =
∑

i

ni d Q̄i +
∑

i

Q̄i dni (1.4)

with the mathematical properties of Q′(T, P, n1, n2, . . . .)

d Q′ =
(

∂ Q′

∂T

)
P,ni

dT +
(

∂ Q′

∂ P

)
T,ni

d P +
∑

i

Q̄i dni (1.5)

to yield

−
(

∂ Q′

∂T

)
P,ni

dT −
(

∂ Q′

∂ P

)
T,ni

d P +
∑

i

ni d Q̄i = 0 (1.6)

Similarly, the molar and partial molar quantities may be related and

for the simple case of a binary system A–B with the mole fraction of
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1.1 basic thermodynamics 3
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Figure 1.1 Plot of molar volume
versus mole fraction for a
hypothetical binary system A–B.
The intercepts of the tangent drawn
at X° are the partial molar volumes.

component B represented by X the relations are

Q̄ A = Q − X
d Q

d X
(1.7)

Q̄ B = Q + (1 − X )
d Q

d X
(1.8)

These relations [5] have the simple graphical interpretation that the

intercepts of a tangent to a plot of Q versus X at X = 0 and X = 1,

respectively, are Q̄A and Q̄B. The use of these relationships is illustrated

in Figure 1.1 for a hypothetical binary system A–B. In this case Q

represents the molar volume of the system, V. The tangent line drawn at

composition X0 has intercepts V̄A at X = 0 and V̄B at X = 1.0, which are

the partial molar volumes of A and B, respectively, for a solution of that

particular composition.

1.1.2 The first law

The first law of thermodynamics is a formulation of the law of conser-

vation of energy. For a closed system without chemical reaction it may

be written as

d E ′ = δq + δw (1.9)
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4 summary of basic thermodynamic concepts

where E ′ is the extensive internal energy of the system and is a state

function, q is the heat absorbed by the system and w is the work done

on the system. The heat and work are non-state functions (i.e. they are

path-dependent), hence the symbol δ is used, rather than the usual d, for

their differentials.

1.1.2.1 Work

Work can be done on the system by a variety of forces but can always be

written according to the mechanics definition of the force multiplied by

the distance through which it acts,

δwi = Fi dxi (1.10)

In the case where the only work involves the system expanding against

an external pressure, this expression becomes

δw = −Pext dV ′ (1.11)

This expression occurs in many applications, so other forms of work are

referred to as “non-PV work” and are represented by δw′. Thus the total

work done on the system is written as

δw = −Pext dV ′ + δw′ (1.12)

An important example of non-PV work is surface work, which will be

introduced in Chapter 2 and will play a major role in most of this book.

1.1.2.2 Heat

Heat is energy, which is in motion under the influence of a driving force,

which is a temperature difference. Two important special cases are heat

transport under conditions of constant volume and constant pressure. In

the former case, in the absence of δw′, the path-dependent function q

becomes the change in the state function E, following Equation (1.9).
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1.1 basic thermodynamics 5

Under these conditions the parameter relating q to the temperature dif-

ference is the constant-volume heat capacity,

CV ≡
(

∂ E

∂T

)
V

(1.13)

Thus, the heat flow associated with changing the temperature of a system

from T1 to T2 is

q = �E ′ = n
∫ T2

T1

CV dT (1.14)

The constant-pressure case is conveniently formulated in terms of the

state function known as the enthalpy:

H ′ ≡ E ′ + PV ′ (1.15)

The first law in terms of enthalpy becomes

d H ′ = d E ′ + P dV ′ + V ′ d P = q + V ′ d P + δw′ (1.16)

In the case of constant pressure and the absence of δw′, the path-

dependent function q becomes the change in the state function H. Under

these conditions the parameter relating q to the temperature difference

is the constant-pressure heat capacity,

CP ≡
(

∂ H

∂T

)
P

(1.17)

Thus, the heat flow associated with changing the temperature of a system

from T1 to T2 at constant pressure is

q = �H ′ = n
∫ T2

T1

CP dT (1.18)

1.1.3 The second law

The question of whether or not a process can occur is answered by

the second law of thermodynamics. The mathematical statement of the
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6 summary of basic thermodynamic concepts

second law, which follows directly from the empirical statements, is, for

an isolated system,

d S′ ≥ 0 (1.19)

where S is the state function known as entropy, which is defined by

d S′ ≡ δqrev

T
(1.20)

The inequality in Equation (1.19) pertains to a process that will tend

to occur irreversibly (spontaneously), whereas the equality pertains to a

reversible process, i.e. one in which the system is never displaced from

equilibrium by a finite amount. An equivalent expression for the second

law, which does not require the constraint of an isolated system, is

d S′
system + d S′

surroundings ≥ 0 (1.21)

The surroundings are presumed to behave reversibly, so that Equa-

tion (1.21) may be written as

d S′
system + δqsurroundings

T
≥ 0 (1.22)

or, noting that δqsurroundings = −δqsystem,

δqsystem ≤ T d S′
system (1.23)

Note that, for the special case of constant pressure and δw′ = 0, Equa-

tion (1.20) may be written as

d S′ = d H ′

T
= nCP dT

T
(1.24)

1.1.4 The third law

The third law is based on the observation that the entropy change for

some reactions approaches zero as the temperature approaches 0 K. If
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1.1 basic thermodynamics 7

the entropy of the component elements is arbitrarily set to zero then the

entropy of a compound formed from those elements would also be zero.

This has been discussed in detail by Lupis in Section I.3 of Reference

[3]. The third law may then be expressed as follows:

If the entropy of each element in complete thermodynamic equilibrium is

taken as zero at zero Kelvin the entropy of every other substance becomes

zero at zero Kelvin if the substance is in complete thermodynamic

equilibrium.

In equation form this may be expressed as

S◦
0K = 0 (1.25)

and the entropy of the substance at any temperature, T, is just the entropy

increment for heating the substance from 0 K to T, i.e. absolute values

of the entropy may be calculated.

1.1.5 Combined first and second laws

Many of the useful applications of thermodynamics result from combin-

ing the first and second laws in terms of appropriate functions under the

assumption of reversible conditions. The second law may be combined

with the first law by substituting Equation (1.23) for the heat absorbed

by the system into Equation (1.9), giving

d E ′ ≤ T d S′ − P dV ′ + δw′ (1.26)

The combined first and second laws may also be written in terms of other

state functions, which are defined for convenience in solving certain

types of problems. These include the enthalpy (Equation (1.15)) such

that

d H ′ = d E ′ + P dV ′ + V ′ d P ≤ T d S′ + V ′ d P + δw′ (1.27)
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8 summary of basic thermodynamic concepts

the Helmholtz free energy,

F ′ ≡ E ′ − T S′ (1.28)

which yields

d F ′ ≤ −P dV ′ − S′ dT + δw′ (1.29)

and the Gibbs free energy,

G ′ ≡ H ′ − T S′ (1.30)

which yields

dG ′ ≤ V ′ d P − S′ dT + δw′ (1.31)

Two useful relations result from Equations (1.29) and (1.31). Firstly,

under isothermal conditions Equation (1.29) becomes

d F ′ ≤ −P dV ′ + δw′ = δwtot = −δwby system (1.32)

The relation in Equation (1.32) indicates that the work done by the

system will always be less than or equal to the negative of the change

in Helmholtz free energy. Thus the maximum isothermal work which

can be obtained from the system will correspond to the equality, i.e.

reversible conditions. Similarly under isothermal, isobaric conditions

Equation (1.31) becomes

dG ′ ≤ δw′ (1.33)

Multicomponent and open systems require additional terms in Equa-

tions (1.26), (1.27), (1.29) and (1.31) to include the contributions to the

various functions made by adding or removing matter from the system.

These terms are the chemical potentials of each component in the system,

defined by

μi ≡
(

∂ E ′

∂ni

)
S′,V ′,n1,n2,...

(1.34)
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1.1 basic thermodynamics 9

Thus, Equation (1.26) becomes

d E ′ ≤ T d S′ − P dV ′ +
N∑

i=1

μi dni + δw′ (1.35)

for a multicomponent system. Addition of the identity

d(PV ′ − T S′) = P dV ′ + V ′ d P − T d S′ − S′ dT (1.36)

to Equation (1.35) yields

dG ′ ≤ V ′ d P − S′ dT +
N∑

i=1

μi dni + δw′ (1.37)

Thus, the chemical potential of a component is equivalent to its partial

molar Gibbs free energy,

μi =
(

∂G ′

∂ni

)
T,P,n1,n2,...

= Ḡi (1.38)

Similar operations yield

μi =
(

∂ H ′

∂ni

)
S′,P,n1,n2,...

=
(

∂ F ′

∂ni

)
T,V ′,n1,n2,...

(1.39)

It should be noted that the chemical potentials written in terms of E ′,
H ′ and F ′ do not correspond to partial molar quantities.

1.1.5.1 A note on Maxwell reciprocal relations

The combined first and second laws all have the same mathematical

form. If reversible conditions are invoked, the general form is that of a

perfect differential,

d Q′ =
(

∂ Q′

∂x1

)
x2,x3,...

dx1 +
(

∂ Q′

∂x2

)
x1,x3,...

dx2 +
(

∂ Q′

∂x3

)
x1,x2,...

dx3 + · · ·
(1.40)

where x1, x2, x3, etc. are appropriate state variables. The mathematical

properties of Equation (1.40) are such that the mixed second partial
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10 summary of basic thermodynamic concepts

derivatives of Q′ are independent of the order of differentiation. For

example, (
∂2 Q′

∂x1 ∂x2

)
=

(
∂2 Q′

∂x2 ∂x1

)
(1.41)

where all variables other than the differentiation variable are held con-

stant in each operation. Equation (1.41) is the general form of the

Maxwell reciprocal relations, which are useful for implementing changes

of variable in various calculations. As an example, if δw′ = 0 in Equa-

tion (1.37) and T and P are the variables of differentiation, Equa-

tion (1.41) becomes (
∂V

∂T

)
P,ni

= −
(

∂S

∂ P

)
T,ni

(1.42)

This expression is useful in that it converts the pressure dependence of

entropy to a simple quantity, (
∂V

∂T

)
P,ni

which is directly related to the coefficient of thermal expansion. Clearly

there are many Maxwell relations, which arise from the different forms

of the combined first and second laws depending on the operative sys-

tem state variables. A more extensive discussion of these relations is

presented in Chapter 5 of Reference [2].

1.2 Multicomponent systems – solution thermodynamics

The changes in properties when a solution is formed from its compo-

nents are described by the mixing quantities. The partial molar mixing

quantities for each component are given by

�Q̄M
i = Q̄i − Q◦

i (1.43)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87908-8 - Thermodynamics of Surfaces and Interfaces: Concepts in Inorganic 
Materials
Gerald H. Meier
Excerpt
More information

http://www.cambridge.org/9780521879088
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521879088: 


