
Practical Formal Software Engineering is a textbook aimed at final-year undergraduate and

graduate students, emphasizing formal methods in writing robust code quickly. This book

takes an engineering approach to illuminate the creation and verification of large software

systems in which theorems and axioms are intuited as the formalism materializes through

practice.

Where other textbooks discuss business practices through generic project management

techniques or detailed rigid logic systems, this book examines the interaction between code

in a physical machine and the logic applied in creating the software. These elements create an

informal and rigorous study of logic, algebra, and geometry through software.

Assuming prior experience with C, C++, or Java programming languages, chapters intro-

duce UML, OCL, and Z from scratch. Organized around a theme of the construction of a

game engine, extensive worked examples motivate readers to learn the language through the

technical side of software science.

Bruce Mills holds a Ph.D. in computer science and mathematics from the University of

Western Australia. He has twenty years of experience in the industrial electronics and software

fields and as a lecturer in his native country, Wales, and the Middle East. Dr. Mills is the author

of Theoretical Introduction to Programming. He is currently a software engineer at ABB in

Perth, Australia.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


Practical Formal Software
Engineering

Wanting the Software You Get

Bruce Mills
ABB, Perth, Australia

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521879033

C© Bruce Mills 2009

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2009

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Mills, Bruce, 1962–
Practical formal software engineering : wanting the software you get / Bruce Mills.

p. cm.
Includes index.
ISBN 978-0-521-87903-3 (hardback)
1. Software engineering – Textbooks. I. Title.
QA76.758.M575 2009
005.1–dc22 2008042407

ISBN 978-0-521-87903-3 hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party Internet Web sites referred to in
this publication and does not guarantee that any content on such Web sites is,
or will remain, accurate or appropriate. Information regarding prices, travel
timetables, and other factual information given in this work are correct at
the time of first printing, but Cambridge University Press does not guarantee
the accuracy of such information thereafter.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


This book is dedicated to my wife, Lan Pham Mills.
Remember, you promised to read it.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


Some thoughts on methods by which software can be produced that will satisfy

humans. The target human may be the operator, the programmer, or the person

who paid for the software. No strong assumption is made on this issue. How can

we state what we want from a piece of software, how can we find imprecision and

inaccuracy in our statements, how can we make our statements more precise and

accurate, and how can we know that the software does what we decided that we

want it to do? How do we know that what we said is what we will want?

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


Contents

Acknowledgments page xiii

Maxims xv

Preface xvii

Further Reading xxix

To the Teacher xxxi

To the Student xxxiii

Part 1 Fundamentals 1

1 Arithmetic 3

1.1 Natural numbers 4

1.2 Roman numerals 5

1.3 Choice of numerals 8

1.4 Tally systems 9

1.5 Hindu algorithms 10

1.6 Other bases 14

1.7 Irregular money 14

1.8 Numeration systems 15

1.9 Arithmetic algebra 18

2 Logic 24

2.1 Correct logic 25

2.2 Natural logic 26

2.3 Active logic 27

2.4 Logical terms 29

2.5 Modal logic 35

2.6 Propositional logic 36

vii

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


viii Contents

2.7 Predicate calculus 38

3 Algebra 43

3.1 Mathematical induction 44

3.2 Number systems 46

3.3 Abstract types 52

3.4 Set theory 54

4 Diagrams 65

4.1 Diagrams 66

4.2 Networks 67

4.3 Algebra 71

4.4 Computation 74

4.5 Relationship diagrams 76

4.6 Digital sprouts 77

4.7 Digital geometry 80

Part 2 Language 83

5 UML 85

5.1 Objects 86

5.2 Scenario 87

5.3 Diagram overview 98

6 OCL 103

6.1 OCL expressions 104

6.2 OCL scripts 108

6.3 The target machine 114

6.4 Correspondence 116

6.5 Replacement equality 118

7 Z 122

7.1 Z in the small 123

7.2 The Z operators 125

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


ix Contents

7.3 Z in the large 130

7.4 Foundations 135

8 Logic 141

8.1 Programming knights and knaves 142

8.2 A note on impurity 144

8.3 Programming with sets 144

8.4 Constraints on functions 153

8.5 Programming and mathematics 156

9 Java 160

9.1 Logic in Java 161

9.2 Logic of Java 164

9.3 Ghost expressions 167

9.4 Functional style 167

9.5 Lambda style 170

9.6 Folding 173

10 Game Exercises 177

10.1 The logic not the language 177

Part 3 Practice 185

11 Implementation 187

11.1 Tutorial manager 188

11.2 Preliminary relations 191

11.3 Examination manager 196

12 State Transformation 206

12.1 Java loop proving 207

12.2 Full correctness 213

12.3 A generic template 214

12.4 Recursion 217

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


x Contents

13 Plain Text 221

13.1 Backus Naur form 222

13.2 Natural numbers 223

13.3 Integer numbers 228

13.4 Monomial in x 229

13.5 Polynomials in x 231

13.6 Commands 234

13.7 Data formats 236

13.8 Dirty details 237

13.9 Epilog 239

14 Natural Language 242

14.1 Compiling English 243

14.2 Structure from phonetics 253

14.3 Morpheme algebra 255

14.4 Generation and parsing 257

14.5 Conversation 258

15 Digital Geometry 261

15.1 The alchemists on the tundra 262

15.2 Meshing the surface 268

15.3 Interiors 272

15.4 A rustic brick wall 277

16 Building Dungeons 280

16.1 From scratch 281

16.2 Space, time, and creature 283

16.3 Creature protocol 288

16.4 The game science 291

17 Multiple Threads 298

17.1 Software networks 299

17.2 Thread interference 300

17.3 Mutual exclusion 301

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xi Contents

17.4 Hardware protocols 304

17.5 Software protocols 306

17.6 Fairness 310

17.7 Semaphores and monitors 312

17.8 Block structure 312

17.9 Caution 315

18 Security 317

18.1 Secure software 318

18.2 Code injection 319

18.3 The paranoid programmer 323

18.4 Secure protocols 324

18.5 Computational cryptography 326

18.6 Proving it 327

18.7 Random numbers 329

18.8 Random strings 330

Index 335

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


Acknowledgments

Lan Pham Mills, my wife, for editorial advice.

Ray Scott Percival for general discussions.

Greg Restall for an e-mail conversation about Curry’s paradox.

Peter Warren, Safuat Hamdy, and Anastassios (Tasos) Tsoularis for editorial

advice.

xiii

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


Maxims

1. Make it clean first, then lean.

2. Without documentation, it is not engineering.

3. Without robustness, it is not engineering.

4. Every software engineer understands induction.

5. You are worth what is in your head, not what is on the Web.

6. Natural language is imprecise; formal language is inaccurate.

7. Be concrete.

8. Write clearly from the beginning; make everything explicit.

9. Abstraction means the same thing as modularity.

xv

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


Preface

Practical means using the material at hand. Formal means clear, explicit rules. Software

is anything that can be manipulated exactly, including algebraic terms and mechanical

puzzles. Engineering is obtaining an approximate result from approximate material.

Science is useful to the engineer, but engineering is not science: science obtains exact

results but requires exact material. Engineering is not a commercial subject, even

though it has commercial implications. Mathematics is useful to the software engineer,

but software engineering is not mathematics. Mathematics is not introspective enough.

This book is a discussion of practical formal software engineering.

This paragraph is so
far short of explaining
what this book is
about that it is a
grotesque, but at least
it tells you that it is
not a book on
cookery or poetry.

A preface is an informal chat the speaker has with the few who arrive early for a

seminar. Assuming goodwill from the reader, this preface says, without elabora-

tion or apology, where I am coming from: software engineering is engineering. An

electronic engineering book is filled with circuit diagrams. This book describes
For the details, see
the bulk of the book.

This sentence says
what the book is
about.

software engineering in the same mode. Version control, the product life cycle,

and project management are all important to engineering workshops, but they

are not engineering.1,2

I take an explicit para-consistent stance on mathematics and other formal

studies: formal studies are empirical sciences, their justification is empirical,

and no proof ever gives certainty, contradiction is not avoidable in serious

work, the principles of the excluded middle and explosion are not always use-

ful, and paradox arises because of unacknowledged material conjecture about

metalogic.3

Some experts in formal areas will respond, Joe Blogs solved that problem. But,

in my reading in preparation for writing this book, I found, in the words of Mr.

Henry Albert Bivvens, Nay, nay, not so, but far otherwise. Debate continues on

whether the reals are countable, infinite sets exist, the principle of explosion is

true, set theory is consistent, the axiom of choice is correct, or any nontrivial

logic system can be consistent. For practical reasons, these concerns cannot be

It is a myth that
mathematics is static
or monotonic, a myth
maintained by
selective amnesia.

ignored when engineering software.4

Constructive mathematics, with which this book is aligned, is sometimes

said to make bizarre, difficult-to-believe statements. In fact, the constructive

xvii

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xviii Preface

approach says less, not more, than the existential approach. Its main impactNot that the classical
results are wrong, but
they are not provably
right.

is to promote caution, to avoid going beyond what the practical facts actually

require. Once this point is made clear, many logical objections evaporate.

But a practical book on software theory should not contain a discussion of the

esoteric foundations any more than a book on practical circuit theory should

discuss the conflict between Maxwellian and Newtonian mechanics. This book

is about the use of, not the justification for, a para-consistent attitude. The real

question remains: is this a useful attitude for a software engineer to have in

practice? During two decades of writing software, I have found it to be so.

The software

Software is not what you find on a desktop computer: spreadsheets and games.

The natural limit of software is the limit of software techniques. This limit

includes all that might be found on a desktop computer: any program in any

existing language, including C, Haskell, Scheme, Prolog, Java, Assembler, and

PERL. Beyond even this, it includes all the precise notations of formal logic and

mathematics, as well as physics and chemistry. It includes the way tiles cover a

wall. Software is precisely defined operations of precisely defined mechanisms:

finitary in the sense of Hilbert.5

What a program is intended to mean is vital to the social purpose of engineer-

ing. But to achieve the social purpose, the software must be built. To build and

debug software, the engineer must see the meaningless mechanics. The rules

of software can be followed without knowing the meaning. The raw material of

software engineering is formal manipulation. Programs are built from this as

electronic devices are built from chips.6

A doctor must have a
good bedside
manner, but a broken
leg is not repaired
with sweet talk.

The computer does
what you say, not
what you mean.

Imagine a tree. You experience clarity; you can say whether it is bare, or tall,

or round. You can imagine it over a piece of paper and pick up a pencil. But as

you move to trace it, it evaporates. Your experience of clarity is an illusion.

Similarly, programming begins with an idea that seems clear until an attempt

is made to write it down exactly. It is not a language problem. In your mind

are some property descriptions, incomplete, inconsistent, and incorrect. Going

from idea to English to OCL to Java is formalization: developing an imprecise

idea into a precise idea. The original idea might not be satisfied by any piece

of code at all. The process of writing code includes changing your mind about

what you want, to make it possible to write.

Game software is a good context for software engineering. Games are generic.

A game constructs a virtual universe: a tic-tac-toe board or the world of Star Trek.

Just as every program defines a language, every program defines a world. The

player views part of the world, thinks, and then acts. The universe might pause

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xix Preface

for this or continue regardless. Games do this explicitly. I claim this is a good

way for humans to think about all software.

The logic

Logic is the science of correct reasoning using text and diagrams. There are no self-

evident principles. The correctness of a logic of software is a material conjecture,

as is the correctness of a mechanics of billiard balls. Logics are mechanisms, as are

Turing machines. The rules of reasoning can be followed without knowing the

meaning. This prevents subjective interpretation from invalidating a conclusion.

The statements in a logic are not inherently true, false, or meaningful.

Each program is a logic, so a logic of programs is recursive: software of

software. Compilers and debuggers are everyday examples. There is no hierarchy

of language and metalanguage. English can describe itself, and so can C. The

limitations this implies are natural and fundamental. The limitations are generic

to reasoning; changing the language does not evade the problem, nor can humans

Even if humans could
compute the
noncomputable, the
method could not be
recorded; it would be
revelation, not
reasoning.

compute anything provably impossible for a computer.

A program is a finite expression. Only the finite exists in software. The infi-

nite is coded as finite logic, as a potential, not an actual, infinity. Infinite axiom

schemes are finite second-order axioms. Software engineering builds finite ex-

pressions with desired algebraic behavior.

A software logic that is complete and correct would help, but twentieth-

century research says that no practical system can be both. Where there is

conflict, mathematics tries to be correct and engineering, complete. Thus, bugs,

known as paradoxes, exist in software theory, to be dealt with as they arise. But,

a bug in a logic system does not justify discarding recursive logic, any more than

a bug in a C program justifies discarding C or even the C program itself.

The equation S = {x|x �∈ x} has no solutions, because S ∈ S ≡ S �∈ S . But

this is no more mysterious than there being no real valued function that satisfies

the definition of the impulse function. However, it is not always possible to

A conservative
extension to
generalized functions
exists.

know in advance when such a problem will occur.

Insisting on syntactic limitations makes the logical development cumbersome

and does not remove the problem but only disguises it. To avoid paradox,

orthodox mathematics rejects self-reference, so it is inadequate to describe

software. In practice, attempts to use correct software logic lead to simulation

of complete software logic, which only disguises the paradox. It is like having a

machine that cannot crash running a simulation of one that can. The distinction

is a useless technicality.

All logical difficulties arise from material self-reference, in which the logic

is conjectured to refer to its own behavior. This recursion generates a logical

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xx Preface

equation that might have no solution. But there is no mind-bending paradox.

The halting problem is based on a paradox. It would be esoteric if not that it is

embedded in seemingly harmless problems, which are thus unsolvable: finding

the set of integer solutions of multivariate polynomials over the integers, for

Removing recursion is
shooting the
messenger.

example. Self-referential logic does not cause this problem; it allows it to be

studied.

The absolute truth

Mathematics as absolute truth is historically inaccurate. Mathematics changes

over time, not just by addition, but by revision and retraction. Ancient concepts

still used today exist in so mutated a form as to be no more (or less) recognizable

to the ancients than modern physics. Old proofs become fallacies; results still

used are accepted only under the burden of a different method of definition and

demonstration. It is circular to suggest that those things truly proved, not just

believed, remain accepted today. That which is not accepted today is declared

likewise to have never been properly proved.

Infinity is a common changing theme. The ancient Greeks, on the whole,

rejected infinity. Where we prove today with limits, they used exhaustion; where

we use real numbers, they used pairs of line segments (a similar principle is

often used in modern algebra). In each case to avoid infinity. But, the modern

concepts of limits and real numbers come, largely, from the nineteenth century:

not so long ago.

The victory of limits over exhaustion is not one of truth, but one of util-

ity; limits are easier to manipulate. Philosophical correctness is outgunned by

convenience. This was especially true in the seventeenth century, when infinite

sums and infinitely small quantities were used to increase the power of algebra.

The ideas led to many contradictions and many objections. Eventually, several

concepts – the limit, the infinitesimal as a function, and so on – were created,

and the fallacy of the raw infinitesimal was laid to rest with a stake through its

heart. But in the mid-twentieth century, the raw infinitesimal clawed its way

back to the surface with a proof that if the raw infinitesimal was a fallacy then

so was the limit.

The raw infinite was rejected for centuries, but it emerged again in the late

nineteenth century, with the theory of transfinites. After initial rejection, the

theory was glorified as putting the infinite on a firm foundation. But in the twen-

tieth century, it was shown that the size of transfinite sets is relative to the logic

used. Classically uncountable, reals are countable in other logics.

Far from a pathological rarity, this is normal for the foundations of mathe-

matics. The problem in writing this section was not a lack of examples, but of

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xxi Preface

selecting a few details from a vast sea of material, most of which is not even

hinted at here. Changes in the officially correct continue, unabated, through the

twentieth century, to the time of this writing.

The algebra

Lists are logically prior to sets. To speak about sets, we need language, and that

language is a sequence, or list, of symbols. Finite sets are an equivalence class on

lists. Infinite sets are a finite logic.

Algebra began as the algebra of numbers. Principles such as the commutativity

of addition,x+y==y+x, are compact expressions describing an infinite number

of pure substring replacements. Whenever the pattern x+y, such as 1+1, 2+3,

or 1562+98, appears in a finite source string such as 5∗(2+3), it can be

replaced by the string 3+2 constructed according to the rule, to generate a

target string 5∗(3+2). In so doing, there is a local matching {x==2,y==3}.

Both the source and the target are said to be states of the host string.

Rules also apply to rules. Combining a+b==b+a with a∗b=b∗a produces

the rule (x+y)∗z==z∗(y+x). The action of several rules can be summarized

as a rule. For any initial set of rules, there is an abstract set of all the rules

generated by those initial rules.

Leibniz observed that all precise reasoning is like this.

Software extends this to one-way rules,x+y→y+x, in which the replacement

must work from the left-hand pattern to the right-hand pattern. This gives a

concept of direction, of working from the available to the desired.

The simplest case is that each rule is a pair of literal strings. A rule states

that an instance of exactly the left-hand string may be replaced by exactly the

right-hand string. This turns out to be a general principle of computation. That

is, any set of rules using patterns is generated by some set of literal rules.

Any one specific application of a pattern rule replaces one literal sub-

string with another literal substring, no matter how the decision to do so

was made. Part of the host string, possibly beyond the piece that materially

changed, was examined to validate this replacement. But there is a limit be-

yond which nothing affects or is affected by the replacement. This larger string

is the scope of the specific application of the rule. The scope might be the

whole host string, but because each host string is finite, a finite scope always

exists.

The natural scope of an application of a rule is the smallest string in which the

replacement is context free. Relative contextual freedom is when extra informa-

tion is known about the outside string (such as no use of a certain construct),

corresponding to information about the programming paradigm.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xxii Preface

Replacement reasoning does work in software. However, replacements tried

in a naive analogue to traditional mathematics are not always correct. The

replacement is affected by other parts of the string: the effect is not as local

as expected. This is an error in the judgment of the programmer, not in the

principle of algebra.

In modifying a function in a C program, if there are global variables then

a code change might have a complex effect on the rest of the program. But

with local variables only, the effect will be limited to the function itself. The

entire code inside the function can be replaced without worrying about any

context beyond the function. This is modularity, but the important property is

localization in the expression.

Without knowledge about which parts can be modified locally, it is impossible

in practice to write code. There must be some limit to where to look. The key to

programming algebra is to know which pieces of code can be changed without

looking at their context.

The bigger this string, the more errors are possible.

The methodology

Knowing the software methodology can be important. If the design rule “never

use a global variable called Fred” is being used in the rest of the code, then

without looking at the context, changes to the internals of the one function that

does use Fred can be made. The algebraic rules depend on how the program was

written. Turning this around, designing the program to support a useful class of

algebraic rules can lead to improved code.

Some say that declarative language is best for this, and it seems so in prac-

tice, but it is due to social factors. Spaghetti C code can be given declarative

state transformation semantics, but it does not untangle the logic; however,

cleanly written C code can be proved. Declarative-language designers had for-

mal training, and their languages pressure the programmer to write clean code.

Most declarative programmers had similar training and responded easily to the

pressure.

Traditional declarative programs were clear and often provable. But non-

traditional programmers introduced to using monads in a syntax that looks like

Fortran, and encouraged to think in an imperative style, produce spaghetti: it

does not just look like traditional imperative code, it behaves like it. Traditional

mathematics has a style in which reasoning proceeds rapidly with few errors. It

is the unwritten details of how to say things that make the difference.

A human works on a thousand-character expression as a Turing machine

works on its tape: making local changes and moving on. All rules of good

software engineering come down to locality. Declarative programming is not

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xxiii Preface

the issue, object programming is not the issue, and structured programming is

not the issue. When locality is strongly violated, the trouble starts.

The algebra of imperative operators is different from that of the equivalent

declarative state–change operators. Orthodox matrix multiplication is associa-

tive, but when the time taken is noted, the operation is no longer associative.

These are the problems of using mathematics naively in software. The algebra

of the action is different from the algebra of the value of expressions. Most

mathematics uses the value, and so a common mistake is to transliterate the

wrong algebra into the software.

Real numbers are impossible as software. The algebra of reals is different

from the algebra of floats. Transliterating real algebra results into a program is a

mistake. The correct approach is to map compound expressions to compound

expressions. The algebra of the reals is possible in software, but it requires

sophisticated code and is often not justified in practice.

Algebra is the manipulation of some expressions to create others with desired

properties. This also describes programming. The algebraic tool is substring

replacement. Each replacement has a context (part of the host string); nothing

outside this affects it. Every piece of code admits algebraic replacement, within

context. But the context might be the whole program. The larger the context, the

more likely are errors. Programming paradigms can be described by the algebra

they admit. Designing the code to a style that admits useful, local, replacement

rules is a good way to improve the quality of code.

Half a proof

Still, half a sixpence is better than half a penny

is better than half a farthing is better than none.

In a chain of deductions, if one deduction is not valid, then the validity of the

chain is destroyed. But is this principle of validity important?

You cannot become sure of anything, material or abstract, if you are not

already sure of something. Aristotle showed that a deductive proof from nothing

is an infinite regression. Lewis Carroll showed that modus ponus is an infinite

regression. Bacon said that an induction never makes a conclusion certain.

Popper said that deducing a conjecture false is impossible because there may be

an error in the refutation method. The no-free-lunch theorem states that for

any two methods of reasoning there is some conceivable universe in which the

one is no better than the other, including random guessing and even picking the

worst model each time.7

After proving the program, there is the proof of the compiler, and the operating

system, and the hardware, and the system that manufactured the hardware, and

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xxiv Preface

the system that proved that, and so on. But exactly the same problem occurs

with any formal proof in all of mathematics and logic. In practice, the reasoner

eventually stops and says, Enough.8

Are formal studies at least a precise game played like chess? Perhaps they

could be, but mathematics is not played this way. Machine checking of journal

proofs shows that almost every proof in practice has errors and omissions.

Mathematicians claim that these holes can be filled, but the proofs are still

not strictly valid. It is fallible intuition based on instinct and experience that

leads a proof to be accepted by the mathematical community. Paradoxically, if

only strictly correct proofs were useful, then mathematics would be useless. In

practice, mathematics is robust. A partial proof from a good mathematician is

strong evidence that something like that is true.9

Classical mechanics is false. But it is still used to build cars, planes, and

At least, tests have led
to its rejection as
truth.

bridges. It is used because, in practice, it returns results that are close enough

with reasonable effort. A false theory that is robust is much more useful than a
Robust means good
results even when the
axioms are false. true theory that breaks when the information is not exact.

A typical complexity proof shows only that the limit to infinity of the ratio of

a formula to the behavior is finite. Ask whether it is hot at the beach and be told

that it is 20◦ on Saturn. This is useful only because a serious attempt to prove

such a limit gives informal information about the finite behavior. But this is a

material fact about the generation of the proof, not a logical fact about the proof

itself.

Many formal theories make material conjectures. The Peano theory of the

Most logicians are
prepared to say
natural induction is
true.

naturals includes mathematical induction. But, as applied to the other Peano

axioms, this is a material assertion about an infinite number of proofs. It cannot

just be demanded to be true; it might be false.10

The correctness of nontrivial logical formalisms is always hostage to material

conjectures about proof in some logical formalism. But this does not mean that

attempted formalism is useless. The proof of an electronic device depends on

the assumptions made in its design. In practice, proofs are never certain, but the

process of trying to make formal proofs is correlated with better code. This is a

material fact about computers, as is electromagnetics.

In the field

Formal methods mean explicit theory, not certain proof. At best, they mean

proof given assumptions. But the assumptions are explicit, so it is clear where

to improve the rigor. The assumptions might be wrong, but some theory is better

than none. The theory can always be improved later. Software engineering

constructs theory with code. It is a scaffolding approach. To build a pyramid,

build a big sand ramp at the same time.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xxv Preface

One criticism points out that formal software engineering does not give cer-

tainty but fails to point out that no other engineering discipline does either.
Nothing is ever
certain.

Electronic engineering uses formal proofs of circuit properties together with

rules of thumb and testing to reduce the error rate. Likewise software engineer-

ing. Does partial formal verification reduce the error rate in practice? Yes, up to

a point. How much effort is justified? The precise cutoff depends on the social

context of the application, but it is never zero or infinity. Also, formal methods

can be used to gain a benefit, without any proof at all, by precisely describing

the intended behavior. In fact, what you really want is not provable: you want to

know that the specification satisfies your desires.11

Just like structured or object-oriented code and documentation, formal meth-

ods are not all-or-nothing. Half structured is better than total spaghetti. But

formal methods in software have been criticized for an inability to start with

an arbitrary piece of code and verify it. This observation is true but misleading.

When a program is built from the beginning in a formal manner, it is fairly

easy to continue. Trying to prove spaghetti code is like trying to modularize it

or document it. No protagonist of object-oriented programming would suggest

that the power of OOP includes the ability to easily neaten spaghetti code.

Engineering

Leslie Lamport said that to make software, an engineering discipline needs

an engineering theory of mathematical proof. But such a theory must involve

partial proofs and will be justified by the working technology built using it and

will not be liked by mathematicians, any more than physicists like engineering

circuit theory. If a system is set up just so, so that an exact proof is possible,

then it is mathematics, not engineering. But we should not hope to entirely

prove software systems in practice if only because humans will always push the

technology beyond their ability to prove, even if that ability is improving.

Part of software engineering is handling large proofs: bookkeeping, modular-

ity, strategy. Practical software expressions are thousands of times bigger than

those commonly used by mathematicians. But this still involves, in software

terms, empirical matters, parts that are not proved and parts that cannot be

proved.

Electronics engineering is not about a particular brand of transistor, but about

the principle of how transistors work in general; likewise software engineering

is not about specific code elements in a given language; it is about the general

issues that are true of many languages – not how does a while-loop work in C,

but how does it work in general, and why is it the same thing as a Haskell

recursion. Such things as a VLSI chip in electronics mean code libraries in

software. A technology – CMOS, TTL, and so on – is roughly analogous to

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xxvi Preface

a software language. Several technologies are discussed so that intuition can

be gained about general principles, rather than slavish adherence to a single

paradigm promoted.

Project management

Today, software engineering is split. Players have competing motivations and

backgrounds. There will be those who object to one element or another of this

book, feeling it is false or misguided. I hope that they will still find something

here. Most of the material is neutral; it presents practical mental tools for those

Stuff the philosophy,
how do we write the
software?

But the agnostic is
hated more than the
atheist.

for whom the primary goal is to build software that works. It does not deny

other mindsets; it simply does not require them.

Project management ceases to be engineering when the code cannot be seen.

But some organizational matters directly affect the programmer. While they are

not a large part of this book, they should be mentioned.

Specification, design, implementation, testing, debugging, documentation,

and maintenance are activities, not stages. To a degree, each occurs at all stages of

the life of the code. The fact of “leaving the design stage” should be observed, not

legislated. Documentation, including specification, is to be done at all times. The

code is a side effect of the documentation. What the code is to do is considered,

and then the code is shown and demonstrated to be correct. This is the theorem-

proof style of mathematics. The code is the theorems, and most of a book is

either proof or discussion.

Every program is derived from the hello-world program. Speculative proto-

typing is used to clarify the specification, which might be modified as a result.

Code that has been exercised enough is classified as tentatively completed, to

be used in the final version. Top-down, bottom-up, middle-out: all are parts of

design. The key is to design the proof and the program at the same time and

modify whichever part should be modified. Versions should be kept to a min-

imum. Rather, small, stable modules should be spawned, if there are multiple

issues of exactly how code should be written. Stepwise refinement (sequential

prototyping) is the rule.

The final program, as big as it may be, should be expressed as a short, simple

piece of code, using the utility modules that have been designed in the process.

Notes
1. David Parnas, author of the classic “On Criteria to Be Used in Decomposing Systems into Modules”

[1972], has argued in “Software Engineering Programmes Are Not Computer Science Programmes”
[1997] that software engineering is engineering.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xxvii Preface

2. This is not an algorithms book. An electronic equivalent of that is a book of circuits; a mathematical
equivalent is a book of standard sums and integrals.

3. Every program can be shortened by at least one instruction and contains at least one bug. Thus, every
program can be reduced to a single instruction that does not work.

4. In the early nineteenth century, Augustus De Morgan complained bitterly about the logical absurdity
of negative numbers; in the early twentieth century Skolem said that set theory was an absurd thing
to found mathematics on. Godel proved you could not prove arithmetic, but his PhD student proved
you can. In the 1960s, Robinson turned the logical absurdity of infinitesimals into an accepted
concept. Popper has shown that science has virtually no formal foundation. In the early twenty-first
century, debate rages about how to respond to Curry’s paradox. Whether any nontrivial logic can
be consistent is questioned, as is whether the real numbers are countable. Are the axioms of choice
and continuum true, or are there different versions of set theory, as there are different versions of
geometry?

5. Most programs are also character strings – those that are not are diagrams or mechanical devices.
All are some network of elements related in discrete ways. The action of the machine is replacement
of substrings or motion of parts. Strings and diagrams correspond to human vision and hearing. We
consider them precise because they are how we observe the world. A dog, however, might program
with smells.

6. There is a big overlap between electronic and software engineering, especially with logic gates and
flip-flops, registers, arithmetic units, logic units, central processor units, and communication blocks.

7. Modus ponus is deducing B from A and A-implies-B. The problem is that this rule is an instance of
itself; so strictly, if your audience does not already believe it, you cannot conjure it into existence
deductively. Lewis Carroll, What the Tortoise Said to Achilles. Mind, Vol. 4, No. 14, April (1895),

8. Albert Einstein said as far as the laws of mathematics refer to reality, they are not certain, and as far as
they are certain, they do not refer to reality. (In J.R. Newman (ed.), The World of Mathematics, New
York, Simon and Schuster, 1956, Bertrand Russell said (in reference to the relation of mathematical
topics to anything nonmathematical) that mathematics is the subject where we never know what we
are talking about nor whether what we are saying is true).

9. Similarly, an experienced software engineer can tell that an approach is likely to go wrong in practice,
even though it is technically correct.

10. This is more traditionally expressed as a lack of certainty that Peano arithmetic is consistent.
11. Seven Myths of Formal Methods. A. Hall, Software IEEE, Vol. 7, Issue 5, September 1990, pp. 11–19.

(Hall promotes the Z specification language and emphasizes specification as the aspect of formal
methods that is usually the most important. Seven More Myths of Formal Methods: Dispelling Indus-
trial Prejudices. J.P. Bowen, and M.G. Hinchey. http://www.jpbowen.com/pub/fmep4.pdf.) A longer
version of the Bowen paper is available at Oxford University, Computing Laboratory, Programming
Research Group, Technical Report TR-7-94. http://web.comlab.ox.ac.uk/oucl/publications/tr/tr-7-
94.html.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


Further Reading

The following is a cursory list of books, mostly classics, related to the material

in this book. Without trying to point out any specific connection, I recommend

them all as good background reading. Readers are invited to arrive at their own

conclusions.

The World of Origami, by Isao Honda

Origami Omnibus, by Kunihiko Kasahara

Tilings and Patterns, by Branko Grünbaum and Geoffrey Shephard

Non Standard Analysis, by Abraham Robinson

A Discipline of Programming, by Edsger Dijkstra

Polyominoes, by Solomon Golomb

Algorithms + Data Structures = Programs, by Niklaus Wirth

Fundamental Algorithms, by Donald Knuth

The TeXbook, by Donald Knuth

The Fractal Geometry of Nature, by Benoit Mandelbrot

The Elements of Geometry, by Euclid

Foundations of Geometry, by David Hilbert

Mathematics and Plausible Reasoning, by George Polya

Computers and Intractability, by Michael Garey and David Johnson

Foundations of Logic Programming, by John Lloyd

Lambda-Calculus, Combinators, and Functional Programming,

by Gyorgy Revesz

A Concise Introduction to Logic, by Patrick Hurley

Logic and Design, by Krome Barratt

Computation: Finite and Infinite Machines, by Marvin Minsky

The Implementation of Functional Programming Languages,

by Simon Peyton-Jones

A New Kind of Science, by Stephen Wolfram

Forever Undecided: A Puzzle Guide to Godel, by Raymond Smullyan

Science and Information Theory, by Leon Brillouin

xxix

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xxx Further Reading

The Knot Book, by Colin Adams

Electronic Analogue and Hubrid Computers, by Granino Korn and Theresa Korn

Structured Programming, by Richard Linger, Harlan Mills, and Bernard Witt

Martin Gardner (popular mathematics)

Henry Dudeney (classical puzzleist)

Sam Loyd (classical puzzleist)

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


To the Teacher

The chapter dependencies are the same as their order in the book. The book is

loosely based on the writing of a software game.

The first part of the book is background material. Students with a sound logic

training may skip this section. But the teacher may find, because the background

is constructive, that it is easier to teach students who have no logic background

than students who have learned classical logic only and must unlearn some of

it first. The students should at least read through this material. The first chapter,

especially, might seem elementary, but it has a strong point to make about

the foundations of software. On the other hand, if the first section is done in

all detail, then it could be the entire course – especially if combined with the

chapters on plain text and state transformation.

The second part is about languages. It does introduce UML, OCL, and Z,

which are specification languages, but it does not do so using the orthodox

cultural background. Rather, the intention is to demonstrate that it is the logic,

not the language, that matters. Each chapter introduces a point about the logic of

software, within the context of describing the selected language. A specification

language is not different in kind from a programming language, other than in

being easier to write in and, as a result, harder or impossible to compile. The part

concludes with a chapter on logic, to consolidate this principle, and a chapter

on Java to demonstrate the practice.

Of course, there are many issues that make the practice of programming very

different from the practice of, say, mathematics or logic. Two fundamental issues

are the requirement for a decision process and that the expressions involved

might have millions of characters, whereas in mathematics and logic there are

usually tens of characters.

The third part is the second half of the book. It includes several chapters that

are just exercises. Many of the exercises for the second part can be found here,

interpreting each exercise for each language. This is why I separated them out.

All the exercises could be done in each language, and it seemed a pity to waste

them (so to speak) by putting them in just one chapter. Each of these chapters

xxxi

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


xxxii To the Teacher

has a software focus, solid modeling, command line, graphics, security, and

natural language. There is much less dependency between these chapters. The

teacher may choose whichever seems appropriate. There are enough suggestions

for practical projects that advanced students could spend the whole course here.

Although outcomes are given for each chapter, the real claim is that if a student

reads and understands the material, then his or her ability to write software will

improve in practice. The detailed outcomes tend to obscure this overall goal.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org


To the Student

Although other references are given and may be more secure, at the time of
this writing there are some significant Web resources: Wikipedia (Open Web-
encyclopedia), Plato (The Stanford Encyclopedia of Philosophy), and Math-
world (hosted by Wolfram Research),

http://en.wikipedia.org,

http://plato.stanford.edu, and

http://mathworld.wolfram.com,

which have been fairly stable and contain nontrivial, valid information for many of the

topics in this book, which can be obtained by relatively small amounts of effort with

obvious keywords.

Any student with a reasonable combination of determination and ability should be

able to learn a lot from these resources. Remember that it is what is in your head that

matters, not what is on the Web.

Software is like cooking. If you watch a person making a lemon meringue pie, you do

not learn much (unless you are already a good cook). And a photograph of a pie does

not provide suitable information on how to make it. When a piece of code is given, it

is not usually the piece of code that is important, but the process of obtaining it, the

explanation, and the way in which it is transformed and expanded into a new piece of

code. You learn software by doing. Software theory is intended to help you do software.

If you find that the theory is yet another thing you have to learn, then you have missed the

point. Software plus theory is easier to learn than just software. If you do not see this,

then you have not absorbed the theory. Go back and have another look.

If you have 10 hours to spend on learning programming, spend 1 hour a day, or

1 hour a week, not 10 hours in 1 day. Your brain needs time to absorb the material. Your

brain will process it, even when you are not thinking about it. When the pop-up toaster

in your head produces a new idea, even if it is in the middle of a bath, do not throw it

away, but cogitate on it for a while.

Above all, always ask the question, Is it true?, Is it really true? Not just as something

that an authority said to you, nor just something that fits with your prior experience, try

it out, see how it works on its own terms, and after that ask if you can use it to write

software. Regardless of how it might sound.

In the end you must be able to say, The concept is valid, no matter what the source.

xxxiii

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87903-3 - Practical Formal Software Engineering: Wanting the Software You Get
Bruce Mills
Frontmatter
More information

http://www.cambridge.org/9780521879033
http://www.cambridge.org
http://www.cambridge.org

