
Chapter 1

Introduction

1.1 What is this book about?

This book is about how to construct and use computational models of spe-
cific parts of the nervous system, such as a neuron, a part of a neuron or a
network of neurons. It is designed to be read by people from a wide range of
backgrounds from the biological, physical and computational sciences. The
word ‘model’ can mean different things in different disciplines, and even re-
searchers in the same field may disagree on the nuances of its meaning. For
example, to biologists, the term ‘model’ can mean ‘animal model’; to physi-
cists, the standard model is a step towards a complete theory of fundamental
particles and interactions. We therefore start this chapter by attempting to
clarify what we mean by computational models and modelling in the con-
text of neuroscience. Before giving a brief chapter-by-chapter overview of
the book, we also discuss what might be called the philosophy of modelling:
general issues in computational modelling that recur throughout the book.

1.1.1 Theories and mathematical models
In our attempts to understand the natural world, we all come up with theo-
ries. Theories are possible explanations for how the phenomena under inves-
tigation arise, and from theories we can derive predictions about the results
of new experiments. If the experimental results disagree with the predic-
tions, the theory can be rejected, and if the results agree, the theory is val-
idated – for the time being. Typically, the theory will contain assumptions
which are about the properties of elements or mechanisms which have not
yet been quantified, or even observed. In this case, a full test of the theory
will also involve trying to find out if the assumptions are really correct.

Mendel’s Laws of Inheritance

form a good example of a

theory formulated on the basis

of the interactions of elements

whose existence was not known

at the time. These elements are

now known as genes.

In the first instance, a theory is described in words, or perhaps with a dia-
gram. To derive predictions from the theory we can deploy verbal reasoning
and further diagrams. Verbal reasoning and diagrams are crucial tools for
theorising. However, as the following example from ecology demonstrates,
it can be risky to rely on them alone.

Suppose we want to understand how populations of a species in an
ecosystem grow or decline through time. We might theorise that ‘the larger
the population, the more likely it will grow and therefore the faster it will
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2 INTRODUCTION

increase in size’. From this theory we can derive the prediction, as did
Malthus (1798), that the population will grow infinitely large, which is incor-
rect. The reasoning from theory to prediction is correct, but the prediction
is wrong and so logic dictates that the theory is wrong. Clearly, in the real
world, the resources consumed by members of the species are only replen-
ished at a finite rate. We could add to the theory the stipulation that for
large populations, the rate of growth slows down, being limited by finite
resources. From this, we can make the reasonable prediction that the popu-
lation will stabilise at a certain level at which there is zero growth.

We might go on to think about what would happen if there are two
species, one of which is a predator and one of which is the predator’s prey.
Our theory might now state that: (1) the prey population grows in propor-
tion to its size but declines as the predator population grows and eats it; and
(2) the predator population grows in proportion to its size and the amount of
the prey, but declines in the absence of prey. From this theory we would pre-
dict that the prey population grows initially. As the prey population grows,
the predator population can grow faster. As the predator population grows,
this limits the rate at which the prey population can grow. At some point,
an equilibrium is reached when both predator and prey sizes are in balance.

Thinking about this a bit more, we might wonder whether there is a
second possible prediction from the theory. Perhaps the predator population
grows so quickly that it is able to make the prey population extinct. Once the
prey has gone, the predator is also doomed to extinction. Now we are faced
with the problem that there is one theory but two possible conclusions; the
theory is logically inconsistent.

The problem has arisen for two reasons. Firstly, the theory was not
clearly specified to start with. Exactly how does the rate of increase of the
predator population depend on its size and the size of the prey population?
How fast is the decline of the predator population? Secondly, the theory is
now too complex for qualitative verbal reasoning to be able to turn it into a
prediction.

The solution to this problem is to specify the theory more precisely, in
the language of mathematics. In the equations corresponding to the theory,
the relationships between predator and prey are made precisely and unam-
biguously. The equations can then be solved to produce one prediction. We
call a theory that has been specified by sets of equations a mathematical
model.

It so happens that all three of our verbal theories about population
growth have been formalised in mathematical models, as shown in Box 1.1.
Each model can be represented as one or more differential equations. To
predict the time evolution of a quantity under particular circumstances, the
equations of the model need to be solved. In the relatively simple cases of
unlimited growth, and limited growth of one species, it is possible to solve
these equations analytically to give equations for the solutions. These are
shown in Figure 1.1a and Figure 1.1b, and validate the conclusions we came
to verbally.

In the case of the predator and prey model, analytical solution of its
differential equations is not possible and so the equations have to be solved
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1.1 WHAT IS THIS BOOK ABOUT? 3

Box 1.1 Mathematical models
Mathematical models of population growth are classic examples of describ-

ing how particular variables in the system under investigation change over

space and time according to the given theory.

According to the Malthusian, or exponential, growth model (Malthus,

1798), a population of size P(t) grows in direct proportion to this size. This

is expressed by an ordinary differential equation that describes the rate of

change of P:

dP/dt = P/τ

where the proportionality constant is expressed in terms of the time constant,

τ, which determines how quickly the population grows. Integration of this

equation with respect to time shows that at time t a population with initial

size P0 will have size P(t), given as:

P(t) = P0 exp(t/τ).

This model is unrealistic as it predicts unlimited growth (Figure 1.1a). A

more complex model, commonly used in ecology, that does not have this de-

fect (Verhulst, 1845), is one where the population growth rate dP/dt depends

on the Verhulst, or logistic function of the population P:

dP/dt = P(1 − P/K )/τ.

Here K is the maximum allowable size of the population. The solution to

this equation (Figure 1.1b) is:

P(t) =
KP0 exp(t/τ)

K + P0(exp(t/τ) − 1)
.

A more complicated situation is where there are two types of species

and one is a predator of the other. For a prey population with size N(t)
and a predator population with size P(t), it is assumed that (1) the prey

population grows in a Malthusian fashion and declines in proportion to the

rate at which predator and prey meet (assumed to be the product of the two

population sizes, NP); (2) conversely, there is an increase in predator size

in proportion to NP and an exponential decline in the absence of prey. This

gives the following mathematical model:

dN/dt = N(a − bP) dP/dt = P(cN − d).

The parameters a, b, c and d are constants. As shown in Figure 1.1c, these

equations have periodic solutions in time, depending on the values of these

parameters. The two population sizes are out of phase with each other,

large prey populations co-occurring with small predator populations, and

vice versa. In this model, proposed independently by Lotka (1925) and by

Volterra (1926), predation is the only factor that limits growth of the prey

population, but the equations can be modified to incorporate other factors.

These types of models are used widely in the mathematical modelling of

competitive systems found in, for example, ecology and epidemiology.

As can be seen in these three examples, even the simplest models contain

parameters whose values are required if the model is to be understood; the

number of these parameters can be large and the problem of how to specify

their values has to be addressed.
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4 INTRODUCTION

Fig. 1.1 Behaviour of the

mathematical models described

in Box 1.1. (a) Malthusian, or

exponential growth: with

increasing time, t, the population

size, P, grows increasingly

rapidly and without bounds.

(b) Logistic growth: the

population increases with time,

up to a maximum value of K .

(c) Behaviour of the

Lotka–Volterra model of

predator–prey interactions, with

parameters a = b = c = d = 1.

The prey population is shown by

the blue line and the predator

population by the black line.

Since the predator population is

dependent on the supply of prey,

the predator population size

always lags behind the prey size,

in a repeating fashion.

(d) Behaviour of the

Lotka–Volterra model with a

second set of parameters: a = 1,

b = 20, c = 20 and d = 1.

using numerical integration (Appendix B.1). In the past this would have been
carried out laboriously by hand and brain, but nowadays, the computer is
used. The resulting sizes of predator and prey populations over time are
shown in Figure 1.1c. It turns out that neither of our guesses was correct.
Instead of both species surviving in equilibrium or going extinct, the preda-
tor and prey populations oscillate over time. At the start of each cycle, the
prey population grows. After a lag, the predator population starts to grow,
due to the abundance of prey. This causes a sharp decrease in prey, which
almost causes its extinction, but not quite. Thereafter, the predator popu-
lation declines and the cycle repeats. In fact, this behaviour is observed ap-
proximately in some systems of predators and prey in ecosystems (Edelstein-
Keshet, 1988).

In the restatement of the model’s behaviour in words, it might now seem
obvious that oscillations would be predicted by the model. However, the
step of putting the theory into equations was required in order to reach
this understanding. We might disagree with the assumptions encoded in the
mathematical model. However, this type of disagreement is better than the
inconsistencies between predictions from a verbal theory.
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1.1 WHAT IS THIS BOOK ABOUT? 5

The process of modelling described in this book almost always ends with
the calculation of the numerical solution for quantities, such as neuronal
membrane potentials. This we refer to as computational modelling. A par-
ticular mathematical model may have an analytical solution that allows exact
calculation of quantities, or may require a numerical solution that approxi-
mates the true, unobtainable values.

1.1.2 Why do computational modelling?
As the predator–prey model shows, a well-constructed and useful model is
one that can be used to increase our understanding of the phenomena under
investigation and to predict reliably the behaviour of the system under the
given circumstances. An excellent use of a computational model in neuro-
science is Hodgkin and Huxley’s simulation of the propagation of a nerve
impulse (action potential) along an axon (Chapter 3).

Whilst ultimately a theory will be validated or rejected by experiment,
computational modelling is now regarded widely as an essential part of the
neuroscientist’s toolbox. The reasons for this are:

(1) Modelling is used as an aid to reasoning. Often the consequences de-
rived from hypotheses involving a large number of interacting elements
forming the neural subsystem under consideration can only be found by
constructing a computational model. Also, experiments often only pro-
vide indirect measurements of the quantities of interest, and models are
used to infer the behaviour of the interesting variables. An example of
this is given in Box 1.2.

(2) Modelling removes ambiguity from theories. Verbal theories can mean
different things to different people, but formalising them in a mathemat-
ical model removes that ambiguity. Use of a mathematical model ensures
that the assumptions of the model are explicit and logically consistent.
The predictions of what behaviour results from a fully specified mathe-
matical model are unambiguous and can be checked by solving again the
equations representing the model.

(3) The models that have been developed for many neurobiological systems,
particularly at the cellular level, have reached a degree of sophistication
such that they are accepted as being adequate representations of the neu-
robiology. Detailed compartmental models of neurons are one example
(Chapter 4).

(4) Advances in computer technology mean that the number of interacting
elements, such as neurons, that can be simulated is very large and repre-
sentative of the system being modelled.

(5) In principle, testing hypotheses by computational modelling could sup-
plement experiments in some cases. Though experiments are vital in
developing a model and setting initial parameter values, it might be pos-
sible to use modelling to extend the effective range of experimentation.

Building a computational model of a neural system is not a simple task.
Major problems are: deciding what type of model to use; at what level to
model; what aspects of the system to model; and how to deal with param-
eters that have not or cannot be measured experimentally. At each stage of
this book we try to provide possible answers to these questions as a guide
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Box 1.2 Reasoning with models
An example in neuroscience where mathematical models have been key to

reasoning about a system is chemical synaptic transmission. Though more

direct experiments are becoming possible, much of what we know about

the mechanisms underpinning synaptic transmission must be inferred from

recordings of the postsynaptic response. Statistical models of neurotrans-

mitter release are a vital tool.
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Fig. 1.2 (a) Quantal hypothesis

of synaptic transmission.

(b) Example Poisson distribution

of the number of released quanta

when m = 1. (c) Relationship

between two estimates of the

mean number of released quanta

at a neuromuscular junction.

Blue line shows where the

estimates would be identical.

Plotted from data in Table 1 of

Del Castillo and Katz (1954a),

following their Figure 6.

In the 1950s, the quantal hypothesis was put forward by Del Castillo and

Katz (1954a) as an aid to explaining data obtained from frog neuromuscular

junctions. Release of acetylcholine at the nerve–muscle synapse results in

an endplate potential (EPP) in the muscle. In the absence of presynaptic

activity, spontaneous miniature endplate potentials (MEPPs) of relatively

uniform size were recorded. The working hypothesis was that the EPPs

evoked by a presynaptic action potential actually were made up by the

sum of very many MEPPs, each of which contributed a discrete amount, or

‘quantum’, to the overall response. The proposed underlying model is that

the mean amplitude of the evoked EPP, Ve, is given by:

Ve = npq,

where n quanta of acetylcholine are available to be released. Each can be

released with a mean probability p, though individual release probabilities

may vary across quanta, contributing an amount q, the quantal amplitude,

to the evoked EPP (Figure 1.2a).

To test their hypothesis, Del Castillo and Katz (1954a) reduced synaptic

transmission by lowering calcium and raising magnesium in their experimen-

tal preparation, allowing them to evoke and record small EPPs, putatively

made up of only a few quanta. If the model is correct, then the mean number

of quanta released per EPP, m, should be:

m = np.

Given that n is large and p is very small, the number released on a trial-

by-trial basis should follow a Poisson distribution (Appendix B.3) such that

the probability that x quanta are released on a given trial is (Figure 1.2b):

P(x) = (mx/x!)exp(−m).

This leads to two different ways of obtaining a value for m from the experi-

mental data. Firstly, m is the mean amplitude of the evoked EPPs divided

by the quantal amplitude, m ≡ V e/q, where q is the mean amplitude of

recorded miniature EPPs. Secondly, the recording conditions result in many

complete failures of release, due to the low release probability. In the Pois-

son model the probability of no release, P(0), is P(0) = exp(−m), leading

to m = − ln(P(0)). P(0) can be estimated as (number of failures)/(number of

trials). If the model is correct, then these two ways of determining m should

agree with each other:

m ≡ V e/q = ln
trials

failures
.

Plots of the experimental data confirmed that this was the case (Figure 1.2c),

lending strong support for the quantal hypothesis.

Such quantal analysis is still a major tool in analysing synaptic re-

sponses, particularly for identifying the pre- and postsynaptic loci of bio-

physical changes underpinning short- and long-term synaptic plasticity (Ran

et al., 2009; Redman, 1990). More complex and dynamic models are explored

in Chapter 7.
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1.1 WHAT IS THIS BOOK ABOUT? 7

to the modelling process. Often, there is no single correct answer, but is a
matter of skilled and informed judgement.

1.1.3 Levels of analysis
To understand the nervous system requires analysis at many different levels
(Figure 1.3), from molecules to behaviour, and computational models exist
at all levels. The nature of the scientific question that drives the modelling
work will largely determine the level at which the model is to be constructed.
For example, to model how ion channels open and close requires a model
in which ion channels and their dynamics are represented; to model how
information is stored in the cerebellar cortex through changes in synaptic
strengths requires a model of the cerebellar circuitry involving interactions
between nerve cells through modifiable synapses.

Nervous system

Subsystems

Neural networks

Microcircuits

Neurons

Synapses

Signalling pathways

Ion channels

1m

10 cm

1cm

1mm

1µm

1nm

1pm

Dendritic subunits10µm

100µm

Fig. 1.3 To understand the

nervous system requires an

understanding at many different

levels, at spatial scales ranging

from metres to nanometres or

smaller. At each of these levels

there are detailed computational

models for how the elements at

that level function and interact,

be they, for example, neurons,

networks of neurons, synapses or

molecules involved in signalling

pathways.

1.1.4 Levels of detail
Models that are constructed at the same level of analysis may be constructed
to different levels of detail. For example, some models of the propagation of
electrical activity along the axon assume that the electrical impulse can be
represented as a square pulse train; in some others the form of the impulse is
modelled more precisely as the voltage waveform generated by the opening
and closing of sodium and potassium channels. The level of detail adopted
also depends on the question being asked. An investigation into how the rela-
tive timing of the synaptic impulses arriving along different axons affects the
excitability of a target neuron may only require knowledge of the impulse
arrival times, and not the actual impulse waveform.

Whatever the level of detail represented in a given model, there is always
a more detailed model that can be constructed, and so ultimately how de-
tailed the model should be is a matter of judgement. The modeller is faced
perpetually with the choice between a more realistic model with a large num-
ber of parameter values that have to be assigned by experiment or by other
means, and a less realistic but more tractable model with few undetermined
parameters. The choice of what level of detail is appropriate for the model is
also a question of practical necessity when running the model on the com-
puter; the more details there are in the model, the more computationally
expensive the model is. More complicated models also require more effort,
and lines of computer code, to construct.

As with experimental results, it should be possible to reproduce compu-
tational results from a model. The ultimate test of reproducibility is to read
the description of a model in a scientific paper, and then redo the calcula-
tions, possibly by writing a new version of the computer code, to produce
the same results. A weaker test is to download the original computer code
of the model, and check that the code is correct, i.e. that it does what is
described of it in the paper. The difficulty of both tests of reproducibility
increases with the complexity of the model. Thus, a more detailed model
is not necessarily a better model. Complicating the model needs to be justi-
fied as much as simplifying it, because it can sometimes come at the cost of
understandability.

In deciding how much detail to

include in a model we could

take guidance from Albert

Einstein, who is reported as

saying ‘Make everything as

simple as possible, but not

simpler.’
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8 INTRODUCTION

1.1.5 Parameters
A key aspect of computational modelling is in determining values for model
parameters. Often these will be estimates at best, or even complete guesses.
Using the model to show how sensitive a solution is to the varying parameter
values is a crucial use of the model.

Returning to the predator–prey model, Figure 1.1c shows the behaviour
of only one of an infinitely large range of models described by the final equa-
tion in Box 1.1. This equation contains four parameters, a, b , c and d . A
parameter is a constant in a mathematical model which takes a particular
value when producing a numerical solution of the equations, and which can
be adjusted between solutions. We might argue that this model only pro-
duced oscillations because of the set of parameter values used, and try to
find a different set of parameter values that gives steady state behaviour. In
Figure 1.1d the behaviour of the model with a different set of parameter val-
ues is shown; there are still oscillations in the predator and prey populations,
though they are at a different frequency.

In order to determine whether or not there are parameter values for
which there are no oscillations, we could try to search the parameter space,
which in this case is made up of all possible values of a, b , c and d in combi-
nation. As each value can be any real number, there are an infinite number of
combinations. To restrict the search, we could vary each parameter between,
say, 0.1 and 10 in steps of 0.1, which gives 100 different values for each pa-
rameter. To search all possible combinations of the four parameters would
therefore require 1004 (100 million) numerical solutions to the equations.
This is clearly a formidable task, even with the aid of computers.

In the case of this particular simple model, the mathematical method of
stability analysis can be applied (Appendix B.2). This analysis shows that
there are oscillations for all parameter settings.

Often the models we devise in neuroscience are considerably more
complex than this one, and mathematical analysis is of less help. Further-
more, the equations in a mathematical model often contain a large num-
ber of parameters. While some of the values can be specified (for exam-
ple, from experimental data), usually not all parameter values are known.
In some cases, additional experiments can be run to determine some val-
ues, but many parameters will remain free parameters (i.e. not known in
advance).

How to determine the values of free parameters is a general modelling
issue, not exclusive to neuroscience. An essential part of the modeller’s
toolkit is a set of techniques that enable free parameter values to be esti-
mated. Amongst these techniques are:

Optimisation techniques: automatic methods for finding the set of pa-
rameter values for which the model’s output best fits known experi-
mental data. This assumes that such data is available and that suitable
measures of goodness of fit exist. Optimisation involves changing pa-
rameter values systematically so as to improve the fit between simula-
tion and experiment. Issues such as the uniqueness of the fitted param-
eter values then also arise.
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1.2 OVERVIEW OF THE BOOK 9

Sensitivity analysis: finding the parameter values that give stable solu-
tions to the equations; that is, values that do not change rapidly as the
parameter values are changed very slightly.

Constraint satisfaction: use of additional equations which express
global constraints (such as, that the total amount of some quantity is
conserved). This comes at the cost of introducing more assumptions
into the model.

Educated guesswork: use of knowledge of likely values. For example,
it is likely that the reversal potential of potassium is around −80mV in
many neurons in the central nervous system (CNS). In any case, results
of any automatic parameter search should always be subject to a ‘sanity
test’. For example, we ought to be suspicious if an optimisation proce-
dure suggested that the reversal potential of potassium was hundreds of
millivolts.

1.2 Overview of the book

Most of this book is concerned with models designed to understand the
electrophysiology of the nervous system in terms of the propagation of elec-
trical activity in nerve cells. We describe a series of computational models,
constructed at different levels of analysis and detail.

The level of analysis considered ranges from ion channels to networks
of neurons, grouped around models of the nerve cell. Starting from a basic
description of membrane biophysics (Chapter 2), a well-established model
of the nerve cell is introduced (Chapter 3). In Chapters 4–7 the modelling of
the nerve cell in more and more detail is described: modelling approaches in
which neuronal morphology can be represented (Chapter 4); the modelling
of ion channels (Chapter 5); or intracellular mechanisms (Chapter 6); and of
the synapse (Chapter 7). We then look at issues surrounding the construction
of simpler neuron models (Chapter 8). One of the reasons for simplifying
is to enable networks of neurons to be modelled, which is the subject of
Chapter 9.

Whilst all these models embody assumptions, the premises on which
they are built (such as that electrical signalling is involved in the exchange of
information between nerve cells) are largely accepted. This is not the case for
mathematical models of the developing nervous system. In Chapter 10 we
give a selective review of some models of neural development, to highlight
the diversity of models and assumptions in this field of modelling.

Na
+

Na+

Na
+

K
+

K+ K+

Na+

R V

I

Chapter 2, The basis of electrical activity in the neuron, describes the
physical basis for the concepts used in modelling neural electrical activity. A
semipermeable membrane, along with ionic pumps which maintain differ-
ent concentrations of ions inside and outside the cell, results in an electrical
potential across the membrane. This membrane can be modelled as an elec-
trical circuit comprising a resistor, a capacitor and a battery in parallel. It is
assumed that the resistance does not change; this is called a passive model.
Whilst it is now known that the passive model is too simple a mathematical
description of real neurons, this approach is useful in assessing how specific
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10 INTRODUCTION

passive properties, such as those associated with membrane resistance, can
affect the membrane potential over an extended piece of membrane.

Chapter 3, The Hodgkin–Huxley model of the action potential, de-
scribes in detail this landmark model for the generation of the nerve impulse
in nerve membranes with active properties; i.e. the effects on membrane po-
tential of the voltage-gated ion channels are now included in the model. This
model is widely heralded as the first successful example of combining ex-
perimental and computational studies in neuroscience. In the late 1940s the
newly invented voltage clamp technique was used by Hodgkin and Huxley
to produce the experimental data required to construct a set of mathemat-
ical equations representing the movement of independent gating particles
across the membrane thought to control the opening and closing of sodium
and potassium channels. The efficacy of these particles was assumed to de-
pend on the local membrane potential. These equations were then used to
calculate the form of the action potentials in the squid giant axon. Whilst
subsequent work has revealed complexities that Hodgkin and Huxley could
not consider, today their formalism remains a useful and popular technique
for modelling channel types.

0

–40

–80

V 
(m

V
)

1 3 t (ms) 2 4

Chapter 4, Compartmental models, shows how to model complex den-
dritic and axonal morphology using the multi-compartmental approach.
The emphasis is on deriving the passive properties of neurons, although
some of the issues surrounding active channels are discussed, in anticipa-
tion of a fuller treatment in Chapter 5. We discuss how to construct a com-
partmental model from a given morphology and how to deal with measure-
ment errors in experimentally determined morphologies. Close attention is
paid to modelling incomplete data, parameter fitting and parameter value
searching.

Chapter 5, Models of active ion channels, examines the consequences
of introducing into a model of the neuron the many types of active ion
channel known in addition to the sodium and potassium voltage-gated ion
channels studied in Chapter 3. There are two types of channel, those gated
by voltage and those gated by ligands, such as calcium. In this chapter we
present methods for modelling the kinetics of both types of channel. We
do this by extending the formulation used by Hodgkin and Huxley of an
ion channel in terms of independent gating particles. This formulation is
the basis for the thermodynamic models, which provide functional forms
for the rate coefficients determining the opening and closing of ion channels
that are derived from basic physical principles. To improve on the fits to
data offered by models with independent gating particles, the more flexible
Markov model is then introduced, where it is assumed that a channel can
exist in a number of different states ranging from fully open to fully closed.
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Chapter 6, Intracellular mechanisms. Ion channel dynamics are
influenced heavily by intracellular ionic signalling. Calcium plays a par-
ticularly important role and models for several different ways in which
calcium is known to have an effect have been developed. We investigate
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models of signalling involving calcium: via the influx of calcium ions
through voltage-gated channels; their release from second messenger and
calcium-activated stores; intracellular diffusion; and buffering and extrusion
by calcium pumps. Essential background material on the mathematics of
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