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Introduction to Partial Differential Equations

Partial differential equations arise in a number of physical problems, such as fluid
flow, heat transfer, solid mechanics and biological processes. These equations often
fall into one of three types. Hyperbolic equations are most commonly associated
with advection, and parabolic equations are most commonly associated with dif-
fusion. Elliptic equations are most commonly associated with steady states of
either parabolic or hyperbolic problems.

Not all problems fall easily into one of these three types. Advection–diffusion
problems involve important aspects of both hyperbolic and parabolic problems.
Almost all advection problems involve a small amount of diffusion.

It is reasonably straightforward to determine the type of a general second-order
partial differential equation. Consider the equation
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Without loss of generality, we can assume that A is symmetric, by averaging the
coefficients of the i, j and j, i derivative terms. By performing a linear coordinate
transformation

ξ = Fx

we hope to transformation the equation into a simpler form. We will find a way to
choose the transformation matrix F below.
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2 Introduction to Partial Differential Equations

After the coordinate transformation, the differential equation takes the form

0 =
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We would like to choose the matrix F so that D = FAF� is diagonal. Recall
that we can diagonalize a symmetric matrix by means of an orthogonal change of
variables. In other words, we can choose F to be an orthogonal matrix.

If D has nonzero diagonal entries all of the same sign, the differential equation
is elliptic. The canonical example of an elliptic equation is the Laplace equation
∇x · ∇xu = 0. If D has nonzero diagonal entries with one entry of different sign from
the others, then the differential equation is hyperbolic. The canonical example of
a hyperbolic equation is the wave equation ∂2u

∂t2 − ∇x · ∇xu = 0. We will discuss
simple hyperbolic equations in Chapter 2, and general hyperbolic equations in
Chapter 4. If D has one zero diagonal entry, the equation may be parabolic. The
canonical example of a parabolic equation is the heat equation ∂u

∂t + ∇x · ∇xu = 0.

Example 1.0.1 Consider the differential equation

∂2u

∂x2
1

+ ∂2u

∂x2
2

− ∂2u

∂x3∂x4
= 0

which arises in the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation for
biomedical imaging. In this case, the coefficient matrix is

A =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 −1/2
0 0 −1/2 0

⎤
⎥⎥⎦ .

A coordinate transformation that diagonalizes A is given by

F =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1/

√
2 1/

√
2

0 0 −1/
√

2 1/
√

2

⎤
⎥⎥⎦

and the new coefficient matrix is

D =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 −1/2

⎤
⎥⎥⎦ .

In this case, we see that the KZK equation is hyperbolic.
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Introduction to Partial Differential Equations 3

This book will discuss analytical and numerical methods for solving hyperbolic
equations. Our emphasis will be on numerical methods and nonlinear problems, but
a knowledge of some analytical approaches will be very useful for computation.
Generally, our hyperbolic equations will arise from a physical law describing the
conservation of some quantity, such as mass, momentum or energy. These will
take a special form, which we will build into our numerical methods, so that our
computations conserve these physical quantities as well.

Here is an outline of the analytical approaches in this book, whether they are
applied to problems or numerical methods. In Chapter 2 we will study linear hyper-
bolic conservation laws in a single unknown. We will learn how the solution of such
problems depends on initial and boundary data, so that we can construct numerical
methods that respect this dependence. We will also develop some simple methods
for analyzing the behavior of the numerical methods. First, we will use calculus
to see how the approximations in the numerical method cause us to be solving a
differential equation that is slightly different from the problem that was posed. This
approach, called a modified equation analysis, gives us a qualititative feel for how
the method should perform in practice. Second, we will use Fourier analysis to
see how the methods propagate waves, and use this analysis to develop the very
important Lax equivalence theorem.

In Chapter 3 we will begin our study of nonlinear hyperbolic conservation laws.
We will learn about the development and propagation of discontinuities, and see
that an understanding of infinitesimal diffusive effects is essential to understand-
ing how nature selects certain solutions to these problems. We will also begin to
learn how to build numerical diffusion into our computational methods, so that
we can expect to compute the physically correct solutions as well. This numeri-
cal diffusion will arise in subtle ways, depending on how how numerical schemes
use upwinding and averaging techniques. Some approaches will concentrate on
building important analytical information about the wave propagation into the
method, while other schemes will assiduously avoid such analytical work. We
will apply these methods to problems in traffic flow and oil recovery/contaminant
cleanup.

Chapter 4 will discuss hyperbolic systems of conservation laws. This is where
the discussion becomes most practical, because the physical applications are so
interesting. Once we understand the basic principles underlying the analytical
solution of hyperbolic systems, we will perform case studies of shallow water,
compressible gas dynamics, magnetohydrodynamics, solid mechanics and flow
in porous media. The analytical solution of the equations of motion for these
problems for special initial data (Riemann problems) can be very useful in build-
ing some of our numerical methods. Unfortunately, this analytical information is
often expensive to compute and difficult to program, when it is available. As a
result, we will find methods to approximate the solution of Riemann problems.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87727-5 - Numerical Solution of Hyperbolic Partial Differential Equations
John A. Trangenstein
Excerpt
More information

http://www.cambridge.org/052187727X
http://www.cambridge.org
http://www.cambridge.org


4 Introduction to Partial Differential Equations

Amazingly enough, several of these approximate Riemann solvers produce better
numerical results than the analytical methods, and at far less cost with far simpler
programs.

In Chapter 5 we will try to analyze the numerical methods, and use the analysis
to design better methods. We will run into an obstacle due to Godunov: linear
schemes that preserve monotonicity are at best first-order accurate. In order to
achieve higher-order accuracy, we will design nonlinear schemes, even for use
on linear problems. These schemes will be very useful for solving problems with
propagating discontinuities. They will not be the most effective schemes for solving
linear problems with smooth solutions. We will extend these higher-order numerical
schemes to solve hyperbolic systems in Chapter 6, and to solve problems in multiple
dimensions in Chapter 7.

But this book is not just about analysis of problems and methods. In each chapter,
there are discussions of numerical results and comparisons of numerical methods.
It is important that the student learn how to judge when a numerical method is
working properly, sometimes by understanding its numerical stability, and often
by performing mesh refinement studies to verify the correct order of convergence.
Numerical methods can differ greatly in their achieved accuracy even when they
have the same nominal order of accuracy. Methods can also differ greatly in their
efficiency, meaning how much it costs us to achieve a given accuracy. Unfortunately,
there is no best method in this book, that applies to all problems and is always most
(or nearly most) efficient.

In order to assist the student in gaining knowledge about the design and perfor-
mance of numerical methods, we have provided an interactive form of this book.
Fortunately, you are currently reading that version. In this way, students can view
computer programs to learn about code organization. Students can also run the
programs from inside the book, and adjust parameters that control the numerical
performance. Through the use of interactive graphics, the student can see the evo-
lution of the numerical solution; this really helps in understanding instability and
the spread of discontinuities due to numerical diffusion.

In order to execute programs from inside this book, it was necessary to use
graphical user interfaces. These make the selection of program parameters easy
once the code is written, but makes the example code somewhat larger than it needs
to be just to solve the problem. In order to help the student here, we have provided
a series of programs in Section 2.2.3 of Chapter 2. These programs start with
short Fortran programs, proceed through more modular Fortran to mixed language
programs, and end up with the more complicated program containing interactive
graphics and graphical user interfaces. Students can write their own programs in
any of these styles, as is appropriate for their experience or the expectations of their
instructor.
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Introduction to Partial Differential Equations 5

If the student can learn about mixed language programming, then the discus-
sion on adaptive mesh refinement in Chapter 8 should be interesting. This chapter
describes the basic principles behind Marsha Berger’s structured adaptive mesh
refinement, and describes the basic ideas in the design of the author’s adaptive
mesh refinement program. The hope is that after study of the applications of adap-
tive mesh refinement to oil recovery, linear elasticity and gas dynamics, the student
can apply adaptive mesh refinement to other research problems.
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2

Scalar Hyperbolic Conservation Laws

In numerical analysis or scientific computing courses, it is common to examine
ordinary differential equations and some basic numerical methods to solve these
problems. In this chapter we will develop several basic numerical methods to solve
initial value problems arising from a particular class of partial differential equations,
namely scalar hyperbolic conservation laws. In some cases, we will be able to
transform the solution of partial differential equations into ordinary differential
equations. However, in many practical problems there are physical effects, such as
diffusion, that prevent such analytical reductions. These ideas will be developed in
Section 2.1.

The design of numerical methods for scalar conservation laws involves princi-
ples that are different from those commonly considered in the solution of ordinary
differential equations. Some experimentation with obvious numerical discretiza-
tions in Section 2.2 will produce surprises, and illustrate the utility of interactive
graphical displays in programming. Analysis of these basic numerical methods
using Taylor series and Fourier transforms in Sections 2.3 and 2.5 will yield some
basic numerical principles, and the limitations of the simple numerical methods.

2.1 Linear Advection

Linear advection describes the motion of some conserved quantity along a constant
velocity field. This is the simplest conservation law, but it illustrates many of the
important features we will see in more complicated conservation laws.

2.1.1 Conservation Law on an Unbounded Domain

The unbounded linear advection problem takes the form

∂u

∂t
+ ∂cu

∂x
= 0 for all x ∈ R for all t > 0, (2.1a)

u(x, 0) = u0(x) for all x ∈ R. (2.1b)
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2.1 Linear Advection 7

x

t

x − ct = constant

u

x

t = 0  t > 0

(a) Characteristic line (b) Evolution

Fig. 2.1 Characteristics in linear advection

In this initial-value problem, we assume that the velocity c is constant. Then the
differential equation (2.1a) can be rewritten in the form

0 = [
1, c

] [
∂u
∂t
∂u
∂x

]
for all x ∈ R for all t > 0.

This equation says that the gradient of u is orthogonal to a constant vector. It follows
that u is constant on lines parallel to that constant vector:

for all (x0, t0) for all τ u(x0 + cτ, t0 + τ ) = constant.

Choosing τ = t − t0 gives us

u(x0 + c(t − t0), t) = u(x0 − ct0, 0) ≡ u0(x0 − ct0).

Given x , choose x0 = x − ct + ct0 to get

u(x, t) = u0(x − ct).

This is a formula for the solution of problem (2.1). It is clear from this formula that
the characteristic lines

x − ct = constant

are especially important. Along a characteristic line, the solution of the conservation
law at time t > 0 is equal to the initial value at time t = 0. These ideas are illustrated
in Figure 2.1.

There is an easy way to verify this solution. Suppose that we define the new
variables

ξ = x − ct, τ = t (2.2)
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8 Scalar Hyperbolic Conservation Laws

and the function

ũ(ξ, τ ) ≡ u(x, t). (2.3)

Then the chain rule implies that

∂u

∂t
= ∂ ũ

∂τ
− ∂ ũ

∂ξ
c and

∂u

∂x
= ∂ ũ

∂ξ
.

It follows that ũ solves the initial value problem

0 = ∂u

∂t
+ c

∂u

∂x
= ∂ ũ

∂τ
,

ũ(ξ, 0) = u0(ξ ).

The differential equation for ũ shows that ũ is a function of ξ alone. In summary,
after we change to characteristic coordinates the original partial differential equation
becomes a system of ordinary differential equations, parameterized by ξ . Further,
these ordinary differential equations have the trivial solution

ũ(ξ ) = u0(ξ ).

2.1.2 Integral Form of the Conservation Law

In general, a conservation law in one dimension takes the form

∂u

∂t
+ ∂ f

∂x
= 0. (2.4)

Here u is the conserved quantity, and f is the flux. For example, the linear advection
flux is f = cu.

There is a physical reason for calling Equation (2.4) a conservation law. By
integrating over the space-time rectangle (a, b) × (0, t) and applying the divergence
theorem, we obtain∫ b

a
u(x, t) dx =

∫ b

a
u(x, 0) dx +

∫ t

0
f (a, τ ) dτ −

∫ t

0
f (b, τ ) dτ. (2.5)

We can interpret the conservation law (2.5) as follows. The quantity u represents a
density, i.e., the conserved quantity per length. Thus the spatial integrals represent
the total conserved quantity in the interval (a, b) at some advanced time t and the
initial time 0. The temporal integrals represent the total amount of the conserved
quantity flowing through ends of the interval in space during the given interval in
time. Thus equation (2.5) says that the total conserved quantity in the interval (a, b)
at time t is equal to the total conserved quantity in the same interval initially, plus
what flows into the interval on the left and minus what flows out on the right.
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2.1 Linear Advection 9

2.1.3 Advection–Diffusion Equation

Many physically realistic problems actually involve some amount of diffusion. For
example, the miscible displacement problem described in Section 3.2.2 is a lin-
ear advection problem involving a physical diffusion. In general, one-dimensional
linear advection with constant diffusion takes the form

∂u

∂t
+ ∂cu

∂x
= ∂

∂x

(
ε
∂u

∂x

)
for all x ∈ R for all t > 0, (2.6a)

u(x, 0) = u0(x) for all x ∈ R. (2.6b)

Here, we assume that the diffusion coefficient satisfies ε > 0, so that the conser-
vation law is well-posed. The need for this restriction on ε will become obvious in
Equation (2.8) below.

Let us transform again to characteristic coordinate ξ = x − ct and time τ = t
as in Equation (2.2) and define the solution ũ in terms of these coordinates as in
(2.3). Then substitution into the advection–diffusion equation (2.6) leads to

∂ ũ

∂τ
= ε

∂2ũ

∂ξ 2
for all ξ ∈ R for all τ > 0,

ũ(ξ, 0) = u0(ξ ) for all ξ ∈ R. (2.7)

This is the one-dimensional heat equation on an unbounded interval. If the initial
data u0 grow sufficiently slowly for large values of its argument, then it is well
known that the analytical solution of this equation is

ũ(ξ, τ ) =
∫ ∞

−∞

1√
4πετ

e−(ξ−y)2/(4ετ )u0(y)dy ≡
∫ ∞

−∞
G(ξ − y, τ )u0(y)dy. (2.8)

Here

G(ξ, τ ) = 1√
4πετ

e−ξ 2/(4ετ )

is called the Green’s function. Because the diffusion constant ε is positive, the
Green’s function is real-valued. Here ũ is smooth for t > 0 because derivatives of
ũ involve derivatives of the smooth Green’s function G, and not derivatives of the
initial data u0.

It follows that the solution of the linear advection–diffusion problem (2.6) is

u(x, t) =
∫ ∞

−∞

1√
4πεt

e−(x−ct−y)2/(4εt)u0(y)dy.

The lines x − ct = constant are still important, in that they carry the bulk of the
initial information for small diffusion, but they are no longer lines along which the
solution u is constant.
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10 Scalar Hyperbolic Conservation Laws

Note that the Green’s function G approaches a delta-function as the diffusion
coefficient ε → 0. On the other hand, after sufficiently large time even a small
diffusion will spread the effect of disturbances in the initial data over significant
intervals in space. If the initial data is zero outside some bounded interval, then at
very large times the solution ũ will decay to zero. These observations are important,
because in many practical situations we are interested in the solution of conservation
laws obtained in the limit as the diffusion tends to zero. The study of the interplay
between small diffusion and large times is an appropriate matter for asymptotics,
and would take the current discussion too far astray.

It is sometimes useful to note that the linear advection–diffusion equation (2.6a)
is a conservation law. In fact, we can rewrite it in the form

∂u

∂t
+ ∂

∂x

(
cu − ε

∂u

∂x

)
= 0 for all x ∈ R for all t > 0.

Here the flux f (x, t) ≡ cu − ε ∂u
∂x is the difference of the advective flux cu and the

diffusive flux ε ∂u
∂x . We can develop an integral form of this conservation law by

using (2.5).

2.1.4 Advection Equation on a Half-Line

Here is another important modification to the problem (2.1). For both practical and
computational purposes, we might be interested in solving a semi-infinite problem
with boundary data:

∂u

∂t
+ ∂(cu)

∂x
= 0 for all x > 0 for all t > 0, (2.9a)

u(0, t) = v(t) for all t > 0, (2.9b)

u(x, 0) = u0(x) for all x > 0. (2.9c)

If we transform to characteristic coordinates as in Equation (2.2), we see that
the solution of (2.9) depends on the data v(t) at the left-hand boundary only for
x − ct < 0. If c < 0, this inequality cannot be satisfied for any (x, t) in the problem
domain; in other words, no points in the problem domain will depend on the data at
the left-hand boundary. Thus in this case we assume that the velocity c is positive:
c > 0. Since the solution of (2.9) is constant along characteristics, we can easily
solve to get

u(x, t) =
{

u0(x − ct), x − ct > 0
v(t − x/c), x − ct < 0.
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