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Motivation and Basic Tools

1.1 Introduction

Statistics is a body of mathematically based methodology designed to organize, describe,
model, and analyze data. In this context, statistical inference relates to the process of draw-
ing conclusions about the unknown frequency distribution (or some summary measure
therefrom) of some characteristic of a population based on a known subset thereof (the
sample data, or, for short, the sample). Drawing statistical conclusions involves the choice
of suitable models that allow for random errors, and this, in turn, calls for convenient prob-
ability laws. It also involves the ascertainment of how appropriate a postulated probability
model is for the genesis of a given dataset, and of how adequate the sample size is to
maintain incorrect conclusions within acceptable limits.
Finite statistical inference tools, in use for the last decades, are appealing because, in

general, they provide “exact” statistical results. As such, finite methodology has experi-
enced continuous upgrading with annexation of novel concepts and approaches. Bayesian
methods are especially noteworthy in this respect. Nevertheless, it has been thoroughly
assessed that the scope of exact statistical inference in an optimal or, at least, desirable
way, is rather confined to some special classes of probability laws (such as the exponen-
tial family of densities). In real-life applications, such optimal statistical inference tools
often stumble into impasses, ranging from validity to efficacy and thus, have practical
drawbacks. This is particularly the case with large datasets, which are encountered in
diverse (and often interdisciplinary) studies, more so now than in the past. Such stud-
ies, which include biostatistical, environmetrical, socioeconometrical, and more notably
bioinformatical (genomic) problems, in general, cater to statistical reasoning beyond that
required by conventional finite-sample laboratory studies. Although this methodology may
yet have an appeal in broader interdisciplinary fields, some extensions are needed to capture
the underlying stochastics in large datasets and thereby draw statistical conclusions in a
valid and efficient manner. The genesis of asymptotic methods lies in this infrastructure
of finite-sample statistical inference. Therefore it is convenient to organize our presenta-
tion of asymptotic statistical methods with due emphasis on this finite- to large-sample
bridge.
To follow this logically integrated approach to statistical inference, it is essential to

encompass basic tools in probability theory and stochastic processes. In addition, the scope
of applications to a broad domain of biomedical, clinical, and public health disciplines
may dictate additional features of the underlying statistical methodology. We keep this
dual objective of developing methodology with an application-oriented spirit in mind and
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2 Motivation and Basic Tools

thereby provide an overview of finite-sample (exact or small) statistical methods, appraising
their scope and integration to asymptotic (approximate or large-sample) inference.

In Section 1.2, we motivate our approach through a set of illustrative examples that
range from very simple to more complex application problems. We propose some simple
statistical models for such problems, describe their finite-sample analysis perspectives, and,
with this in mind, stress the need for asymptotic methods. In Section 1.3, we go further
along this line, specifying more realistic models for the problems described previously as
well as for those arising from additional practical examples and fortifying the transit from
the limited scope of finite sample inference to omnibus asymptotic methods. In Section 1.4,
we present a brief description of the basic coverage of the book. We conclude with a
summary of some basic tools needed throughout the text.

1.2 Illustrative Examples and Motivation

In general, the strategy employed in statistical inference involves (i) the selection of an
appropriate family of stochastic models to describe the characteristics under investigation,
(ii) an evaluation of the compatibility of chosen model(s) with the data (goodness of fit), and
(iii) subsequent estimation of, or tests of hypotheses about, the underlying parameters. In
this process, we are faced with models that may have different degrees of complexity and,
depending on regularity assumptions, different degrees of restrictiveness. They dictate the
complexity of the statistical tools required for inference which, in many instances, call for
asymptotic perspectives because conventional finite-sample methods may be inappropriate.
Let us first appraise this scenario of statistical models through some illustrative examples.

Example 1.2.1 (Inspection sampling). Suppose that we are interested in selecting a
random sample to estimate the proportion of defective items manufactured in a textile
plant. The data consist of the number x of defective items in a random sample of size n.

For a random variable X representing the number of defective items in the sample, four
possible stochastic models follow.

(a) We assume that the items are packed in lots of N (known) units of which D

(unknown) are defective, so that our interest lies in estimating π = D/N. The
probability of obtaining x defective items in the sample of size n may be computed
from the probability function of the hypergeometric distribution

P (X = x) =
(
D

x

)(
N−D

n−x

)
(
N

n

) , x = max[0, n − (N − D)], . . . ,min(n,D).

(b) If, on the other hand, we assume that the items are manufactured continuously and
that the proportion of defective items is π , 0 < π < 1, the probability of obtaining x

defective items in the random sample of size nmay be computed from the probability
function of the binomial distribution,

P (X = x) =
(

n

x

)
πx(1− π )n−x, x = 0, . . . , n.

(c) Alternatively, if under the same assumptions as in item (b), we decide to sample
until r defective items are selected, the probability of sampling x + r items may be
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1.2 Illustrative Examples and Motivation 3

obtained from the probability function of the negative binomial distribution, that is,

P (X = x) =
(

r + x − 1

x

)
πr (1− π )x, x = 0, 1, 2, . . . .

(d) In some cases, it is assumed that X has a Poisson distribution, namely,

P (X = x) = e−λλr

r!
, r ≥ 0, λ > 0,

where λ > 0. �

Example 1.2.2 (One sample location model). We consider the problem of estimating the
average height µ of a (conceptually infinite) population based on a random sample of n

individuals. Let Y denote the height of a randomly selected individual and F denote the
underlying distribution function. In such a context, three alternative (stochastic) models
include the following:
(a) F is assumed to be symmetric and continuous with mean µ and finite variance σ 2,

and the observations are the heights Y1, . . . , Yn of the n individuals in the sample.
(b) F is assumed to be normal withmeanµ and known variance σ 2, and the observations

are like those in item (b).
(c) The assumptions on F are as in either (a) or (b), but the observations correspond to

the numbers of individuals falling within each of m height intervals (grouped data).
This is, perhaps, a more realistic model, because, in practice, we are only capable of
coding the height measurements to a certain degree of accuracy (e.g., to the nearest
millimeter). In this case, using a multinomial distribution with ordered categories
would be appropriate. �

Example 1.2.3 (Paired two-sample location model). Let X(Y ) denote the blood pressure
of a randomly selected hypertense individual before (after) the administration of an antihy-
pertensive drug and µX (µY ) represent the corresponding (population) mean. Our objective
is to estimate the average reduction in blood pressure, � = µX − µY , based on a sample
of n hypertense individuals randomly selected from a conceptually infinite or very large
population for which

(i) both X and Y are observed for all n subjects in the sample;
(ii) there are missing observations, that is, X or Y or both are not recorded for all

subjects. A common stochastic model for this problem assumes that the vector
(X,Y ) follows a bivariate normal distribution with Var(X) = σ 2

X, Var(Y ) = σ 2
Y , and

Cov(X, Y ) = σXY . �

Example 1.2.4 (Multisample location model). Amanufacturing company produces elec-
tric lamps wherein the cross section of the coil (say, X) may be one of s (≥ 2) possible
choices, designated x1, . . . , xs , respectively. Our objective is to verify whether the level
xi has some influence on the expected life of the lamps. For each level xi , we consider
a set of ni lamps taken at random from a (very large) production lot, and let Yij denote
the life length (in hours, say) corresponding to the j th lamp in the ith lot (i = 1, . . . , s;
j = 1, . . . , ni). It may be assumed that the Yij are independent for different i (= 1, . . . , s)
and j (= 1, . . . , ni) and follow distributions characterized by distribution functions Fi ,
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4 Motivation and Basic Tools

defined on R
+ = [0,∞), i = 1, . . . , s. As in Example 1.2.2, we may consider a variety of

models for the Fi , among which we pose the following:
(a) Fi is normal with mean µi and variance σ 2

i , i = 1, . . . , s, where the σ 2
i may or may

not be the same.
(b) Fi is continuous (and symmetric) with median νi and scale parameter τi, i =

1, . . . , s, but its form is not specified.
(c) Although Fi may satisfy (a) or (b), because the Yij are recorded in class intervals

(of width one hour, say), we must replace it by some appropriate (ordered) cate-
gorical data distribution, such as the multinomial distribution postulated in Exam-
ple 1.2.2.(c).

Under model (a), if we assume further that σ 2
1 = · · · = σ 2

s = σ 2, we have the classical
(normal theory) multisample shift in location model (or simply the location model); in this
context, if ni = n, i = 1, . . . , s, the data are said to be balanced; in (b), if we let Fi(y) =
F (y − νi), i = 1, . . . , s, we have the so-called nonparametric multisample location model.
Either (a) or (b) may be made more complex when we drop the assumption of homogeneity
of the variances σ 2

i or of the scale parameters τi or allow for possible scale perturbations
in the location model, that is, if we let Fi(y) = F [(y − µi)/σi] or Fi(y) = F [(y − νi)/τi],
i = 1, . . . , s, where the σ 2

i (or the τi) are not necessarily the same. �

Example 1.2.5 (Simple linear regression model). We consider a study designed to eval-
uate the association between the level of fat ingestion (X) on weight (Y ) of children in a
certain age group. The data consist of the pairs of measurements of X and Y for n ran-
domly selected subjects (from a large conceptual population) in the appropriate age group,
namely, (Xi, Yi), i = 1, . . . , n. A possible relation between X and Y may be expressed by
the simple linear regression model

Yi = α + βXi + ei, i = 1, . . . , n,

where α and β are unknown parameters and the ei are random errors with distribution
function F. Under this model, X is, in general, assumed fixed and known without error.
Again, many assumptions about the stochastic features of the model may be considered.

(a) The error terms ei are assumed to be independent and to have mean 0 and constant
variance σ 2, but the form of F is not specified. This is the Gauss–Markov setup.

(b) Additionally to the assumptions in (a), F is required to be normal.
(c) The assumptions in (a) are relaxed to allow for heteroskedasticity, that is, the vari-

ances may not be the same for all observations.
(d) Under (a), (b), or (c), X is assumed to be measured with error, that is, X = W + u,

where W is a fixed (unknown) constant and u is a random term with mean 0 and
variance τ 2. This is the error in variables simple linear regression model.

(e) In some cases, W in (d) is also a random variable with mean ν and variance σ 2
W . In

that case, the regression of Y on W has slope γ = βσ 2
W/(σ 2

W + τ 2). This is referred
to as a measurement-error model [Fuller (1986)]. �

Example 1.2.6 (Repeated measures). We suppose that in a study similar to that described
in Example 1.2.5, the weight of each child (Y ) is observed underp fixed, randomly assigned
levels (X) of physical activity (e.g., light, medium, or intense). The data consist of p > 1
pairs ofmeasurements ofX andY for each ofn randomly selected subjects in the appropriate
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1.2 Illustrative Examples and Motivation 5

age group, namely, (Xij , Yij ), i = 1, . . . , n, j = 1, . . . , p. Because the same response (Y )
is observed two or more times on the same subject, this type of data is generally referred to
as repeated measures. Under this setup, a commonly used model to express the relationship
between Y and X is

Yij = µ + αj + eij , i = 1, . . . , n, j = 1, . . . , p,

where µ and αj are fixed constants and eij are random errors with distribution function F.

Some possible assumptions for the stochastic components of the model follow:
(a) The error terms eij are normally distributed with mean 0 and covariance structure

given by Var(eij ) = σ 2, Cov(eij , eij ′ ) = σ 2
a , j �= j ′, and Cov(ei ′j , eij ′ ) = 0, i �= i ′.

(b) The assumptions are similar to those in (a), but heteroskedasticity is allowed, that
is, Var(eij ) = σ 2

i .

(c) The assumptions are similar to those in (a), but F is allowed to be a member of the
exponential family.

(d) The assumptions are as in (a), (b), or (c) but some observations are missing. �

Example 1.2.7 (Longitudinal data). In the study described in Example 1.2.5, we suppose
that measurements of fat ingestion (X) and weight (Y ) are taken on each child at different
instants in a one-year period. The data consist of triplets of the form (Xij , Yij , Tij ), i =
1, . . . , n, j = 1, . . . , pi , where Tij denotes the instants at which the j th measurement
on the ith child was taken. This is a special case of repeated measures data where the
repeated observations are taken sequentially along an ordered dimension (time). To express
the variation of Y with X, taking time into consideration, a useful model is the random
coefficients model:

Yij = (α + ai)+ (β + bi)Xij + γ Tij + eij , i = 1, . . . , n, j = 1, . . . , pi,

where α, β and γ are unknown parameters, and ai, bi, and eij are random terms. Again,
we may consider different assumptions for the stochastic components of the model.
(a) The pairs (ai, bi) follow independent bivariate normal distributions withmean vector

0 and positive definite covariance matrix � and the eij follow independent normal
distributions with means 0 and variances σ 2. Furthermore, eij is independent of
(ai, bi).Because given (ai, bi), the Yij are independent, this model is usually referred
to as the conditional independence model.

(b) The assumptions are like in (a), but a uniform structure is imposed upon� by letting
the ai (bi) follow independent normal distributions with means 0 and variances
σ 2

a = σ 2
b and Cov(ai, bi) = σab. �

Example 1.2.8 (Generalized linearmodel). In a typical ecological study, we are interested
in assessing the association between the concentration of a certain atmospheric pollutant
like SO2 (X) and the death count (Y ) in a certain region, controlling for temperature (T ) and
relative humidity (H ). The data consist of vectors (Yi,Xi, Ti,Hi), i = 1, . . . , n, containing
the measurements of all variables along a period of n days.
The relation of the response variable (Y ) and the explanatory variables (X, T ,H ) may

be postulated as

g[E(Yi)] = β0 + β1Xi + β2Ti + β3Hi, i = 1, . . . , n,
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6 Motivation and Basic Tools

where βj , j = 0, 1, 2, 3 are unknown regression coefficients and g is a convenient link
function, for example, the logarithmic function. To specify the stochastic components of
the model we may assume consider the following assumptions:

(a) The Yi follow independent Poisson distributions, or more generally any distribution
in the exponential class, in which case, the model may be classified as a generalized
linear model.

(b) We do not specify the distribution of Yi but assume that Var(Yi) = v[E(Yi)], where
v is a given function known as the variance function. When v is such that Var(Yi) >

E(Yi) we say that there is overdispersion. �

Example 1.2.9 (Dilution bioassay). We consider a bioassay experiment designed to com-
pare the effects of a standard preparation (SP ) and an experimental preparation (EP )
on the occurrence of some response (Y ), such as death or tumor onset. The data consist
of pairs (Xij , Yij ), i = 1, 2, j = 1, . . . , ni where Xij denotes the dose applied to the j th
subject submitted to the ith preparation (1 = SP, 2 = EP ) and Yij is equal to 1 if the j th
subject submitted to the ith preparation presents a positive response (e.g., death) and to 0,
otherwise.

Let X
S
denote the dose of SP above, which the response for a given subject is positive,

and let X
T
be defined similarly for the EP . The random variables X

S
and X

T
are called

tolerances. Assume that X
S
follows the (tolerance) distribution F

S
defined on R

+ and
that X

T
follows the distribution F

T
, also defined on R

+. Thus, F
S
(0) = 0 = F

T
(0) and

F
S
(∞) = 1 = F

T
(∞). In many assays, it is conceived that the experimental preparation

behaves as if it were a dilution (or concentration) of the standard preparation. In such a case,
for x ∈ R

+ wemay set F
T
(x) = F

S
(ρx), where ρ (> 0) is called the relative potency of the

test preparation with respect to the standard one. Note that for ρ = 1, the two distribution
functions are the same, so that the two preparations are equipotent; for ρ > 1, the test
preparation produces the same frequency of response with a smaller dose than the standard
one and hence is more potent, whereas for ρ < 1, the opposite conclusion holds. Possible
stochastic models follow:

(a) If we assume thatF
S
corresponds to a normal distributionwithmeanµ

S
and variance

σ 2
S
, then F

T
is normal with mean µ

T
= ρ−1µ

S
and variance σ 2

T
= σ 2

S
/ρ2. Thus,

µ
S
/µ

T
= ρ and σ

S
/σ

T
= ρ.

(b) Because of the positivity of the dose, a normal tolerance distribution may not be
very appropriate, unless µ

S
/σ

S
and µ

T
/σ

T
are large. As such, often, it is advocated

that instead of the dose, one should work with dose transformations called dose
metameters or dosages. For example, if we take X∗

T
= logX

T
and X∗

S
= logX

S
,

the response distributions, denoted by F ∗
T
and F ∗

S
, respectively, satisfy

F ∗
S
(x) = F ∗

T
(x − log ρ), −∞ < x < ∞, (1.2.1)

which brings in the relevance of linear models in such a context. �

Example 1.2.10 (Quantal bioassay). We consider a study designed to investigate the
mutagenic effect of a certain drug (or a toxic substance). Suppose that the drug is adminis-
tered at different dose levels, say 0 ≤ d1 < · · · < ds , s ≥ 2 so that at each level, n subjects
are tried. We let mj denote the numbers of subjects having a positive response under dose
j . Here the response, Y , assumes the value 1 if there is a mutagenic effect and 0 otherwise.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87722-0 - From Finite Sample to Asymptotic Methods in Statistics
Pranab K. Sen, Julio M. Singer and Antonio C. Pedroso de Lima
Excerpt
More information

http://www.cambridge.org/9780521877220
http://www.cambridge.org
http://www.cambridge.org


1.2 Illustrative Examples and Motivation 7

Thus, the data consist of the pairs (dj ,mj ), j = 1, . . . , s. Possible stochastic models are
given below.
(a) At dose level dj , we denote the probability of a positive response by πj = π (dj ).

Then πj = P {Y = 1|dj } = 1− P {Y = 0|dj }, 1 ≤ j ≤ s, and the joint distribution
of m1, . . . , ms is

s∏
j=1

(
n

mj

)
π

mj

j (1− πj )
n−mj , 0 ≤ mj ≤ n, 1 ≤ j ≤ s.

(b) As in the previous example, it is quite conceivable that there is an underlying
tolerance distribution, sayF , defined on [0,∞) and a threshold value (the tolerance),
say T0, such that whenever the actual dose level exceeds T0, one has Y = 1 (i.e., a
positive response); otherwise, Y = 0. Moreover, we may also quantify the effect of
the dose level dj by means of a suitable function, say β(dj ), 1 ≤ j ≤ s, so that

πj = π (dj ) = 1− F [T0 − β(dj )], 1 ≤ j ≤ s.

With this formulation, we are now in a more flexible situation wherein we may
assume suitable regularity conditions on F and β(dj ), leading to appropriate statisti-
calmodels that can bemore convenient for analysis. For example, taking xj = log dj ,
wemay put β(dj ) = β∗(xj ) = β∗

0 + β∗
1xj , 1 ≤ j ≤ s, where β∗

0 and β∗
1 are unknown

and, as such,

1− πj = F (T0 − β∗
0 − β∗

1xj ), 1 ≤ j ≤ s.

It is common to assume that the tolerance follows a logistic or a normal dis-
tribution. In the first case, we have F (y) = [1+ exp(−y/σ )]−1, −∞ < y < ∞,
with σ (> 0) denoting a scale factor. Then, F (y)/[1− F (y)] = exp(y/σ ) or
y = σ log{F (y)/[1− F (y)]}, implying that for 1 ≤ j ≤ s,

log
πj

1− πj

= log
1− F (T0 − β∗

0 − β∗
1xj )

F (T0 − β∗
0 − β∗

1xj )
= α + βxj , (1.2.2)

where α = (β∗
0 − T0)/σ and β = β∗

1/σ . The quantity log[πj/(1− πj )] is called a
logit (or log-odds) at dose level dj . Similarly, when F is normal, we have

πj = 1− F (T0 − β∗
0 − β∗

1xj ) = �(α + βxj ), 1 ≤ j ≤ s,

where �(y) = (
√
2π )−1

∫ y

−∞ exp(−x2/2)dx. Therefore,

�−1(πj ) = α + βxj , 1 ≤ j ≤ s, (1.2.3)

and the quantity�−1(πj ) is called a probit or a normit at the dose level dj . Both logit
and probit models may be employed in more general situations where we intend
to study the relationship between a dichotomous response and a set of explanatory
variables along the lines of linear models. For the logit case, such extensions are
known as logistic regression models. In a broader sense, the models discussed above
may be classified as generalized linear models. �

Example 1.2.11 (Hardy–Weinberg equilibrium). We consider the OAB blood classifica-
tion system (where the O allele is recessive and the A and B alleles are codominant). Let
p

O
, p

A
, p

B
and p

AB
, respectively, denote the probabilities of occurrence of the phenotypes
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8 Motivation and Basic Tools

OO, (AA, AO), (BB, BO), and AB in a given (conceptually infinite) population; also,
we let q

O
, q

A
, and q

B
, respectively, denote the probabilities of occurrence of the O, A,

and B alleles in that population. This genetic system is said to be in Hardy–Weinberg equi-
librium if the following relations hold: p

O
= q2

O
, p

A
= q2

A
+ 2q

O
q

A
, p

B
= q2

B
+ 2q

O
q

B
,

and p
AB

= 2q
A
q

B
. A problem of general concern to geneticists is to test whether a given

population satisfies the Hardy–Weinberg conditions based on the evidence provided by a
sample of n observational units for which the observed phenotype frequencies are n

O
, n

A
,

n
B
, and n

AB
.

Under the assumption of random sampling, an appropriate stochastic model for such a
setup corresponds to the multinomial model specified by the probability function

p(n
O

, n
A
, n

B
, n

AB
) = n!

n
O
!n

A
!n

B
!n

AB
!
p

n
O

O p
n
A

A p
n
B

B p
n
AB

AB ,

with p
O

+ p
A

+ p
B

+ p
AB

= 1. �

1.3 Synthesis of Finite to Asymptotic Statistical Methods

The illustrative examples in the preceding section are useful to provide motivation for some
statisticalmodels required for inference; even though exact inferentialmethods are available
under many of such models, alternative approximate solutions are required when more
realistic assumptions are incorporated. In this section, we build on the examples discussed
earlier, as well as on additional ones, by considering more general statistical models that
seemmore acceptable in viewof our limited knowledge about the data generation process. In
this context, we outline the difficulties associated with the development of exact inferential
procedures and provide an overview of the genesis of approximate large-sample methods
along with the transit from their small-sample counterparts.

We start with Example 1.2.2(b). When F , the distribution of Y is assumed to be normal,
with mean µ and variance σ 2, the sample mean Yn = n−1 ∑n

i=1 Yi has also a normal
distribution with mean µ and variance n−1σ 2, so that the pivotal quantity

Zn = √
n(Yn − µ)/σ (1.3.1)

has the standard normal distribution, that is, with null mean and variance equal to 1. If
µ, the unknown parameter, is of prime interest and the variance σ 2 is known, then Zn in
(1.3.1) can be used for drawing statistical conclusions on µ. In the more likely case of σ 2

being unknown too, for n ≥ 2, we may take the sample variance

s2n = 1

n − 1

n∑
i=1

(Yi − Yn)
2,

and consider

tn = √
n(Yn − µ)/sn, (1.3.2)

which follows the Student t-distribution with n − 1 degrees of freedom, for drawing statis-
tical conclusions on µ. Both Zn and tn have distributions that are symmetric about 0, but tn
is more spread out than Zn in the sense that

P (|tn| > c) ≥ P (|Zn| > c), ∀c > 0, (1.3.3)
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1.3 Synthesis of Finite to Asymptotic Statistical Methods 9

more dominantly when n is small. Thus, assuming σ 2 to be unknown, may result in less
precise statistical conclusions when n is not large, the basic assumption of normality of F

is crucial in this respect.
We consider now the dilution bioassay problem inExample 1.2.9, and suppose thatwe are

interested in estimating themean response Y of one of the preparations. Being a nonnegative
random variable, Y has, typically, a positively skewed distribution on R

+ = [0,∞). Thus,
often, a logarithmic transformation (Y ∗ = logY ) is advocated to achieve more symmetry
for the distribution F ∗ (of Y ∗), albeit there is still no assurance that F ∗ be normal. Indeed, in
many applications,F ∗ is assumed to be logistic instead of normal. For a logistic distribution,
the scale parameter and the standard deviation are not the same as in the case of the normal
distribution, and the pivotal quantity Zn (or tn) may not be (even approximately) normal,
more noticeably when n is small. Thus, assuming normality for F , when truly it is not
normal, may induce a loss of precision of the statistical conclusions. For some simple
specifications of the distribution function F , the exact sample distribution of Yn may be
obtained in closed form and that can be used to draw conclusions on µ = E(Yn). This
occurs, for example, when F belongs to the regular exponential family where optimal
estimators [often characterized as maximum likelihood estimators (MLE)] may have a
mean-like structure. However, for a general nonnormal F , the MLE is not Yn, and thereby
the use of Yn may entail further loss of statistical information about the parameter of
interest. As an example, we consider the case of F as a Laplace distribution with location
parameterµ and scale parameter λ > 0. TheMLE ofµ is the samplemedian, not the sample
mean, and hence, inference based on Yn may be less efficient. Recall that the logistic and
the Laplace distributions are not members of the exponential family.
Two issues transpire from the above discussion. First, if some specific distributional

assumption is made, how easy is it to extract full statistical information from the sample
observations to draw optimal statistical conclusions? Computational complexity or mathe-
matical intractability generally dominate the scenario, specially for nonnormal F . Second,
how sensitive is the derived statistical conclusion to plausible departures from the assumed
model? In many instances, they may be severely affected even by a single outlier. The
first issue dominated the statistical literature from the 1930s to 1960s with some hope that
advances in computer technology would make the situation more tractable. Nevertheless,
the second issue has raised some basic questions regarding robustness of classical (finite-
sample) parametric inference procedures to plausible model departures, either in a local
sense, or more typically in a global sense; developments in nonparametric and robust sta-
tistical procedures have their genesis in this complex. We illustrate these points with some
additional examples.

Example 1.3.1. In Example 1.2.2.(a), we assumed that F was symmetric and continuous
with meanµ and variance σ 2 < ∞. We consider several alternative models that incorporate
different levels of knowledge about the nature of the data:
(a) LetF (x) = Fo[(x − µ)/λ], x ∈ R, withµ andλ > 0 being, respectively, the location

and scale parameter and let the distribution Fo be free from (µ, λ). The normal,
logistic, Laplace, and Cauchy distributions are all members of this location-scale
family, denoted by FLS .

(b) Let F be the class of all distributions defined on R with finite first- and second-
order moments. Note that F includes Fo, the class of all symmetric distributions
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10 Motivation and Basic Tools

having finite second-order moments, as a subclass. In this setup, the parameter µ

(or σ 2) may be viewed as a functional θ (F ) of the distribution F ∈ F. Many other
parameters may be expressed in this form.

(c) Consider the subclass FoS of all symmetric distributions defined on R with the
origin of symmetry regarded as the location parameter. In this setup, the location
parameter is the median of F , and will be its mean whenever F admits a finite
first-order moment.

In (a) exact statistical inference pertaining to (µ, λ) may be obtained in some cases when
the functional form of Fo (in a parametric setup) is specified; however, when Fo is treated
nonparametrically (i.e., without specification of its functional form), approximate methods
are called for. In (b) or (c), the generality of the assumptions clearly point toward the
need for nonparametric methods. In this regard, the nonparametric estimation of statistical
functionals developed by Halmos (1946) and Hoeffding (1948) constitutes a paradigm. �

Example 1.3.2 (Quantile function). For a continuous distribution F defined on R, and
for every p (0 < p < 1), we let

QF (p) = inf{x : F (x) ≥ p}, (1.3.4)

be the p-quantile of F . The function QF = {QF (p) : 0 < p < 1} is called the quantile
function. Nonparametric measures of location and dispersion are often based on QF . For
example, QF (0.5), the median is a measure of location, while the interquartile range
QF (0.75)–QF (0.25) is a measure of dispersion.

Even in a parametric setup [e.g., (c) of Example 1.3.1)], statistical inference under this
model must rely on linear functionals ofQF (called linear combinations of order statistics)
for which only approximate (large-sample) methods are available. �

Example 1.3.3 (Contamination model). Instead of letting F ∈ F, we consider a model
that allows for some local departures from a stipulated distributionFo ∈ F (usually normal).
For example, we take for some (small) ε > 0 and let

F (x) = (1− ε)Fo(x)+ εH (x), x ∈ R, (1.3.5)

where H has a heavier tail than Fo in the sense of (1.3.3).
Depending on the divergence between Fo and H , even a small ε(> 0) can create a great

damage to the optimality properties of standard (exact) statistical inference procedures and,
again, we must rely on approximate (large-sample) statistical methods. This is the genesis
of robustness in a local sense as discussed in Huber (1981), for example. �

Example 1.3.4 (Nonparametric regression). In Example 1.2.8 we consider a generalized
linear model where the regression function is specified by means of a finite dimensional
vector β of regression parameters and known explanatory variables. In a more general
setup, corresponding to a (possibly vector valued) regressor Z (∈ R

q , for some q ≥ 1), we
assume that the dependence of the response Y on Z is described by

m(z) = E(Y |Z = z) =
∫

yf (y|z)dy, Z ∈ R
q, (1.3.6)

where f , the conditional density (or probability function) of Y given Z does not have
a specified functional form. The objective is to draw statistical conclusions about m(z),
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