Index

- 5-moment approximation, 92, 97, 119, 153, 164
- 10.7 cm radio flux, 259, 468, 485
- 13-moment approximation, 62, 64, 91, 98, 143, 274
- 20-moment approximation, 65
- 630 nm radiation, 249, 364
- absorption cross section, 255, 256, 349, 584
- accidental resonance, 232
- activation energy, 237, 247
- AE index, 346
- airglow, 248, 328
- Akebono spacecraft, 522
- AL index, 346
- Alfvén wave speed, 20, 186, 223
- Alfvén waves, **185, 221**
- Akebono spacecraft, 533
- ambipolar diffusion, 126, 151
- ambipolar diffusion coefficient, 127, 152
- ambipolar diffusion equations, 127, 133, 152, 350, 370, 608
- ambipolar electric field (see polarization electric field)
- ambipolar expansion, 135, 136
- Ampère’s Law, 68, 161, 214, 561
- anisotropic ion temperatures, 64, 66, 124
- anisotropic pressure tensor, 124, 220, 459
- anomalous electron temperatures, 418
- anomalous resistivity, 196
- Appleton anomaly, 30, 371
- arc length of magnetic field, 338
- Archimedes’ spiral, 17, 217
- Arecibo incoherent scatter radar, 538, 543
- Arhenius equation, 238
- associative detachment, 246
- astronomical unit (AU), 19
- Atmosphere Explorer satellites (AE), 259, 373, 522, 525
- atmospheric gravity waves (AGW), 295, 381
- atmospheric models:
 - empirical terrestrial (MSIS), 318, **594**
 - empirical Titan, 319
 - empirical Venus (VIRA), 319, **594**
- atmospheric sputtering, 324
- atomic oxygen red line, 233, 249, 364
- attachment reaction, 245
- AU index, 346
- auroral blobs, **432**
- auroral electrons (see particle precipitation)
- auroral oval, 25, 400, 420, 421
- average drift velocity, 53
- average speed, 53, 579
- axial-centered dipole, 341
- azimuthal electric field, 339
- β (of a plasma), 20, 215
- B field divergence, 133, 338, 458
- ballerina skirt model, 17
- beam spreading, 270
- Bennett ion mass spectrometer, 525
- Bessel function, 559
- bi-Maxwellian velocity distribution, 66, 219, 459
- bimolecular reaction, 232, 236, 242
- Birkeland current, 401, 424
- Boltzmann collision integral, 52, 85, **567**

© in this web service Cambridge University Press
www.cambridge.org
Boltzmann equation, 52, 55, 264, 562
Boltzmann H theorem, 575
Boltzmann relation, 129
boundary blobs, 432
bow shock, 22, 399
branching ratio, 244, 262
Brunt–Väisälä frequency, 298
buoyancy frequency, 298
Burgers linear collision terms, 99
Burgers semilinear collision terms, 98

Callisto, 40, 503
Cassini spacecraft, 20, 37, 40, 498, 500, 501, 531
catalytic process, 498
center of mass, 74
central force, 76
centrifugal acceleration, 125, 291, 451, 465
CH₄, 38–42, 497, 506, 508, 590
Chapman, 54, 63, 484, 495
Chapman–Cowling collision integrals, 96, 103
Chapman function, 258
Chapman layer, 349
Chapman production function, 260, 348
characteristic energy of precipitating particles, 419
characteristic time, 120, 234, 345, 411
charge density, 68
charge exchange, 105, 232, 240, 326
charge exchange collision integral, 572
charge exchange reaction rates, 240, 242
charge neutrality, 127, 161, 174, 177
charge separation, 127, 129, 130
Charon, 38
Chatanika incoherent scatter radar, 422, 432, 543
chemical equilibrium, 351, 358
chemical kinetics, 231
chemical reactions, 231, 237, 275, 354
chemical time constant, 233
Chew–Goldberger–Low (CGL) approximation, 63, 219
chromosphere, 12
circular polarization, 202
classical MHD equations, 206
cleft ion fountain, 468, 469
closure conditions, 58, 60
CH₃⁺, 502
CO, 34, 483, 587, 595
CO⁺, 483
CO₂, 34, 483, 493, 587, 595
CO₂⁺, 35, 37, 483, 493
coefficient of viscosity, 117, 292
cold plasma, 170, 197
collision cross section, 80
collision-dominated flow, 63, 143, 191, 451, 457
collision frequency:
electron–ion, 104
electron–neutral, 108, 109
ion–ion, 104
ion–neutral, 105–107
momentum, 89, 96, 102
relaxation, 573
collision time, 73, 573
collisional de-excitation, 248, 314
collisional detachment, 246
collisional invariants, 576
collisionless flow, 17, 63, 135, 225, 458
collisionless shock, 22, 225, 228
column density, 257
coma, 42
Comet Hale–Bopp, 42
Comet P/Halley, 42, 508, 509
composition of atmospheres:
comets, 42, 508
Earth, 28, 597–598
Enceladus, 40, 507
Io, 39, 502
Jupiter, 38, 496
Mars, 36, 492
Mercury, 31
Neptune, 38, 501
Pluto, 38, 502
Saturn, 38, 498
Titan, 40, 503
Uranus, 38, 501
Venus, 334, 483
configuration space, 51
conjugate hemispheres, 364, 379
conjugate ionosphere, 30, 254, 364
conservative form of transport equations, 56, 192, 226
contact discontinuity, 228
contact surface, 42
continuity equation, 56, 62, 119, 124, 133, 136, 165, 191, 208, 292, 301, 452, 458
convection:
anisotropic temperatures, 63, 124, 458
electromagnetic drift, 29, 138, 217, 339, 371, 399, 410
frictional heating, 121, 124, 414
heat source for the thermosphere, 447
increased chemical reaction rate, 416
momentum source for the thermosphere, 413, 414, 445
convection channels, 438
convection electric field, 29, 122, 138, 139, 399
convection models, 405
convection patterns:
- four-cell, 408
- three-cell, 408
- two-cell, 29, 402, 406, 407, 408, 409
- multi-cell, 410, 414

convective derivative, 57, 209, 361, 369
convective zone, 11
cooling rates, 276, 361
core, 11
Coriolis acceleration (force), 28, 125, 291
corona, 12
coronal holes, 13
coronal loops, 12
coronal mass ejection (CME), 15, 445
coronal streamer, 12
co-rotation speed, 502
co-rotational electric field, 339, 402, 404
Coulomb collisions (see also collision frequency), 76, 83, 98, 360
Coulomb logarithm, 84
Cowling conductivity, 345
critical frequency, 346, 533
critical level, 321
cross B field plasma transport: 137–139
diamagnetic drift, 138, 402
electromagnetic drift, 138, 339
gravitational drift, 138, 376
cross section (see absorption and ionization cross sections)
cross sectional area, 338, 458
current continuity, 213, 426
current density, 68, 142, 210, 519
current sheet, 17, 25
current systems: 423
electrojet, 345, 445, 448
lunar, 344
solar-quiet, 344
currents:
- Birkeland, 401, 423
cusp, 425
- NBZ, 424
- Region 1, 423
- Region 2, 423
cusp neutral fountain, 434
cut-off frequency, 160, 179, 182, 185
cyclotron frequency, 45, 121, 174, 202, 377, 560

D region, 30, 245, 353
Debye length, 45, 84, 129, 171, 560
Debye shielding, 83
Debye sphere, 45, 84
declination, 343, 376
derivative of vectors in a rotating frame, 290
descending layers, 379
detached plumes, 374
detachment, 245, 354
diamagnetic cavity, 43
diamagnetic current, 215
diamagnetic drift, 138, 402
differential scattering cross section, 81, 570
diffuse auroral patches, 420
diffuse auroral precipitation, 420
diffusion coefficients:
- ambipolar diffusion, 127, 152
classical, 115, 121, 305
major ion, 127
minor ion, 130
perpendicular to B, 139
thermal, 151, 582
diffusion equations:
- ambipolar, 127, 131, 152, 350
classical, 115, 370
magnetic, 216
major ion, 127
minor ion, 130
diffusion in velocity space, 571
diffusion thermal coefficient, 150, 581
diffusion thermal heat flow, 150
diffusion velocity, 207
diffusive equilibrium:
- ambipolar, 306, 351
- classical, 306, 351
major ion, 306, 351
minor ion, 132
dip angle, 338, 344
dipolar coordinates, 340
dipole magnetic field, 337
dipole moment, 23, 337
disappearing ionosphere, 489
discrete auroral arcs, 420
dispersion relations, 162, 170, 172–186, 201, 223
displacement current, 185
dissociative excitation, 247
dissociative recombination, 232, 243–245, 314, 353, 483, 484, 497
distribution function, 51, 53, 59, 65, 273, 521
disturbance dynamo, 373
disturbance electric fields, 373
diurnal tide, 300, 344
divergence of electrodynamic drift, 405
divergence theorem, 57, 227, 554
DMSP satellites, 374, 409, 421, 523
Doppler residual, 534
Doppler shift, 534
double adiabatic energy equations, 219
double dot product, 58, 61, 571, 603
double layers, 196
drift energy, 199
Index

drift meter, 525

drift motion, 265
drift velocity, 53, 57, 207, 410, 455, 524
drifting Maxwellian, 59, 92, 418, 459, 576
Druyvestyn-type analysis, 521
Ds index, 346
Dst index of geomagnetic activity, 346
dynamic pressure, 22, 215, 406, 486
dynamical friction, 571
Dynamics Explorer Satellites (DE), 405, 408, 379, 412, 449, 522
E × B drift (see electrodynamic drift)
E region, 30, 347, 418, 432, 445
Earth, 22, 300, 306, 335, 398
eccentric dipole, 341
ecliptic plane, 19, 399
eddy diffusion, 307, 308, 497
E–F region valley, 347, 380
effective electric field, 138, 414
effective gravity, 305
effective temperature, 416
Einstein coefficient, 234, 250
EISCAT incoherent scatter radar, 354, 385, 418, 543
elastic collision, 73, 74
electrodynamic drift, 138, 339, 350, 369, 402, 405
electroglow, 501
electrojet, 344, 345
electromagnetic drift (see electrodynamic drift)
electromagnetic waves, 159–164, 179–177, 179–185, 202
electrostatic double layers, 196
electrostatic potential, 129, 402
electrostatic waves, 159, 160, 168–176, 201
elementary reaction, 232
elliptic polarization, 180, 202
empirical atmosphere models:
 terrestrial atmosphere, 318, 319
 Titan atmosphere, 319
 Venus atmosphere, 319
empirical ionosphere models:
 Venus ionosphere (see VIRA)

electron thermal speed, 169, 202
electron–ion collision, 104
electron–neutral collision, 108, 109
electron–neutral cooling rate, 98, 276, 284
electrostatic double layers, 196
electrostatic potential, 129, 402
electrostatic waves, 159, 160, 168–176, 201
elementary reaction, 232
electroglow, 501

electron impact, 247, 249, 419, 489, 494, 501, 503

electron plasma frequency, 45, 170, 174, 179, 560

electron retardation region, 519
electron temperature, 44, 359, 360, 363, 366, 419, 430, 489–492, 494, 507
field aligned current (see Birkeland current)
floating potential, 518
fluxgate magnetometer, 529
Fokker–Planck collision term, 571
forbidden transition, 248
forward shock, 19
fossil bubbles, 373
frictional heating, 274, 414–416, 428, 454, 463
frozen in magnetic field, 216
fully ionized plasma, 113, 125, 144–146, 358, 362, 582
Galilean satellites, 503
Galileo spacecraft, 21, 37, 496, 502, 503
Ganymede, 40, 503
Gamma function, 558
Gauss’ law, 68, 160, 561
Gaussian pillbox, 227
general transport equations, 55–58, 62–63, 89–92, 97–102
generalized Ohm’s law, 211 (see also Ohm’s law)
geographic coordinates, 341
geographic pole, 342, 402, 404
geomagnetic field, 341
geomagnetic indices, 345
geomagnetic pole, 341, 424
geomagnetic storms, 345, 359, 445
geomagnetic variations, 344
geopotential height (see reduced height)
Giotto spacecraft, 509
global positioning system (GPS), 538
granules, 11
gravitational drift, 138, 376
gravity waves, 295, 375–379, 445, 502
ground state, 241, 243, 247
group velocity, 163, 178, 299, 304, 533
growth phase (of a geomagnetic storm), 345, 445
GSM co-ordinate system, 38
guiding center, 264
gyrofrequency (see electron and ion cyclotron frequencies)
gyroradius, 45, 264
H theorem, 575
H+ + H2, 240, 247, 323, 357, 450, 453, 469, 496, 499
H+–O charge exchange, 232, 240, 326, 357
H2, 38, 239, 247, 277, 280, 496, 508, 592
H2+, 245, 496
H2O, 239, 245, 261, 278, 281, 354, 499, 508, 589
H2O+, 245, 499, 508
H3+, 245, 497
H3O+, 245, 499, 508
half-thicknesses, 347
Hall conductivity, 141
Hall current, 213, 345
hard precipitation, 419–422
hard sphere collisions, 73, 96, 98, 109
HCNH+, 502, 505
He, 278, 33, 34, 239, 261, 263, 456, 483, 589, 595–598
He+, 242, 360, 381, 450, 455
heat flow, 54, 61–65, 118, 122, 143–149, 207, 293, 577
heat flow equation, 58, 62, 63, 91, 100, 101, 122, 144–153
heat of formation, 239
heat sources:
thermospheric, 238, 244, 270, 304, 315–318, 323, 326
heating efficiency, 273, 314
heliospheric current sheet, 17
helium magnetometer, 530
heterogeneous reaction, 231
heterosphere, 306
homogeneous reaction, 231
homopause, 306, 497
homosphere, 306, 312
hot atoms, 325
hot plasma, 12, 449
Hough function, 302
hydation, 354
hydrocarbon molecules, 497
hydrodynamic equations (see Euler and Navier–Stokes)
hydrodynamic shocks, 191, 202
hydrostatic equilibrium, 296, 307
IMAGE, 533
impact parameter, 74, 77–79, 567
inclination, 344
incoherent scatter, 538
incompressible flow, 213, 339, 405
inelastic collisions:
electronic excitation, 283
fine structure excitation, 282
rotational excitation, 277
vibrational excitation, 278
inertial reference frame, 290
in-situ measurement techniques, 517
integrated column density, 258
interaction potential, 76, 80
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>intermediate layers</td>
<td>379</td>
</tr>
<tr>
<td>intermediate species</td>
<td>232</td>
</tr>
<tr>
<td>internal field</td>
<td>337</td>
</tr>
<tr>
<td>internal gravity waves</td>
<td>300</td>
</tr>
<tr>
<td>International Geomagnetic Reference Field (IGRF),</td>
<td>342</td>
</tr>
<tr>
<td>interplanetary magnetic field (IMF)</td>
<td>17, 21, 34, 389, 399, 405–411, 414, 423, 430</td>
</tr>
<tr>
<td>intrinsic magnetic field</td>
<td>22, 485, 495</td>
</tr>
<tr>
<td>inverse collisions</td>
<td>569</td>
</tr>
<tr>
<td>inverse-power interaction potentials</td>
<td>80, 102</td>
</tr>
<tr>
<td>Io</td>
<td>39, 502</td>
</tr>
<tr>
<td>ion-acoustic Mach number</td>
<td>134</td>
</tr>
<tr>
<td>ion-acoustic speed</td>
<td>20, 133, 202</td>
</tr>
<tr>
<td>ion-acoustic waves</td>
<td>170, 201, 537</td>
</tr>
<tr>
<td>ion current</td>
<td>139–141</td>
</tr>
<tr>
<td>ion cyclotron frequency</td>
<td>45, 122, 170</td>
</tr>
<tr>
<td>ion–cyclotron waves</td>
<td>175, 201</td>
</tr>
<tr>
<td>ion–ion recombination</td>
<td>246, 354</td>
</tr>
<tr>
<td>ion line</td>
<td>540</td>
</tr>
<tr>
<td>ion mass spectrometers:</td>
<td></td>
</tr>
<tr>
<td>Bennett</td>
<td>525</td>
</tr>
<tr>
<td>magnetic deflection</td>
<td>525</td>
</tr>
<tr>
<td>quadrupole</td>
<td>527</td>
</tr>
<tr>
<td>retarding potential analyzer</td>
<td>523</td>
</tr>
<tr>
<td>time of flight</td>
<td>528</td>
</tr>
<tr>
<td>ion–molecule reaction rate</td>
<td>242</td>
</tr>
<tr>
<td>ion–neutral cooling rate</td>
<td>97, 106, 107, 283</td>
</tr>
<tr>
<td>ion–neutral thermal coupling</td>
<td>363, 414, 428</td>
</tr>
<tr>
<td>ion outflow (see polar wind and energetic ion outflow)</td>
<td></td>
</tr>
<tr>
<td>ion production rate</td>
<td>262, 269</td>
</tr>
<tr>
<td>ion thermal conductivity</td>
<td>150, 153</td>
</tr>
<tr>
<td>ion velocity distribution (see distribution function)</td>
<td></td>
</tr>
<tr>
<td>ionization cross section</td>
<td>262, 269, 584</td>
</tr>
<tr>
<td>ionization energy</td>
<td>270</td>
</tr>
<tr>
<td>ionization frequency</td>
<td>262</td>
</tr>
<tr>
<td>ionization threshold potential</td>
<td>261</td>
</tr>
<tr>
<td>ionization-stripping</td>
<td>270</td>
</tr>
<tr>
<td>ionogram</td>
<td>532</td>
</tr>
<tr>
<td>ionopause</td>
<td>33, 42, 215, 486, 496</td>
</tr>
<tr>
<td>ionosheath</td>
<td>34</td>
</tr>
<tr>
<td>ionosonde</td>
<td>522</td>
</tr>
<tr>
<td>ionospheric critical frequencies (see critical frequency)</td>
<td></td>
</tr>
<tr>
<td>ionospheric decay</td>
<td>352</td>
</tr>
<tr>
<td>ionospheric features</td>
<td></td>
</tr>
<tr>
<td>light ion trough</td>
<td>360</td>
</tr>
<tr>
<td>mid-latitude trough</td>
<td>427</td>
</tr>
<tr>
<td>polar hole</td>
<td>427</td>
</tr>
<tr>
<td>propagating plasma patches</td>
<td>430</td>
</tr>
<tr>
<td>temperature hot spots</td>
<td>429</td>
</tr>
<tr>
<td>tongue of ionization</td>
<td>428</td>
</tr>
<tr>
<td>ionospheric half-thicknesses (see half-thickness)</td>
<td></td>
</tr>
<tr>
<td>ionospheric holes</td>
<td>489</td>
</tr>
<tr>
<td>ionospheric layers</td>
<td></td>
</tr>
<tr>
<td>E, F₁, F₂, F₃ layer</td>
<td>346</td>
</tr>
<tr>
<td>He⁺ layer</td>
<td>381</td>
</tr>
<tr>
<td>ionospheric peak densities</td>
<td>44, 351, 492, 497, 498, 502, 503</td>
</tr>
<tr>
<td>ionospheric peak heights</td>
<td>44, 260, 351, 483, 492, 497, 498, 503</td>
</tr>
<tr>
<td>ionospheric regions</td>
<td></td>
</tr>
<tr>
<td>D region</td>
<td>31, 245, 353</td>
</tr>
<tr>
<td>E region</td>
<td>31, 347, 417, 432, 445</td>
</tr>
<tr>
<td>F₁ region</td>
<td>347, 349</td>
</tr>
<tr>
<td>F₂ region</td>
<td>347, 349, 356, 357</td>
</tr>
<tr>
<td>ionospheric sounder</td>
<td>532</td>
</tr>
<tr>
<td>ionospheric storms</td>
<td>386</td>
</tr>
<tr>
<td>ionospheric variations</td>
<td></td>
</tr>
<tr>
<td>diurnal</td>
<td>365</td>
</tr>
<tr>
<td>seasonal</td>
<td>367</td>
</tr>
<tr>
<td>solar cycle</td>
<td>368</td>
</tr>
<tr>
<td>irrotational flow</td>
<td>214</td>
</tr>
<tr>
<td>Jacobian</td>
<td>556</td>
</tr>
<tr>
<td>Jeans escape flux</td>
<td>322</td>
</tr>
<tr>
<td>Jicamarca incoherent scatter radar</td>
<td>373, 543</td>
</tr>
<tr>
<td>Joule heating</td>
<td>445, 491</td>
</tr>
<tr>
<td>Jupiter</td>
<td>37, 496</td>
</tr>
<tr>
<td>K index</td>
<td>346</td>
</tr>
<tr>
<td>kinetic pressure</td>
<td>33, 215</td>
</tr>
<tr>
<td>kinetic transport equation</td>
<td>50–52, 264, 563</td>
</tr>
<tr>
<td>kinetic viscosity</td>
<td>294</td>
</tr>
<tr>
<td>Kₚ index</td>
<td>346</td>
</tr>
<tr>
<td>Krook collision model</td>
<td>572</td>
</tr>
<tr>
<td>L waves</td>
<td>184, 202</td>
</tr>
<tr>
<td>Langevin model</td>
<td>241</td>
</tr>
<tr>
<td>Langmuir condition</td>
<td>200</td>
</tr>
<tr>
<td>Langmuir probe</td>
<td>517, 519–522</td>
</tr>
<tr>
<td>Laplace’s tidal equation</td>
<td>302</td>
</tr>
<tr>
<td>large-scale ionospheric features</td>
<td>425</td>
</tr>
<tr>
<td>Lavalle nozzle</td>
<td>135</td>
</tr>
<tr>
<td>Lennard-Jones interaction potential</td>
<td>80</td>
</tr>
<tr>
<td>limiting flux</td>
<td>311</td>
</tr>
<tr>
<td>linear collision term (13-moment)</td>
<td>99</td>
</tr>
<tr>
<td>linear polarization</td>
<td>180, 202</td>
</tr>
<tr>
<td>linearization technique</td>
<td>167, 222</td>
</tr>
<tr>
<td>Liouville’s theorem</td>
<td>324, 326</td>
</tr>
<tr>
<td>local approximation</td>
<td>267</td>
</tr>
<tr>
<td>local drifting Maxwellian</td>
<td>59, 576</td>
</tr>
<tr>
<td>longitudinal mode</td>
<td>160</td>
</tr>
<tr>
<td>loss frequency</td>
<td>353, 370, 452</td>
</tr>
<tr>
<td>loss function</td>
<td>268</td>
</tr>
<tr>
<td>Term</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>lower hybrid oscillations</td>
<td>174, 201</td>
</tr>
<tr>
<td>lunar influence</td>
<td>300, 344</td>
</tr>
<tr>
<td>Lyman α radiation</td>
<td>353</td>
</tr>
<tr>
<td>Mach number</td>
<td></td>
</tr>
<tr>
<td>ion-acoustic</td>
<td>134, 452</td>
</tr>
<tr>
<td>sonic</td>
<td>120, 194</td>
</tr>
<tr>
<td>magnetic barrier</td>
<td>34</td>
</tr>
<tr>
<td>magnetic cloud</td>
<td>19</td>
</tr>
<tr>
<td>magnetic deflection ion mass spectrometer</td>
<td>525</td>
</tr>
<tr>
<td>magnetic diffusion</td>
<td>216</td>
</tr>
<tr>
<td>magnetic dip</td>
<td>343</td>
</tr>
<tr>
<td>magnetic equator</td>
<td>340, 342, 371</td>
</tr>
<tr>
<td>magnetic field</td>
<td></td>
</tr>
<tr>
<td>(see geomagnetic field)</td>
<td></td>
</tr>
<tr>
<td>magnetic field divergence</td>
<td>338</td>
</tr>
<tr>
<td>magnetic flux tube</td>
<td>338</td>
</tr>
<tr>
<td>magnetic moments of solar system bodies</td>
<td>23</td>
</tr>
<tr>
<td>magnetic pile-up</td>
<td>36, 507</td>
</tr>
<tr>
<td>magnetic pressure</td>
<td>20, 22, 34, 215, 486</td>
</tr>
<tr>
<td>magnetic Reynolds number</td>
<td>216</td>
</tr>
<tr>
<td>magnetic scalar potential</td>
<td>337, 341</td>
</tr>
<tr>
<td>magnetic storms</td>
<td>345</td>
</tr>
<tr>
<td>(see geomagnetic storms)</td>
<td></td>
</tr>
<tr>
<td>magnetized plasma</td>
<td>160, 168, 185, 217, 219, 400, 543</td>
</tr>
<tr>
<td>magnetohydrodynamic (MHD) equations</td>
<td>206, 213</td>
</tr>
<tr>
<td>magnetometers</td>
<td>529</td>
</tr>
<tr>
<td>magnetopause</td>
<td>23, 31, 37, 399</td>
</tr>
<tr>
<td>magnetosheath</td>
<td>22, 22, 31, 34, 36, 37, 43, 399, 505</td>
</tr>
<tr>
<td>magnetosonic waves</td>
<td>185, 202, 221</td>
</tr>
<tr>
<td>magnetosphere</td>
<td>22, 31, 38, 345, 470, 505</td>
</tr>
<tr>
<td>magnetospheric tail</td>
<td>24, 400</td>
</tr>
<tr>
<td>main phase (of a geomagnetic storm)</td>
<td>345, 445</td>
</tr>
<tr>
<td>major ion diffusion equation</td>
<td>126</td>
</tr>
<tr>
<td>Mariner 5</td>
<td>488</td>
</tr>
<tr>
<td>Mariner 6</td>
<td>537</td>
</tr>
<tr>
<td>Mariner 10</td>
<td>32</td>
</tr>
<tr>
<td>Mars</td>
<td>36, 492</td>
</tr>
<tr>
<td>Mars 4 and 5</td>
<td>495</td>
</tr>
<tr>
<td>Mars Global Surveyor (MGS)</td>
<td>36, 494, 496</td>
</tr>
<tr>
<td>Mars Express</td>
<td>36, 494, 496, 533</td>
</tr>
<tr>
<td>Maunder Minimum Period</td>
<td>15</td>
</tr>
<tr>
<td>Maxwell–Boltzmann velocity distribution function</td>
<td>58, 575</td>
</tr>
<tr>
<td>Maxwell equations of electricity and magnetism</td>
<td>68, 561</td>
</tr>
<tr>
<td>Maxwell molecule collisions</td>
<td>82, 90</td>
</tr>
<tr>
<td>Maxwell speed distribution</td>
<td>579</td>
</tr>
<tr>
<td>Maxwell transfer equations</td>
<td>60, 562</td>
</tr>
<tr>
<td>mean-free-path</td>
<td>73, 115, 321</td>
</tr>
<tr>
<td>Mercury</td>
<td>31, 482</td>
</tr>
<tr>
<td>mesopause</td>
<td>27, 304</td>
</tr>
<tr>
<td>mesosphere</td>
<td>27, 304, 309, 311</td>
</tr>
<tr>
<td>Messenger</td>
<td>32, 482</td>
</tr>
<tr>
<td>metallic ions</td>
<td>379, 502</td>
</tr>
<tr>
<td>metastable state</td>
<td>247, 248, 484</td>
</tr>
<tr>
<td>MHD discontinuities</td>
<td>225, 227</td>
</tr>
<tr>
<td>mid-latitude trough</td>
<td>427</td>
</tr>
<tr>
<td>migrating tide</td>
<td>295, 300</td>
</tr>
<tr>
<td>Millstone Hill incoherent scatter radar</td>
<td>543</td>
</tr>
<tr>
<td>minor ion diffusion equation</td>
<td>130</td>
</tr>
<tr>
<td>minor ion scale height</td>
<td>131</td>
</tr>
<tr>
<td>Mitra–Rowe six-ion model</td>
<td>354</td>
</tr>
<tr>
<td>mixed distribution</td>
<td>306, 308</td>
</tr>
<tr>
<td>mixing ratio</td>
<td>312</td>
</tr>
<tr>
<td>mobility coefficient</td>
<td>121, 139</td>
</tr>
<tr>
<td>molecular diffusion</td>
<td>305, 307</td>
</tr>
<tr>
<td>moments of distribution</td>
<td></td>
</tr>
<tr>
<td>density</td>
<td>53, 207</td>
</tr>
<tr>
<td>heat flow</td>
<td>54, 207</td>
</tr>
<tr>
<td>pressure</td>
<td>54, 207</td>
</tr>
<tr>
<td>stress</td>
<td>55, 207</td>
</tr>
<tr>
<td>velocity</td>
<td>53, 207</td>
</tr>
<tr>
<td>temperature</td>
<td>54, 207</td>
</tr>
<tr>
<td>momentum equation</td>
<td>57, 62, 91, 97, 99, 119, 125, 126, 133, 136, 139, 141, 151, 165, 213, 225, 294, 301, 350, 370, 452, 458</td>
</tr>
<tr>
<td>momentum transfer collision frequency (see collision frequency)</td>
<td></td>
</tr>
<tr>
<td>Monte Carlo methods</td>
<td>67, 321, 326, 614</td>
</tr>
<tr>
<td>most probable speed</td>
<td>579</td>
</tr>
<tr>
<td>MSIS (mass spectrometer incoherent scatter model)</td>
<td>318, 320, 597–599, 299</td>
</tr>
<tr>
<td>N⁺</td>
<td>506, 508</td>
</tr>
<tr>
<td>N₂⁺</td>
<td>247, 347, 380, 506, 508</td>
</tr>
<tr>
<td>Navier–Stokes equations</td>
<td>63, 144, 292–294</td>
</tr>
<tr>
<td>NBZ currents</td>
<td>424</td>
</tr>
<tr>
<td>negative ionospheric storm</td>
<td>387</td>
</tr>
<tr>
<td>negative ions</td>
<td>245, 354–356</td>
</tr>
<tr>
<td>Neptune</td>
<td>38, 501</td>
</tr>
<tr>
<td>neutral current sheet</td>
<td>25</td>
</tr>
<tr>
<td>neutral density structures</td>
<td>437</td>
</tr>
<tr>
<td>neutral gas heating efficiency</td>
<td>314, 315</td>
</tr>
<tr>
<td>neutral gas polarizability</td>
<td>90, 107, 241</td>
</tr>
<tr>
<td>neutral gas scale height</td>
<td>257</td>
</tr>
<tr>
<td>neutral polar wind</td>
<td>470</td>
</tr>
<tr>
<td>neutral wind</td>
<td>28, 138, 140, 350, 353, 366, 370, 380, 413, 443</td>
</tr>
<tr>
<td>NH₃</td>
<td>42</td>
</tr>
<tr>
<td>NO</td>
<td>36, 90, 239, 242, 247, 261, 354, 415, 483</td>
</tr>
<tr>
<td>Index</td>
<td>625</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>NO<sup>+</sup>, 247, 347, 354, 355, 380, 415</td>
<td>Titan, 505</td>
</tr>
<tr>
<td>nonresonant ion–neutral collisions, 105</td>
<td>Venus, 489</td>
</tr>
<tr>
<td>normal shock, 192, 227</td>
<td>partition function, 240</td>
</tr>
<tr>
<td>Nozomi, 522</td>
<td>Pedersen conductivity, 141</td>
</tr>
<tr>
<td>NRLMSIS, 319</td>
<td>Pedersen current, 141, 344</td>
</tr>
<tr>
<td>numerical solution for F-region density, 608</td>
<td>perpendicular propagation, 160</td>
</tr>
<tr>
<td>O, 28, 30, 34, 36, 90, 105, 107, 232, 239, 228, 243, 249, 261, 263, 282, 283, 310, 311, 318, 323, 326, 347, 355, 365, 368, 447, 483, 586, 595–598</td>
<td>perpendicular shock, 228</td>
</tr>
<tr>
<td>O<sup>+</sup>, 31, 35, 37, 232, 239, 240, 243, 244, 326, 347, 351, 357, 415, 456, 461–464, 467–469, 483, 493</td>
<td>perpendicular temperature, 64, 66, 458</td>
</tr>
<tr>
<td>O<sub>2</sub><sup>-</sup>, 232, 243, 244, 375, 380, 483, 484, 493</td>
<td>phase space, 51, 567</td>
</tr>
<tr>
<td>O<sub>2</sub><sup>-</sup>, 245, 246, 354, 355</td>
<td>phase velocity, 162, 300, 304</td>
</tr>
<tr>
<td>oblique Alfvén wave, 224</td>
<td>physical parameters of planets, 23</td>
</tr>
<tr>
<td>oblique shock, 227</td>
<td>physical parameters of satellites, 24</td>
</tr>
<tr>
<td>Ohm’s law, 142, 211, 213, 216</td>
<td>Phobos, 36</td>
</tr>
<tr>
<td>O I 130.4 nm airglow, 328</td>
<td>photoabsorption, 254, 584</td>
</tr>
<tr>
<td>OI 130.4 nm airglow, 328</td>
<td>photochemical equilibrium (see chemical equilibrium)</td>
</tr>
<tr>
<td>open field lines, 29, 132, 400, 450</td>
<td>photodetachment, 245</td>
</tr>
<tr>
<td>optical depth, 256, 258, 262, 348, 349</td>
<td>photodissociation, 246, 309, 314, 347, 354, 375, 483, 496</td>
</tr>
<tr>
<td>optical thickness, 256</td>
<td>photoelectron calculations:</td>
</tr>
<tr>
<td>order of a reaction, 233</td>
<td>continuous loss approximation, 268</td>
</tr>
<tr>
<td>orbital motion limited condition, 521</td>
<td>local approximation, 267</td>
</tr>
<tr>
<td>ordinary waves (O mode), 179, 202, 533</td>
<td>two-stream approximation, 265</td>
</tr>
<tr>
<td>orthogonal expansions, 60</td>
<td>photoelectron heating rate, 274, 362, 367, 430</td>
</tr>
<tr>
<td>oxygen fine structure cooling, 276, 282, 284, 361</td>
<td>photoelectron production rate, 262</td>
</tr>
<tr>
<td>oxygen red line emission, 233, 249, 364</td>
<td>photoemission, 518</td>
</tr>
<tr>
<td>parallel electrical conductivity, 142, 212</td>
<td>photoionization, 260, 266, 351, 367, 496, 505, 584–593</td>
</tr>
<tr>
<td>parallel propagation, 160</td>
<td>photon flux, 255</td>
</tr>
<tr>
<td>parallel shock, 228</td>
<td>photosphere, 12</td>
</tr>
<tr>
<td>parallel temperature, 64–66–458</td>
<td>Pioneer Venus Orbiter (PVO), 483, 489, 490, 522, 524, 525</td>
</tr>
<tr>
<td>partial pressure, 55, 207</td>
<td>Pioneers 10 and 11, 21, 496, 498, 502, 503</td>
</tr>
<tr>
<td>partially ionized plasma, 31, 113, 125, 152, 154, 360, 572, 583</td>
<td>pitch angle, 265, 266</td>
</tr>
<tr>
<td>plasma β, 20, 215</td>
<td>plane waves, 161, 168, 297</td>
</tr>
<tr>
<td>plasma bubble, 373</td>
<td>planetary parameters, 23</td>
</tr>
<tr>
<td>plasma convection (see convection)</td>
<td>planetary waves, 294</td>
</tr>
<tr>
<td>plasma expansion, 135</td>
<td>plasma β, 20, 215</td>
</tr>
<tr>
<td>plasma frequency, 45, 170, 174, 179, 202, 532, 560</td>
<td>plasma bubbles, 373</td>
</tr>
<tr>
<td>plasma oscillations, 170, 201</td>
<td>plasma convection (see convection)</td>
</tr>
<tr>
<td>plasma parameters (ionospheric), 44</td>
<td>plasma expansion, 135</td>
</tr>
<tr>
<td>plasma scale height, 128, 350</td>
<td>plasma frequency, 45, 170, 174, 179, 202, 532, 560</td>
</tr>
<tr>
<td>plasma sheet, 24, 449, 465, 466</td>
<td>plasma oscillations, 170, 201</td>
</tr>
<tr>
<td>plasma temperature, 358, 360, 370, 489–492, 494, 507</td>
<td>plasma parameters (ionospheric), 44</td>
</tr>
<tr>
<td>plasma thermal structure, 360, 489–492, 494, 507</td>
<td>plasma scale height, 128, 350</td>
</tr>
<tr>
<td>plasma map, 26</td>
<td>plasma sheet, 24, 449, 465, 466</td>
</tr>
<tr>
<td>plasmaphere, 26, 356, 359, 388</td>
<td>plasma temperature, 358, 360, 370, 489–492, 494, 507</td>
</tr>
<tr>
<td>plasmoid, 19</td>
<td>plasma thermal structure, 360, 489–492, 494, 507</td>
</tr>
<tr>
<td>Pluto, 39, 502</td>
<td>plasmapause, 26</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
Index

Poisson equation, 129, 160
polar cap, 26, 197, 400
polar cusp, 24, 420, 428
polar hole, 427
polar rain, 419, 465
polar wind, 29, 132, 195, 450
positive ion sheath, 518
positive ionospheric storm, 387
Poynting vector, 162, 226
precipitation (see particle precipitation)
predawn effect, 364
pressure balance, 214
pressure tensor, 54, 208, 219, 577
prominence, 15
propagating plasma patches, 430
propagation constant (vector), 160, 161
protonosphere, 31, 357
quadrupole mass spectrometer, 527
quenching, 248
R waves, 184, 202
radar (incoherent) backscatter stations, 543
radiative recombination, 243, 244, 496
radiative zone, 11
radio frequency (Bennett) ion mass spectrometer, 525
radio occultation technique, 534
radio wave spectrum, 605
random current, 518
random flux across a plane, 579
random velocity, 54, 207, 562, 577
Rankine–Hugoniot relations, 194, 228
Rayleigh–Taylor (R–T) instability, 375
reaction rates, 233, 236, 242
reconnection rate (see dissociative and radiative)
reconnection, 449
recovery phase (of a geomagnetic storm), 345, 447
reduced height, 257
reduced mass, 79, 86, 93
reduced temperature, 93
refractive bending angle, 535
refractive index, 532
refractivity, 536
Region 1 current, 423
Region 2 current, 423
relative velocity, 74
resonance (wave), 160
resonant ion–neutral collisions, 107
retarding potential analyzer (RPA), 517, 522–525
reverse shock, 19
reversible reaction, 232
ring current, 26, 345, 365
Rosetta, 43
rotating reference frame, 290–292
rotational axis, 337
rotational excitation, 277
Rutherford scattering cross section, 83
Saturn, 37, 498–500
Saturn electrostatic discharge (SED), 499
scale height:
 minor ion, 131
 mixed gas, 307
 neutral gas, 257, 296, 306
 plasma, 128, 350
scattering angle, 74, 78
Schumann–Runge continuum, 314
seasonal anomaly, 367
secular variation, 342
self-similar solution, 136
semi-diurnal tide, 300, 304, 379
shock waves, 191, 202, 225
simplified MHD equations, 213
single fluid MHD equations, 206
skin depth, 179
slow MHD wave, 225
SO2, 502, 591
Sodankylä ion chemistry (SIC) model, 354
soft precipitation (see particle precipitation)
solar activity, 14, 259
solar constant, 15
solar flares, 15
solar fluxes (see EUV solar flux)
solar magnetic field, 12
solar wind, 12, 217
solar wind parameters, 20
solar zenith angle, 256
Sondrestrom incoherent scatter radar, 543
sound speed, 20, 172, 221, 298
South Atlantic anomaly, 344
spacecraft (see specific spacecraft)
spacecraft potential, 517–519
spacecraft potential, 517–519
specific heat, 165, 191, 292, 294, 296
speed of light, 161, 179
spiral angle, 17, 218
Spitzer conductivity, 362
spontaneous de-excitation, 233, 248
sporadic E layer, 379, 502
spread F, 373
stationary tide, 295
statistical weight, 240
stoichiometric equation, 232
Stokes' theorem, 227, 554
stopping cross section, 268
storm-enhanced density (SED), 387
stratopause, 27
stratosphere, 27, 295, 313, 381
streaming instabilities, 188, 196, 418
stress tensor, 55, 61, 63, 122, 144, 148, 292, 452
strong shocks, 195
sub-auroral ion drift (SAID), 449
sub-auroral polarization stream (SAPS), 387
sub-auroral red arcs (SARARCS), 358, 364
subsonic flow, 120, 135, 191
substorms, 448
sudden storm commencement (SSC), 345, 445
Sun, 11
Sun-aligned arcs, 434
sunspots, 13
supersonic flow, 17, 22, 63, 132, 154, 191, 450, 453
supersonic neutral winds, 443
tail rays, 35, 489
tangential discontinuity, 33, 42, 228, 486
temperature anisotropy, 64, 65, 350, 459
temperature hot spots, 425–430
termolecular reaction, 232, 235
terrestrial thermosphere empirical model (see MSIS)
TIGCM (see thermosphere–ionosphere general circulation model)
thermal conduction:
electron, 145–147, 362, 490, 494, 581
ion, 150, 153, 581
neutral gas, 118, 293, 317
thermal diffusion, 101, 152, 358
thermal electron heating rate, 272, 362, 367
thermal escape flux, 322
thermal potential, 196
thermal velocity, 54, 207, 562, 577
thermoelectric coefficient, 150, 583
thermoelectric effect, 101, 145, 150
thermosphere, 27, 36, 38, 314, 315, 318
thermosphere–ionosphere general circulation model (TIGCM), 318, 382
thermospheric composition:
Earth, 304, 310, 314, 597–598
Jupiter, 38
Mars, 36
Triton, 42
Venus, 34
thermospheric temperatures:
Earth, 27, 320, 597–598
Jupiter, 23, 38, 318
Mars, 37
Saturn, 38
Venus, 34
thermospheric wind, 28, 318, 413, 445
theta aurora (Sun-aligned arc), 419, 434
Thomson scatter, 538
three-body recombination, 232
tides, 294, 300, 344, 381
TIGCM (see thermosphere–ionosphere general circulation model)
tilted dipole, 38, 337, 341
time constants, 234, 235, 308, 352–353, 365, 411, 573
time-of-flight spectrometer, 528
Titan, 40, 503–507
tongue of ionization, 427, 428, 431
topside ionosphere, 31, 132, 349, 356, 450, 457, 486, 497
total scattering cross section, 82
trace of a tensor, 61, 603
transfer collision integrals, 85, 92, 99
transport equations:
5-moment set, 119, 165, 291
13-moment set, 62, 98–102
ambipolar diffusion, 127, 150, 151, 350
diffusion, 115, 126, 127, 130, 131, 151, 216, 350, 370
energy, 57, 122, 125, 292, 294, 315, 361, 416, 452
Euler, 63, 144, 191
heat flow, 58, 63–65, 118, 122, 143, 148, 207, 293, 577
momentum, 57, 62, 91, 97, 99, 119, 125, 126, 133, 136, 139, 141, 151, 165, 213, 225, 294, 301, 350, 370, 452, 458
Navier–Stokes, 63, 144, 292
pressure tensor, 57, 62
self-similar, 136
stress tensor, 63, 122, 125, 144, 148, 292
thermal conduction, 118, 146, 150, 151, 152, 293, 362, 581
transport properties:
ambipolar diffusion, 127, 131, 151, 350
diffusion, 115, 126, 130, 131, 151, 216, 350, 370
diffusion-thermal heat flow, 150, 581
electrical conduction, 141, 142, 345
thermal conduction, 118, 144–147, 152, 293, 317, 362, 489, 491, 581
thermal diffusion, 150, 151, 582
thermoelectric effect, 101, 145, 150
viscosity, 116, 145, 292, 294
transverse mode, 160
traveling ionospheric disturbance (TID), 385, 390, 445
Triton, 42, 508
tropopause, 27
troposphere, 27, 381
turbopause, 306
two-stream approximation (see photoelectron calculations)
two-stream instability, 188, 196, 418

Ulysses, 21
unit dyadic, 55, 88, 119, 219, 225, 578, 603
upper hybrid oscillations, 172, 201
Uranus, 38, 501

Van Allen radiation belt, 26
velocity-dependent correction factors, 98
velocity moments:
density, 53
drift velocity, 53
heat flow for || energy, 64
heat flow for ⊥ energy, 64
heat flow tensor, 54
heat flow vector, 54
higher-order pressure tensor, 54
parallel temperature, 64
perpendicular temperature, 64
pressure tensor, 54

stress tensor, 55
temperature, 54
velocity space, 51, 56, 556
Venus, 33, 482
vertical column density, 257
vibrational excitation, 247, 279–282, 496
Viking, 356, 492–495
VIRA (Venus international reference atmosphere), 319, 595, 596
virtual height, 533
viscosity, 117, 145, 292–294
Vlasov equation, 52
voyagers, 21, 38, 496–498, 501, 503, 508

water cluster ions, 30, 354
wave modes, 201
wave number-4 pattern, 383
wave–particle interactions, 365, 418, 464, 467
weak shocks, 195, 507
weakly ionized plasma, 30, 113, 120, 154
westward traveling surge, 448
whistler waves, 202
wind filtering, 384
winter helium bulge, 457

zenith angle, 256