Nanostructures and Nanotechnology

Focusing on the fundamental principles of nanoscience and nanotechnology, this carefully developed textbook will equip students with a deep understanding of the nanoscale.

- Each new topic is introduced with a concise summary of the relevant physical principles, emphasising universal commonalities between seemingly disparate areas, and encouraging students to develop an intuitive understanding of this diverse area of study.
- Accessible introductions to condensed matter physics and materials systems provide students from a broad range of scientific disciplines with all the necessary background.
- Theoretical concepts are linked to real-world applications, allowing students to connect theory and practice.
- Chapters are packed with engaging color illustrations and problems to help students develop and retain their understanding, and are accompanied by suggestions for additional reading.

Containing enough material for a one- or two-semester course, this is an excellent resource for senior undergraduate and graduate students with backgrounds in physics, chemistry, materials science, and electrical engineering.

Douglas Natelson is a Professor of Physics and Astronomy at Rice University, where he has taught courses on nanoscale science and technology for fifteen years. He is a Fellow of the APS and AAAS and blogs at nanoscale.blogspot.co.uk.

Nanostructures and Nanotechnology

DOUGLAS NATELSON Rice University, Houston

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521877008

© Cambridge University Press & Assessment 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Natelson, Douglas, 1970– Nanostructures and nanotechnology / Douglas Natelson, Rice University, Houston. pages cm Includes bibliographical references and index. ISBN 978-0-521-87700-8 (Hardback) 1. Nanostructured materials. I. Title.

> TA418.9.N35N36489 2015 620'.5–dc23 2014044739

ISBN 978-0-521-87700-8 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface			<i>page</i> ix
		Part I	1
1	Intro	3	
	1.1	What is nanotechnology?	3
	1.2	Sizes of things	5
	1.3	Important length scales: breaking a wire	7
	1.4	The structure of this book	11
2	Solid	state physics in a nutshell	15
	2.1	Free electrons	16
	2.2	Nearly free electrons	34
	2.3	Chemical approaches to electronic structure	47
	2.4	More modern electronic structure methods	54
	2.5	Lattice dynamics: phonons	58
	2.6	Summary and perspective	61
	2.7	Suggested reading	62
	Exer	cises	63
3	Bulk	materials	66
	3.1	Electronic types of solids	67
	3.2	Metals	68
	3.3	Inorganic semiconductors	72
	3.4	Band insulators	84
	3.5	Correlated oxides	87
	3.6	Molecular structures	88
	3.7	Summary and perspective	99
	3.8	Suggested reading	100
	Exer	cises	100
4	Fabri	104	
	4.1	Characterization	104
	4.2	Materials growth	119

۷

vi	Contents			
	4.3	3 Material removal	129	
	4.4	4 Patterning	133	
	4.5	5 Summary	145	
	4.6	5 Suggested reading	146	
	Ex	ercises	147	
	5 Rea	al solids: defects, interactions, confinement	151	
	5.1	l Defects	151	
	5.2	2 Interfaces and surfaces	154	
	5.3	3 Screening	158	
	5.4	4 Excitons	166	
	5.5	5 Junctions between materials	168	
	5.6	6 Quantum wires	178	
	5.7	7 Quantum dots	181	
	5.8	3 Summary and perspectives	184	
	5.9	O Suggested reading	185	
	Ex	rercises	186	
		Part II	189	
	6 Cha	arge transport and nanoelectronics	191	
	6.1	Transport terminology	191	
	6.2	2 Kinetic concepts	195	
	6.3	3 Hall effect	197	
	6.4	4 Quantum transport	203	
	6.5	5 The classical MOSFET	238	
	6.6	5 State-of-the-art	249	
	6.7	7 Beyond CMOS	259	
	6.8	3 Summary and perspective	291	
	6.9	9 Suggested reading	292	
	Ex	rercises	292	
	7 Magnetism and magnetoelectronics			
	7.1	Definitions and units	298	
	7.2	Magnetic order	303	
	73	B Energy and magnetic configurations	309	
	7.2	4 Magnetism at small scales	317	
	,. 7 4	5 Magnetic data storage and magnetoelectronics	338	
	, 7 6	5 The future: spintronics	346	
	7.7	7 Nanomagnetism: other applications	351	
	7.9	Summary and perspective	351	
	7.0	Further reading	352	
	Fv	rereises	354	
			554	

CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-87700-8 — Nanostructures and Nanotechnology Douglas Natelson Frontmatter <u>More Information</u>

	Contents			vii	
8	Photonics 357				
	8.1 Electromagnetic rad	iation in a nutshell	357		
	8.2 Lasers		384		
	8.3 A brief overview of	optical communications	397		
	8.4 Photonic band gap s	ystems	401		
	8.5 Nanophotonics: nea	r-field optics	407		
	8.6 Nanophotonics: plas	smonics	409		
	8.7 Summary		422		
	8.8 Suggested reading		423		
	Exercises	424			
9	Micro- and nanomechanics 429				
	9.1 Basics of solid conti	429			
	9.2 Tribology		443		
	9.3 Microelectromechan	nical systems (MEMS)	448		
	9.4 Nanoelectromechan	ical systems	459		
	9.5 Summary		465		
	9.6 Suggested reading		466		
	Exercises		466		
10	Micro- and nanofluidics	469			
	10.1 Basic fluid mechani	cs	469		
	10.2 A digression: dimen	sional analysis	471		
	10.3 Laminar flow		475		
	10.4 Surface interactions		483		
	10.5 Electrolytes		486		
	10.6 Microfluidic devices	0.6 Microfluidic devices			
	10.7 Nanofluidics		503		
	10.8 Summary		510		
	10.9 Suggested reading		511		
	Exercises		512		
11	Bionanotechnology: a very brief overview 516				
	11.1 Basic elements and	1.1 Basic elements and tools of bionano			
	11.2 Leveraging biology		526		
	11.3 Nanotechnology and	l biosensing	534		
	11.4 Frontiers	-	538		
	11.5 Summary		539		
	11.6 Suggested reading		540		
	Exercises	540			
12	Nanotechnology and the future 543				
	12.1 Nanotechnology and energy 543				
	12.2 Dangers of nanotech	nnology?	556		
	0	<u> </u>			

viii	Contents		
	12.3	Prognosis	560
	12.4	Summary	561
	12.5	Suggested reading	561
	Appendix	Common quantum mechanics and statistical mechanics results	563
	A.1	A review of perturbation theory	563
	A.2	The vector potential	569
	A.3	The Einstein relation	570
	Reference	es	572
	Index		625

Preface

This book is intended to provide a physical foundation for students interested in nanoscale science and technology. Developed while teaching a two-course graduate sequence on the topic, this book is my attempt to lay out the physical underpinnings of this incredibly broad topic while striking a balance between depth and approachability.

When I set out to develop and teach these courses, I found that most books on this subject were very specialized (for example, dealing only with nanoscale electronics), more focused on research rather then pedagogy (collections of review articles rather than an actual textbook), or not sufficiently technical (more like a series of Scientific American articles rather than a quantitative approach). I have tried to get to the physical basis of nanoscale science, the origins of the fascinating properties of materials at previously inaccessible size scales. A common thread through much of the material is the breakdown of the simplifying approximations that we have made in developing our physical models of macroscopic systems. I've also tried to indicate the underlying connections between some superficially disparate topics (e.g., band theory, coupled mechanical oscillators, and plasmons). Hopefully this approach allows students to develop an intuition for, and the ability to reason critically about, the nanoscale world. By focusing on the fundamentals rather than the latest research results (though those are mentioned when appropriate), I also hope that this text will stand the test of time, rather than appearing dated as soon as it is published. Of course, during the writing of this book, a number of other texts more or less in a similar or complementary spirit have appeared. These include Introduction to Nanoscale Science and Technology, edited by M. Di Ventra, S. Evoy, and J. R. Heflin, Jr. (Springer, 2004); and Introduction to Nanoscience by S. Lindsay (Oxford, 2009).

When teaching this material as a course or course sequence, I recommend supplementing the exercises with short-answer questions based on readings from the current literature. I had reasonable success assigning midterm and final papers. Whether they want careers in academia or industry, students need to become facile at writing, both short (one paragraph) responses to conceptual questions or questions about readings, and longer (5–10 page) essays that demonstrate analysis and critical thinking.

Many of the topics in this book deserve much more extensive treatment than what I have been able to provide. To compensate for the limitations necessitated by finite space, I have tried to give ample suggestions for further reading, including book-length treatments and review articles. Some areas, while extremely interesting, I decided were "too physicsy" for the intended broader audience. This is the reason for my extremely limited mention of both nanoscale superconductivity and the integer and fractional quantum Hall effects. I have similarly steered clear of quantum computing, a discipline certainly connected to

iх

CAMBRIDGE

х

Cambridge University Press & Assessment 978-0-521-87700-8 — Nanostructures and Nanotechnology Douglas Natelson Frontmatter More Information

Preface

nanoscale science and nanoelectronics, but just as certainly a distinct field. Likewise, some topics (e.g., the physical chemistry of catalysis at nanoparticle surfaces; the molecular biology of many biological motors) are far enough removed from my own expertise that I could not possibly treat them adequately. If you feel that your favorite nano topic gets short shrift, *mea culpa*. I have also done my best to cite explicitly in the text and in the "Suggested Reading" the many books and reference works that I consulted during the writing of this book. Truly, I would never have been able to put this together without the hard work of many authors before me. Any omissions or mistakes are my responsibility.

This book would never have been possible without the support and encouragement of many people and groups over the last several years. I would particularly like to acknow-ledge the Alfred P. Sloan Foundation, for their original sponsorship of a professional masters program that spurred the development of this course material. I also owe a debt to the National Science Foundation (specifically awards DMR-0347253, DMR-0855607, and DMR-1305879), whose educational mandate dovetailed perfectly with the opportunity to create these courses and this book. I hope this work has the educational broader impact that NSF is meant to encourage.

My colleagues within Rice University have been nothing but supportive, especially my former department chairman Professor Barry Dunning, my former dean Professor Kathy Matthews, my current chairman Professor Tom Killian, and my faculty colleagues within the Physics and Astronomy Department. I thank all the students, both in my research group and in the courses, that have helped me formulate my thinking about these subjects through their rigorous questions and insightful conversations. They are too numerous to mention, but I'm very appreciative of their insights. My father, Michael Natelson, and my faculty colleague Professor Rui-Rui Du deserve special gratitude for their time spent reading the manuscript. Finally, special thanks to my wife and sons, whose love and support have helped keep me sane during this whole process.