
CHAPTER 1

An Introduction to
Collections, Generics,
and the Timing Class

This book discusses the development and implementation of data structures
and algorithms using C#. The data structures we use in this book are found
in the .NET Framework class library System.Collections. In this chapter, we
develop the concept of a collection by first discussing the implementation of
our own Collection class (using the array as the basis of our implementation)
and then by covering the Collection classes in the .NET Framework.

An important addition to C# 2.0 is generics. Generics allow the C# pro-
grammer to write one version of a function, either independently or within a
class, without having to overload the function many times to allow for differ-
ent data types. C# 2.0 provides a special library, System.Collections.Generic,
that implements generics for several of the System.Collections data structures.
This chapter will introduce the reader to generic programming.

Finally, this chapter introduces a custom-built class, the Timing class, which
we will use in several chapters to measure the performance of a data structure
and/or algorithm. This class will take the place of Big O analysis, not because
Big O analysis isn’t important, but because this book takes a more practical
approach to the study of data structures and algorithms.

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org


2 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

COLLECTIONS DEFINED

A collection is a structured data type that stores data and provides operations
for adding data to the collection, removing data from the collection, updating
data in the collection, as well as operations for setting and returning the values
of different attributes of the collection.

Collections can be broken down into two types: linear and nonlinear. A
linear collection is a list of elements where one element follows the previous
element. Elements in a linear collection are normally ordered by position
(first, second, third, etc.). In the real world, a grocery list is a good example
of a linear collection; in the computer world (which is also real), an array is
designed as a linear collection.

Nonlinear collections hold elements that do not have positional order
within the collection. An organizational chart is an example of a nonlinear
collection, as is a rack of billiard balls. In the computer world, trees, heaps,
graphs, and sets are nonlinear collections.

Collections, be they linear or nonlinear, have a defined set of properties that
describe them and operations that can be performed on them. An example
of a collection property is the collections Count, which holds the number of
items in the collection. Collection operations, called methods, include Add
(for adding a new element to a collection), Insert (for adding a new element
to a collection at a specified index), Remove (for removing a specified element
from a collection), Clear (for removing all the elements from a collection),
Contains (for determining if a specified element is a member of a collec-
tion), and IndexOf (for determining the index of a specified element in a
collection).

COLLECTIONS DESCRIBED

Within the two major categories of collections are several subcategories.
Linear collections can be either direct access collections or sequential access
collections, whereas nonlinear collections can be either hierarchical or
grouped. This section describes each of these collection types.

Direct Access Collections

The most common example of a direct access collection is the array. We define
an array as a collection of elements with the same data type that are directly
accessed via an integer index, as illustrated in Figure 1.1.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org


Collections Described 3

Item ø Item 1 Item 2 Item 3 . . . Item j Item n−1

FIGURE 1.1. Array.

Arrays can be static so that the number of elements specified when the array
is declared is fixed for the length of the program, or they can be dynamic, where
the number of elements can be increased via the ReDim or ReDim Preserve
statements.

In C#, arrays are not only a built-in data type, they are also a class. Later
in this chapter, when we examine the use of arrays in more detail, we will
discuss how arrays are used as class objects.

We can use an array to store a linear collection. Adding new elements to an
array is easy since we simply place the new element in the first free position
at the rear of the array. Inserting an element into an array is not as easy (or
efficient), since we will have to move elements of the array down in order
to make room for the inserted element. Deleting an element from the end of
an array is also efficient, since we can simply remove the value from the last
element. Deleting an element in any other position is less efficient because,
just as with inserting, we will probably have to adjust many array elements
up one position to keep the elements in the array contiguous. We will discuss
these issues later in the chapter. The .NET Framework provides a specialized
array class, ArrayList, for making linear collection programming easier. We
will examine this class in Chapter 3.

Another type of direct access collection is the string. A string is a collection
of characters that can be accessed based on their index, in the same manner we
access the elements of an array. Strings are also implemented as class objects
in C#. The class includes a large set of methods for performing standard
operations on strings, such as concatenation, returning substrings, inserting
characters, removing characters, and so forth. We examine the String class in
Chapter 8.

C# strings are immutable, meaning once a string is initialized it cannot be
changed. When you modify a string, a copy of the string is created instead of
changing the original string. This behavior can lead to performance degrada-
tion in some cases, so the .NET Framework provides a StringBuilder class that
enables you to work with mutable strings. We’ll examine the StringBuilder in
Chapter 8 as well.

The final direct access collection type is the struct (also called structures
and records in other languages). A struct is a composite data type that holds
data that may consist of many different data types. For example, an employee

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org


4 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

record consists of employee’ name (a string), salary (an integer), identification
number (a string, or an integer), as well as other attributes. Since storing each
of these data values in separate variables could become confusing very easily,
the language provides the struct for storing data of this type.

A powerful addition to the C# struct is the ability to define methods for
performing operations stored on the data in a struct. This makes a struct
somewhat like a class, though you can’t inherit or derive a new type from
a structure. The following code demonstrates a simple use of a structure
in C#:

using System;

public struct Name {
private string fname, mname, lname;

public Name(string first, string middle, string last) {
fname = first;

mname = middle;

lname = last;

}
public string firstName {

get {
return fname;

}
set {

fname = firstName;

}
}
public string middleName {

get {
return mname;

}
set {

mname = middleName;

}
}
public string lastName {

get {

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org


Collections Described 5

return lname;

}
set {

lname = lastName;

}
}
public override string ToString() {

return (String.Format("{0} {1} {2}", fname, mname,

lname));

}
public string Initials() {
return(String.Format("{0}{1}{2}",fname.Substring(0,1),

mname.Substring(0,1), lname.Substring(0,1)));

}
}
public class NameTest {

static void Main() {
Name myName = new Name("Michael", "Mason", "McMillan");

string fullName, inits;

fullName = myName.ToString();

inits = myName.Initials();

Console.WriteLine("My name is {0}.", fullName);

Console.WriteLine("My initials are {0}.", inits);

}
}

Although many of the elements in the .NET environment are implemented as
classes (such as arrays and strings), several primary elements of the language
are implemented as structures, such as the numeric data types. The Integer
data type, for example, is implemented as the Int32 structure. One of the
methods you can use with Int32 is the Parse method for converting the string
representation of a number into an integer. Here’s an example:

using System;

public class IntStruct {
static void Main() {

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org


6 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

int num;

string snum;

Console.Write("Enter a number: ");

snum = Console.ReadLine();

num = Int32.Parse(snum);

Console.WriteLine(num);

}
}

Sequential Access Collections

A sequential access collection is a list that stores its elements in sequential
order. We call this type of collection a linear list. Linear lists are not limited
by size when they are created, meaning they are able to expand and contract
dynamically. Items in a linear list are not accessed directly; they are referenced
by their position, as shown in Figure 1.2. The first element of a linear list is
at the front of the list and the last element is at the rear of the list.

Because there is no direct access to the elements of a linear list, to access an
element you have to traverse through the list until you arrive at the position
of the element you are looking for. Linear list implementations usually allow
two methods for traversing a list—in one direction from front to rear, and
from both front to rear and rear to front.

A simple example of a linear list is a grocery list. The list is created by
writing down one item after another until the list is complete. The items are
removed from the list while shopping as each item is found.

Linear lists can be either ordered or unordered. An ordered list has values
in order in respect to each other, as in:

Beata Bernica David Frank Jennifer Mike Raymond Terrill

An unordered list consists of elements in any order. The order of a list makes
a big difference when performing searches on the data on the list, as you’ll see
in Chapter 2 when we explore the binary search algorithm versus a simple
linear search.

1st 2nd 3rd 4th nth. . .

Front Rear

FIGURE 1.2. Linear List.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org


Collections Described 7

Push

David

Raymond

Mike

Bernica Pop

David

Raymond

Mike

Bernica

FIGURE 1.3. Stack Operations.

Some types of linear lists restrict access to their data elements. Examples
of these types of lists are stacks and queues. A stack is a list where access is
restricted to the beginning (or top) of the list. Items are placed on the list
at the top and can only be removed from the top. For this reason, stacks are
known as Last-in, First-out structures. When we add an item to a stack, we
call the operation a push. When we remove an item from a stack, we call that
operation a pop. These two stack operations are shown in Figure 1.3.

The stack is a very common data structure, especially in computer systems
programming. Stacks are used for arithmetic expression evaluation and for
balancing symbols, among its many applications.

A queue is a list where items are added at the rear of the list and removed
from the front of the list. This type of list is known as a First-in, First-out struc-
ture. Adding an item to a queue is called an EnQueue, and removing an item
from a queue is called a Dequeue. Queue operations are shown in Figure 1.4.

Queues are used in both systems programming, for scheduling operating
system tasks, and for simulation studies. Queues make excellent structures
for simulating waiting lines in every conceivable retail situation. A special
type of queue, called a priority queue, allows the item in a queue with the
highest priority to be removed from the queue first. Priority queues can be
used to study the operations of a hospital emergency room, where patients
with heart trouble need to be attended to before a patient with a broken arm,
for example.

The last category of linear collections we’ll examine are called generalized
indexed collections. The first of these, called a hash table, stores a set of data

Mike

Raymond

David

Beata

Bernica

Beata

Mike

Raymond

David

Bernica

En Queue

De Queue

FIGURE 1.4. Queue Operations.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org


8 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

“Paul E. Spencer”

“Information Systems”

37500

5

FIGURE 1.5. A Record To Be Hashed.

values associated with a key. In a hash table, a special function, called a hash
function, takes one data value and transforms the value (called the key) into
an integer index that is used to retrieve the data. The index is then used to
access the data record associated with the key. For example, an employee
record may consist of a person’s name, his or her salary, the number of years
the employee has been with the company, and the department he or she works
in. This structure is shown in Figure 1.5. The key to this data record is the
employee’s name. C# has a class, called HashTable, for storing data in a hash
table. We explore this structure in Chapter 10.

Another generalized indexed collection is the dictionary. A dictionary is
made up of a series of key–value pairs, called associations. This structure
is analogous to a word dictionary, where a word is the key and the word’s
definition is the value associated with the key. The key is an index into the
value associated with the key. Dictionaries are often called associative arrays
because of this indexing scheme, though the index does not have to be an
integer. We will examine several Dictionary classes that are part of the .NET
Framework in Chapter 11.

Hierarchical Collections

Nonlinear collections are broken down into two major groups: hierarchical
collections and group collections. A hierarchical collection is a group of items
divided into levels. An item at one level can have successor items located at
the next lower level.

One common hierarchical collection is the tree. A tree collection looks like
an upside-down tree, with one data element as the root and the other data
values hanging below the root as leaves. The elements of a tree are called
nodes, and the elements that are below a particular node are called the node’s
children. A sample tree is shown in Figure 1.6.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org


Collections Described 9

Root

FIGURE 1.6. A Tree Collection.

Trees have applications in several different areas. The file systems of most
modern operating systems are designed as a tree collection, with one directory
as the root and other subdirectories as children of the root.

A binary tree is a special type of tree collection where each node has no
more than two children. A binary tree can become a binary search tree, making
searches for large amounts of data much more efficient. This is accomplished
by placing nodes in such a way that the path from the root to a node where
the data is stored is along the shortest path possible.

Yet another tree type, the heap, is organized so that the smallest data value
is always placed in the root node. The root node is removed during a deletion,
and insertions into and deletions from a heap always cause the heap to reor-
ganize so that the smallest value is placed in the root. Heaps are often used
for sorts, called a heap sort. Data elements stored in a heap can be kept sorted
by repeatedly deleting the root node and reorganizing the heap.

Several different varieties of trees are discussed in Chapter 12.

Group Collections

A nonlinear collection of items that are unordered is called a group. The three
major categories of group collections are sets, graphs, and networks.

A set is a collection of unordered data values where each value is unique.
The list of students in a class is an example of a set, as is, of course, the integers.
Operations that can be performed on sets include union and intersection. An
example of set operations is shown in Figure 1.7.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org


10 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

2 4

B

6

8 10 12

11 3

A A intersection B A union B

2

1 5 7 2 4 6

8 10 12

1 2 3

5 7 11

1 63
5 7 2

11

4
8 10

12

FIGURE 1.7. Set Collection Operations.

A graph is a set of nodes and a set of edges that connect the nodes. Graphs
are used to model situations where each of the nodes in a graph must be visited,
sometimes in a particular order, and the goal is to find the most efficient way
to “traverse” the graph. Graphs are used in logistics and job scheduling and
are well studied by computer scientists and mathematicians. You may have
heard of the “Traveling Salesman” problem. This is a particular type of graph
problem that involves determining which cities on a salesman’s route should
be traveled in order to most efficiently complete the route within the budget
allowed for travel. A sample graph of this problem is shown in Figure 1.8.

This problem is part of a family of problems known as NP-complete prob-
lems. This means that for large problems of this type, an exact solution is not
known. For example, to find the solution to the problem in Figure 1.8, 10
factorial tours, which equals 3,628,800 tours. If we expand the problem to
100 cities, we have to examine 100 factorial tours, which we currently cannot
do with current methods. An approximate solution must be found instead.

A network is a special type of graph where each of the edges is assigned a
weight. The weight is associated with a cost for using that edge to move from
one node to another. Figure 1.9 depicts a network of cities where the weights
are the miles between the cities (nodes).

We’ve now finished our tour of the different types of collections we are going
to discuss in this book. Now we’re ready to actually look at how collections

Rome
Washington

Moscow

LA

Tokyo

Seattle

Boston

New York

London

Paris

FIGURE 1.8. The Traveling Salesman Problem.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87691-9 - Data Structures and Algorithms Using C#
Michael McMillan
Excerpt
More information

http://www.cambridge.org/0521876915
http://www.cambridge.org
http://www.cambridge.org

