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Action principle in classical mechanics

1.1 Euler–Lagrange equations

In classical mechanics we are usually interested in solving the equations
of motion of a point particle under the action of some prescribed force.
A method for doing this in a systematic way is given by Newton’s equa-
tion F = ma, where F is the force applied, m is the mass, and a is the
acceleration.1 Since the force is often a function of time t and the position
x of the particle (it may also depend on velocity in some cases), and the
acceleration a is given in terms of the vector x specifying the position of
the particle by a = ẍ, Newton’s equations of motion result in a set of
ordinary differential equations for the path x(t) followed by the particle.
The motion is completely specified if we give the position x(t0) = x0 and
the velocity ẋ(t0) = v0 at some initial time t0. (Other conditions on the
path are also possible. For example, we might specify the location of the
particle at two different times.)

It is usually assumed that the path of the particle can be described by
regarding x as a vector in the Euclidean space R

D, and typically we are
interested in the case D = 3. The components of x may be chosen to be
the Cartesian coordinates of the curve x(t) that describes the motion of
the particle parameterized by the time t. However, the choice of Cartesian
coordinates is totally arbitrary, and any coordinates may be used.2 This
basic principle of relativity is used almost without comment all the time.
Two independent observers looking at the same particle under the action

1 Here and throughout boldfaced text will be used to denote a vector.
2 The physics of the situation must be independent of this arbitrary choice of coordi-

nates.
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2 Action principle in classical mechanics

of a given force and who adopt different choices of coordinates should
agree on the behaviour of the particle in any situation.3

We are often interested in a conservative force which can be derived
from a potential using F = −∇V . For such forces the work done on a
particle moving in the field of force between two points in space, x1 and
x2, is

Work(1 → 2) =
∫ x2

x1

F · dx = −(V2 − V1).

The work done is seen to depend only on the difference in potential
between the two endpoints of the path. If we assume Cartesian coordi-
nates, then Newton’s equation F = ma becomes

mẍ = −∇V (1.1)

when we use the definition of acceleration in terms of position, and write
the force in terms of the potential. If we take the dot product of both
sides of (1.1) with ẋ, we find

mẋ · ẍ = −ẋ · ∇V = − d

dt
V, (1.2)

if we assume for simplicity that the potential V has no explicit time
dependence. The result in (1.2) can be rearranged to read

d

dt

(
1
2
m ẋ · ẋ + V

)
= 0. (1.3)

The expression in braces in this last result may be identified as the total
energy of the particle. The two separate terms are

T =
1
2
mẋ · ẋ, (1.4)

giving the kinetic energy, and V giving the potential energy.
There is another way of formulating Newton’s laws which allows for a

generalization. Instead of forming the combination T + V , which repre-
sents the total energy, form

L = T − V, (1.5)

3 The motion of the moon does not depend on whether you live in London or in Oshawa,
or in how you choose to introduce a coordinate system to describe the motion.
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1.1 Euler–Lagrange equations 3

which is called the Lagrangian. L is regarded as a function of the coordi-
nates x and the velocities ẋ, which are treated as independent variables.
We have

L(x, ẋ) =
1
2
m

D∑
i=1

(ẋi)2 − V (x) (1.6)

if we use (1.4) with the dot product between the velocities written out
explicitly in terms of the components.4 It is now easy to see that because
x and ẋ are viewed as independent variables, we have

∂L

∂xi
= −∂V

∂xi

∂L

∂ẋi
= mẋi.

It therefore follows that

0 =
∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
(1.7)

for i = 1, . . . , D are completely equivalent to Newton’s equations of
motion. We call (1.7) the Euler–Lagrange equations.

It is worth describing what happens if Cartesian coordinates are not
used. First of all we would expect that the work done in moving a parti-
cle in a given force field should not depend on the choice of coordinates.
This is most easily achieved if the potential energy does not depend on
the coordinate choice. If we let q represent any set of coordinates, with
x being reserved for Cartesian coordinates, then we will require

V (x) = Ṽ (q). (1.8)

The tilde is necessary in this expression because the functional form of
the potential energy may be different for the new and the old coordinates.
For example, if x = (x, y) and we set q = (r, θ) with x = r cos θ and
y = r sin θ, then for V (x, y) = x2 + y2 we find x2 + y2 = r2 = Ṽ (r, θ).
Clearly, V (r, θ) = r2 + θ2 �= V (x, y). If V satisfies (1.8) it is said to be a
scalar function.

If we demand that the kinetic energy also be a scalar function of coor-
dinates, then we will be assured that the total energy will be a scalar,

4 We regard the components of the vector x in R
D as xi with i = 1, . . . , D.
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4 Action principle in classical mechanics

and hence independent of the arbitrary coordinate choice. In Cartesian
coordinates we have

T =
1
2
m

D∑
i=1

(ẋi)2

=
1
2
m

D∑
i=1

D∑
j=1

δijẋ
iẋj. (1.9)

Here δij is the Kronecker delta, defined to be equal to 1 if i = j and
equal to 0 if i �= j. We regard xi = xi(q), simply expressing the Cartesian
coordinates x in terms of the general coordinates q. The velocity becomes

ẋi =
d

dt
xi(q(t)) =

D∑
j=1

∂xi

∂qj
q̇j. (1.10)

(We have just used the chain rule for partial differentiation to obtain the
last equality here.) Substitution of this expression into the result in (1.9)
for the kinetic energy gives

T =
1
2
m

D∑
i=1

D∑
j=1

δij

(
D∑

k=1

∂xi

∂qk
q̇k

) (
D∑

l=1

∂xj

∂ql
q̇l

)

=
1
2
m

D∑
k=1

D∑
l=1

gkl(q)q̇kq̇l, (1.11)

where we have defined

gkl(q) =
D∑

i=1

D∑
j=1

δij
∂xi

∂qk

∂xj

∂ql
. (1.12)

gkl(q) is called the metric tensor, and will be familiar to students of
differential geometry. (See Laugwitz (1965) for example.)

Due to the proliferation of summation signs, it proves convenient to
adopt the Einstein summation convention: any repeated index is summed
over the appropriate range of values, in this case 1, 2, . . . , D. For example,
we would write

ẋi =
D∑

j=1

∂xi

∂qj
q̇j

as

ẋi =
∂xi

∂qj
q̇j
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1.2 Hamilton’s principle 5

using the Einstein summation convention. The understanding is that
because the index j occurs twice in

(
∂xi/∂qj

)
q̇j, it is summed over all

values 1, . . . , D.5 With this new notation we would then rewrite (1.11)
and (1.12) as

T =
1
2
m gkl(q)q̇kq̇l (1.13)

and

gkl(q) = δij
∂xi

∂qk

∂xj

∂ql
, (1.14)

respectively. Because the repeated indices are arbitrary labels in a sum-
mation they can be relabelled at will. This means, for example, that
gijq̇

iq̇j and gnmq̇nq̇m are both equivalent to gklq̇
kq̇l. The indices of sum-

mation are often referred to as dummy indices or dummy labels.

1.2 Hamilton’s principle

It is possible to reformulate classical mechanics in order to obtain the
Euler–Lagrange equations as a result of a principle of stationary action.
To do this we will define the action functional S[q(t)] as

S[q(t)] =
∫ t2

t1

dt L(qi(t), q̇i(t), t). (1.15)

Here L is the Lagrangian described in the previous section that, for gen-
erality, we allow to have an explicit dependence on time. We allow the
use of any coordinate choice here. The use of square brackets in this def-
inition is to symbolize that the action S is a functional, which can be
thought of as a function defined on a space of functions.6 Given some
path q(t), the action is just a real number. If P denotes the space of all
possible paths then we regard S : P → R. In contrast to normal functions,
the domain of a functional is an infinite dimensional space.7 Because of
the infinite dimensional nature of P, a rigorous treatment of functionals
involves some subtle concepts. In particular the notions of differentia-
tion and integration involve some thought. We will proceed in a heuristic
manner without full mathematical rigour, as is conventional in physics.

5 In contrast, the index i only occurs once in each term.
6 That is the domain of a functional is some space of functions. For the action the

domain is the space consisting of all possible particle paths for which the position of
the particle is given at the times t1 and t2.

7 Clearly there are an infinite number of paths connecting two points in space.
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6 Action principle in classical mechanics

Hamilton’s principle states that the actual motion of a particle whose
Lagrangian is L is such that the action functional is stationary (i.e.
assumes a maximum or a minimum value). In order to see that this prin-
ciple is correct we must show that requiring the action to be stationary
results in the Euler–Lagrange equations, and conversely that if we impose
the Euler–Lagrange equations then the action functional is stationary.
The technique for accomplishing this involves the calculus of variations.
We will look at what happens to the action functional when the path is
varied slightly. We are regarding the endpoints of the path as fixed here,
although other choices are possible. Let q(t1) = q1 and q(t2) = q2 be
the positions of the particle at the initial time t1 and the final time t2
respectively. Let q(t) be the classical path that the particle follows, and
let q̄(t) be any path with the same two endpoints as the classical path.
Now form the difference

δq(t) = q̄(t) − q(t), (1.16)

which represents the deviation of q̄(t) from the classical path. Because
both paths q̄(t) and q(t) have the same endpoints, the deviation between
the two paths δq(t) must vanish at the initial and final times: δq(t1) =
δq(t2) = 0. The situation is pictured in Fig. 1.1.

We are aiming to show that the action is stationary for the classical
path. One way to do this is to assume that the difference δq(t) is small
and show that the action is unchanged to first order in the small quantity
δq(t). Evaluating the action (1.15) using the arbitrary path q̄(t) we find

q 

i(t)
q 

i(t)

qi(t)

qi(t)

q 

i(t1)

q 

i(t2)

δq 

i(t)

δq 

i(t)

–

–

Fig. 1.1 This demonstrates the relationship between the classical path qi(t)
(shown as a solid line), the arbitrary path q̄i(t) (shown as a dashed line), and
the deviation, or difference, δqi(t). The endpoints are held fixed, so that the
difference δqi(t) vanishes at times t1 and t2.
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1.2 Hamilton’s principle 7

S[q̄(t)] =
∫ t2

t1

dt L(q̄i(t), ˙̄qi(t), t)

=
∫ t2

t1

dt L(qi(t) + δqi(t), q̇i(t) + δq̇i(t), t). (1.17)

The last equality has just used the definition in (1.16). The Lagrangian is
an ordinary function of qi(t) and q̇i(t), so may be expanded in an ordinary
Taylor series:

L
(
qi(t) + δqi(t), q̇i(t) + δq̇i(t), t

)
= L

(
qi(t), q̇i(t), t

)
+

∂L(qi(t), q̇i(t), t)
∂qi(t)

δqi(t) +
∂L(qi(t), q̇i(t), t)

∂q̇i(t)
δq̇i(t) + · · · . (1.18)

Note that the summation convention has been used here, and we have
only calculated terms in the expansion up to and including those linear
in δqi(t). There will be terms of quadratic and higher order in δqi in the
expansion (1.18), but we will not be concerned with them. Substitution
of (1.18) into (1.17) leads to

S[q̄(t)] = S[q(t)] +
∫ t2

t1

dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
+ · · · . (1.19)

The second term in the integrand of (1.19) can be rewritten using the
identity

∂L

∂q̇i
δq̇i =

d

dt

(
∂L

∂q̇i
δqi

)
− d

dt

(
∂L

∂q̇i

)
δqi.

This results in

S[q̄(t)] = S[q(t)] +
∫ t2

t1

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi +

∂L

∂q̇i
δqi

∣∣∣∣
t2

t1

+ · · · ,

if we perform the integration over the total time derivative. Because δqi

vanishes at t1 and t2, the last term in the line above disappears and we
are left with

S[q̄(t)] = S[q(t)] +
∫ t2

t1

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi, (1.20)

to first order in δqi. This is our main result.
If the Euler–Lagrange equations hold then (1.20) shows that S[q̄(t)] =

S[q(t)] demonstrating that the action is stationary. Conversely, if
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8 Action principle in classical mechanics

S[q̄(t)] = S[q(t)] then we must have the Euler–Lagrange equations hold-
ing.8 This has demonstrated Hamilton’s principle: The action is station-
ary if and only if the path satisfies the classical equation of motion. This
provides an elegant formulation of classical mechanics with the action
functional playing a key role.

1.3 Hamilton’s equations

For systems of the type considered in Section 1.1 the Euler–Lagrange
equations provide a set of second-order differential equations for the path.
With q ∈ R

D we have a set of D coupled equations. It is possible to
reformulate these equations as a set of 2D coupled first-order differential
equations, and this is the essential content of the Hamiltonian form of
classical mechanics, along with a physical interpretation of the procedure.

Define the momentum canonically conjugate to the coordinate qi by

pi =
∂L

∂q̇i
. (1.21)

pi is usually called just the canonical momentum. Note that for L given
by (1.6), p = mẋ is the normal definition for the momentum familiar
from elementary mechanics. The aim now is to eliminate the dependence
on the velocity components q̇i in favour of the components of canonical
momentum pi. This requires being able to solve the set of equations (1.21)
for q̇i in terms of qi and pi. The necessary and sufficient conditions for this
are given by the inverse function theorem which states that it is possible
to solve (1.21) for q̇i in terms of qi and pi if and only if det

(
∂pi/∂q̇j

) �= 0.
A heuristic way to see this is to look at a small variation of (1.21) with
qi held fixed:

δpi =
∂2L

∂q̇j∂q̇i
δq̇j =

∂pi

∂q̇j
δq̇j.

It is only possible to solve this for δq̇j if the matrix ∂pi

∂q̇j is invertible. A sys-
tem which has det

(
∂pi/∂q̇j

)
= 0 is called singular. We will see examples

of singular systems later. For now assume a non-singular system.
Given a non-singular system we can eliminate all dependence on q̇i by

a Legendre transformation:

H(q,p, t) = piq̇
i − L(q, q̇, t). (1.22)

8 Formally, if S[q̄(t)] = S[q(t)] the integral in (1.20) must vanish for arbitrary δqi(t).
We can take δqi(t) to be zero everywhere except for an arbitrary time in the interval
[t1, t2]; thus, the quantity in the integrand of (1.20) appearing in braces must vanish
for all times between t1 and t2.
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1.3 Hamilton’s equations 9

H is called the Hamiltonian, and as the notation in (1.22) suggests, it is
regarded as a function of the independent variables q and p, along with a
possible time dependence. The Hamiltonian equations are obtained from
considering the derivatives of the Hamiltonian with respect to pi and qi.
To compute the derivative with respect to pi we use (1.22) and note that
apart from the explicit dependence on pi in the first term, pi only enters
through q̇. This leads to (relabelling the dummy index i in (1.22) to j
before differentiating with respect to pi)

∂H

∂pi
= q̇i + pj

∂q̇j

∂pi
− ∂L

∂q̇j

∂q̇j

∂pi

= q̇i, (1.23)

if it is noted that the second and third terms in the first line cancel upon
use of (1.21). To compute the derivative of H with respect to qi we note
that q and p are the independent variables, and that qi enters q̇j through
(1.21). This leads to (again relabelling the dummy index i in (1.22) to j)

∂H

∂qi
= pj

∂q̇j

∂qi
− ∂L

∂qi
− ∂L

∂q̇j

∂q̇j

∂qi

= − ∂L

∂qi
(by (1.21))

= − d

dt

(
∂L

∂q̇i

)
(by (1.7))

= −ṗi, (1.24)

where the last line has followed by using (1.21) again. The results con-
tained in (1.23) and (1.24) are called Hamilton’s equations. They are seen
to consist of a set of first-order differential equations as promised.

Suppose that L takes the standard form

L =
1
2
m gij(q)q̇iq̇j − V (q),

considered in Section 1.1. We can compute pi from (1.21) to be

pi =
∂L

∂q̇i
= m gijq̇

j.

It is easy to invert this result using the inverse metric gij defined by

gijgjk = δi
k,
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10 Action principle in classical mechanics

with δi
k the Kronecker delta (i.e. δi

k is zero unless the indices i and k
are equal, in which case it has the value 1). This gives

q̇i =
1
m

gijpj.

The Hamiltonian is now computed from (1.22) to be

H =
1

2m
gijpipj + V (q), (1.25)

which may be recognized as the sum of the kinetic and potential energies.
The Hamiltonian in this case represents the total energy.

In Section 1.2 we showed how the Euler–Lagrange equations could be
viewed as a consequence of Hamilton’s principle of stationary action. The
action functional was defined in (1.15). It is possible to modify the prin-
ciple of stationary action so that Hamilton’s equations (1.23) and (1.24)
result. This can be done easily if we note that from (1.22) we have L =
piq̇

i − H. If this is substituted into (1.15) we obtain

S[q,p] =
∫ t2

t1

dt
{
piq̇

i − H(q,p, t)
}

, (1.26)

with the action now regarded as a functional of both q and p. We can now
think of the action as a functional of a path in phase space parameterized
by the independent coordinates and momenta. To see that Hamilton’s
equations result from Hamilton’s principle of stationary action, perform
a variation of (1.26) with independent variations δq and δp. This gives

δS =
∫ t2

t1

dt

(
δpiq̇

i + piδq̇
i − ∂H

∂pi
δpi − ∂H

∂qi
δqi

)
. (1.27)

If the second term of (1.27) is integrated by parts, and it is noted that
δqi vanishes at times t1 and t2 since the endpoints of the path are held
fixed, it is easily seen that

δS =
∫ t2

t1

dt

[(
q̇i − ∂H

∂pi

)
δpi −

(
ṗi +

∂H

∂qi

)
δqi

]
. (1.28)

This result is sufficient to show that Hamilton’s equations follow directly
from Hamilton’s principle of stationary action.

Of course the formalism of Hamiltonian dynamics can be developed
much further,9 and we will consider one line of development in the next

9 The interested reader should consult Goldstein (1950) or Lanczos (1971) for more
details.
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