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This is the textbook and reference resource that instructors, students, and researchers in

biomedical optics have been waiting for. Comprehensive and up-to-date, it covers a broad

range of areas in biomedical optics, from light interactions at the single-photon and

single-biomolecule levels, to the diffusion regime of light propagation in tissue.

Subjects covered include spectroscopic techniques (fluorescence, Raman, infrared,

near-infrared, and elastic scattering), imaging techniques (diffuse optical tomography,

photoacoustic imaging, several forms of modern microscopy, and optical coherence

tomography), and laser-tissue interactions, including optical tweezers.

Topics are developed from the fundamental principles of physical science, with

intuitive explanations, while rigorous mathematical formalisms of theoretical treatments

are also provided.

For each technique, descriptions of relevant instrumentation and examples of

biomedical applications are outlined, and each chapter benefits from references and

suggested resources for further reading, and exercise problems with answers to selected

problems.

Irving Bigio is Professor of Biomedical Engineering and Electrical Engineering at Boston

University. His research activities address the interactions of light with cellular and tissue

structures on the microscopic and mesoscopic scales. He pioneered methods of elastic

scattering spectroscopy and has developed practical diagnostic and sensing applications

that have been demonstrated in large clinical studies. He has co-authored over two

hundred scientific publications and is an inventor on nine patents. Trained in optical

physics, he gains satisfaction from explaining the fundamentals of complex phenomena in

biomedical optics on an intuitive level. He believes that historical developments in physics

theory and artistic expression have influenced each other, leading to parallels between the

concepts of physical science and the movements in art. He is convinced that Vincent Van

Gogh understood the scattering of starlight by interstellar dust (and was aware of spiral

galaxies), as evidenced by Starry Night. He is also convinced that the medical field will

finally “discover” the benefits of various clinical applications of biomedical optics.

Sergio Fantini is Professor of Biomedical Engineering and Electrical & Computer

Engineering at Tufts University. His research interests in biomedical optics are in the area

of diffuse spectroscopy and imaging of biological tissue. He contributed to the

development of quantitative frequency-domain methods for absolute tissue oximetry,

spectral imaging approaches to optical mammography, and the assessment of cerebral

hemodynamics in the human brain. He has co-authored about two hundred scientific

publications and is an inventor on 11 patents. He thinks that Falstaff and Otello, by Verdi

and Boito with due credit to Shakespeare, and Beethoven’s Opus 131 are among the

greatest expressions of the human mind. He is still waiting to witness Fiorentina win the

title in the Italian Serie A. While waiting, he is performing translational research aimed at

developing quantitative diffuse optical methods for clinical applications.
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“Bigio and Fantini provide a long-needed introduction to the field of biomedical optics

and biophotonics, adding spice to the presentation of the basics with historical and

etymological gems. The conversational tone of the book is very welcome, and allows

room for the clear explanation of subtleties not always clarified in other discussions. The

book is a wonderful introduction to the field. It balances rigor with readability. Bravo!”

Steven L. Jacques, Oregon Health & Science University

“This book about biomedical optics provides a remarkably comprehensive introduction

to the field. The text is carefully and affectionately developed with quantitative rigor,

and it is written in a clear, easy-to-understand style that helps students develop intuition.

The subject matter covers basics of linear and nonlinear optical spectroscopy, static and

dynamic light scattering and more advanced topics such as light transport through highly

scattering tissues, acousto-optics and opto-acoustics, and imaging from microscopy to

tomography. The book should prove useful as a textbook for courses targeting both

advanced undergraduates and graduate students in science, engineering, and medicine.

It will also be a valuable reference for researchers working at the frontiers of knowledge.”

Arjun G. Yodh, University of Pennsylvania

“Bigio and Fantini’s comprehensive text on Biomedical Optics provides a wonderful

blend of accessible theory and practical guidance relevant to the design and application

of biomedical optical systems. It should be required reading for all graduate students

working in this area.”

Rebecca Richards-Kortum, Rice University
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Preface

A textbook for a new field based on old concepts

Biomedical optics is a field that is both new and ancient. From the vantage point of

the natural sciences and engineering, this is a newly developing interdisciplinary

field, dealing with the application of optical science and technology to biological

and biomedical problems, including clinical applications. On the other hand, the

field has been around for thousands of years in a less quantitative way. Physicians’

eyes have served as optical spectrographs and sensors, with the brain serving as a

database repository and providing the computational power (of a massively parallel

computer) for pattern recognition. For example, physicians have known for a long

time that a Caucasian patient with yellowing of the skin (or of the sclera of the eye)

is likely to be suffering from liver disease. If the patient is flushed red, he/she might

be running a fever, and if a local tissue area appears flushed and red, an inflam-

mation is indicated; and the bluish appearance of a patient’s lips and nail beds

might be indicative of hypoxia. Now that the modern approach has become more

quantitative and is developing new technologies, however, the field is growing and

beginning to have a major impact on bioscience and healthcare. The emerging

field combines the observational with the mathematical and computational, ben-

efits from recent advances in optical technologies, and is coupled with a more

rigorous physical-science approach that seeks to understand the basic underlying

principles.

This textbook provides a broad survey of the field and covers the basics of

a quantitative approach to the subtopics, taking advantage of the powerful tools

offered by mathematics, physics and engineering. This quantitative approach and

the didactic style, coupled with the description of representative applications and

problem sets that accompany each chapter, are designed to serve the needs of

students and professionals in engineering and the physical sciences. Students of

the biological sciences will also find the text useful, especially if they have a good

mathematical background. The basic material about general concepts and methods

that are directly relevant to biomedical optics, including some topics of medical

statistics, are described at an introductory level, whereas selected topics are covered
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xxii Preface

in greater depth and treated at a more advanced level. Consequently, by proper

selection of the material, this textbook can be used for upper-level undergraduate

courses, as well as more advanced graduate-level courses on biomedical optics.

The coverage of this book is broader than that of other currently available texts in

the field, teaching a broader range of topics under the umbrella of biomedical optics

and explaining the interrelationships among them. It also emphasizes aspects in

all three areas of theory, instrumentation, and biomedical applications to provide

a comprehensive view of each biomedical optics technique that is presented. As

a result of its broad coverage, the book can also serve as a reference resource for

researchers in biomedical optics. Although the survey is broad, it is by no means

exhaustive. Some topics have been bypassed, mainly because they pertain to areas

that have not yet developed to the point that they are based on a mathematical

formalism or a clear understanding of the physical principles. This book also

leaves to others the general field of photonic biosensors, which is broad enough to

merit a textbook of its own.

Is it biomedical optics or biophotonics?

One might ask the simplest of questions: what is the proper name for the field,

biomedical optics or biophotonics? The question may be tackled from an etymo-

logical point of view by recognizing that the Greek word “ο�����́” (optiki) is

associated with vision while the Greek word “��� ó��ο” (fotonio) is associated

with light. This seems to suggest that biophotonics may be a more appropriate

term for a field in which light is used to interrogate biological systems and to

interact with them. One should recognize, however, that the word optics has been

traditionally used to describe the science of light, which only during the twen-

tieth century was recognized to consist of quanta for which the word photons

was coined. Therefore, biomedical optics conjures up the more classical elements

of lenses, fiber optics, lasers (not so classical) and, perhaps, ophthalmic applica-

tions, whereas biophotonics might appear to speak to the quantum-mechanical or

statistical nature of light and its interaction with biological tissue. If electronics

refers to the generation, manipulation and detection of electrons, then, by analogy,

photonics refers to the generation, control and detection of photons, the quantum

units of light.

It is arguable that optics and photonics speak to the wave-like and particle-like

nature of light, respectively. Although a debate of sorts had been ongoing since the

days of Newton as to the true nature of light, modern physicists explain that the

two are intertwined (if not entangled!) and the distinction is more philosophical.

Historically, the mathematical and physics tools of both approaches have been
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xxiii Preface

shown to produce the same results, in most cases, when describing the same

phenomena. An instructive view of the matter can be gained from examining how

the language of physics itself varies with the frequency (or wavelength) when

describing electromagnetic radiation. For low frequencies, such as radio waves,

the wave nature completely dominates and enables explanation of all phenomena

of interest, given that the photon energy is extremely low (<10−4 eV), and a

detected radio-wave field is composed of a large number of photons. At very high

frequencies, as with “hard” X-rays or � -radiation, the photon energy is much larger

(>104 eV), and formalisms for interactions focus on the photonic nature of the field

(with the exception of the methods for X-ray crystallography). The intersection

of the two regimes happens in the range centered on visible light (characterized

by photon energies of 1.6–3.1 eV) where both the photoelectric effect and the

wave-nature of light are important.

In this textbook, we utilize whichever approach is simpler and more intuitive

for understanding a specific concept. Thus, it is easier to think of the wave-nature

of light when explaining, for example, the interference effects relevant to optical

coherence tomography, whereas it is conceptually simpler to think of photons as

particles when describing the random diffusion of photons (also referred to as

photon migration) in densely scattering media, such as most biological tissues.

In the end, we have chosen the word Optics in the title of this book, perhaps

because one speaks more naturally about, say, “optical diagnostics” or “optical

microscopy” or “optical fibers,” rather than “photonic diagnostics” or “photonic

microscopy” or “photonic fibers.”

Why is the field of biomedical optics important?

The dramatic growth of the field in recent years is a consequence of the realization

that optical methods offer the potential to have a significant impact on the broad

field of health care, and also to provide novel tools for an increasingly quantitative

approach to biology. When used for measurement and diagnostic purposes in

living systems, light is, under most circumstances, essentially noninvasive. Thus,

for biomedical applications there is a growing list of distinct advantages:

� Light (at visible and near-infrared wavelengths) is non-ionizing radiation, and

at sub-thermal levels has no cumulative effect on tissue.
� Light can be used to reveal much about tissue that cannot be determined by

other imaging or sensing modalities.
� Light can travel farther into tissue than one might think. Although scattering

is strong, near-infrared light is only weakly absorbed in tissue, and can diffuse
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across several centimeters of tissue, enabling, for example, imaging and sensing

of structures and function in solid organs, such as skeletal muscles, breast or

brain.
� Optical fibers can be used to deliver and collect light, permitting access to

remote sites within the body, mediated by endoscopes, catheters or needles.
� Properties of tissue that are not commonly or readily monitored in real time

can be measured with light, enabling new types of diagnostic measurements,

e.g., blood oxygenation without drawing blood, cellular nucleus size, etc.
� Optical imaging typically features high temporal resolution, down to the mil-

lisecond range.
� The spatial resolution of optical imaging techniques scales with the penetration

depth, from sub-micron in microscopy applications at depths up to �100 �m, to

several millimeters for diffuse optical imaging at depths of centimeters in tissue.

Importantly, throughout the range, optical methods offer functional information

not available with other imaging modalities.
� New methods of therapy can be accomplished with light, enabling new ways to

treat diseases or repair problems in tissue. The use of light enables interactions to

be highly specific as a consequence of wavelength selectivity, spatial selectivity

(with tight focusing), temporal selectivity (with ultrashort laser pulses), or

cellular and molecular selectivity (with molecular targeting agents).

In short, biomedical optics is ideally suited to serve the trend of modern clinical

medicine: the development of noninvasive or minimally invasive diagnostics and

therapeutics. It also opens new avenues for biomedical research at the cellular and

molecular levels.

Physical modeling in quantitative biomedical optics

In the field of physics, the expression “simplicity is elegance” has been passed

down as gospel since Albert Einstein’s time. The elegance of simple physical mod-

els, however, does not always go hand in hand with the complexity of biological

systems. Figure 0.1(a) shows an elegantly simple physicist’s view of a chicken, in

the spirit of the old joke: “a physicist postulates a chicken as a sphere of uniform

density.” The chicken is represented in a less simple and more realistic form in

Figure 0.1(b). Of course, the simple chicken model of Figure 0.1(a) is far from

representative of the complexity of a real chicken, which, some might argue, is

more closely represented by the more sophisticated and more complex model of

Figure 0.1(b). The question that must often be tackled in quantitative biomed-

ical optics is whether the added complexity of more sophisticated models and
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(a) (b) 

Figure 0.1

(a) An overly simplified view of a chicken; (b) a more sophisticated and complex representation of a

chicken. Is it always better to use a more complex model for a biological system? This is a key

question in quantitative biomedical optics. (Figure 0.1(b) courtesy of Cliparts.co, http://cliparts.co/

clipart/186502.)

treatments is really required by the specific application in hand, and whether it

truly teaches more about reality. For example, if one needs to discriminate a chicken

from a giraffe, the simple representation of Figure 0.1(a) might be adequate (assum-

ing a physicist would postulate a giraffe as a long cylinder of uniform density!),

but it would not be adequate to model shape variations that would distinguish a hen

from a rooster, for which the more sophisticated model of Figure 0.1(b) may be

necessary. Given the complexity of biological systems, finding a good compromise

between the simplicity of physical models and their appropriate representation of

the biological parameters of interest is a critical objective to be achieved in quan-

titative biomedical optics. In writing this book, we have endeavored to strike the

right balance, so that the basic physical principles can be understood, while useful

quantitative results can be obtained from their application.

Organization of the book

We have strived to present the broad range of topics covered in this book in

a consolidated way. We have cross-referenced material from different chapters

every time ideas presented in one area had relevance or implications in other

areas. We have also used consistent symbols and notations, and we have paid

particular attention to the physical dimensions and associated units. For example,

even though the scattering phase function (p) is dimensionless, by expressing it

in units of sr−1 one immediately appreciates its meaning of a probability per unit

solid angle. This also results in its discrimination from the scattering probability
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per unit scattering angle (indicated in this text as p�), when the latter is expressed

in units of rad−1. As another example, we have explicitly discussed the units of

diffuse reflectance and their implications in understanding its physical meaning.

In our descriptions and derivations, our goal is to provide a clear presentation

of the basic principles and their implications, and we have included references in

the bibliographic sections of each chapter to direct the interested reader to more

advanced material or in-depth treatments. For example, we have not presented the

solutions to the diffusion equation in a variety of tissue geometries (slab, sphere,

cylinder, etc.); rather, we have focused on the two ideal cases of infinite and

semi-infinite media, to introduce and discuss the basic parameters in play, their

interdependence, and the roles they play in optical measurements in the diffusion

regime. Our aim is to strike a good balance between presenting the material in

a comprehensive, rigorous, and quantitative fashion, while keeping a descriptive

tone with intuitive explanations and illustrative examples.

The chapters of this book are arranged in the following four groupings:

I. Chapters 1–4. These provide the broad underpinnings for the field.

Chapter 1 defines the nomenclature that we adopt for this book, includ-

ing the symbols and units, along with the rationale for many of the choices.

Chapter 2 provides a broad overview of the optical properties of biological

tissues, and introduces the constituents that contribute to those properties.

The quantitative formalisms for representing those optical properties are also

presented. Chapter 3 teaches the basics of biomedical statistics, in the lan-

guage of probability theory, especially as applied to diagnostic tests that may

be the translational goal of many of the technologies described in this book.

Chapter 4 is an overview of the basics of optical spectroscopy, including

a comparison of the merits of different types of spectroscopy as applied to

tissue diagnostics; also included are overviews of the optical-science basics

of instrumentation for tissue spectroscopy and of optical fibers.

II. Chapter 5–8. These chapters present in-depth developments of four

classes of tissue spectroscopy, predominantly related to superficial

measurements or measurements in the sub-diffuse regime. Chapter 5

covers fluorescence spectroscopy and imaging, starting with the molecu-

lar physics of fluorescence, followed by listings of the important endogenous

fluorophores and exogenous reporter fluorophores. Then, instrumentation

and methods are described, including methods for fluorescence lifetime and

polarization measurements. Chapter 6 covers spectroscopic methods for mea-

surement of vibrational modes of biomolecules, starting with the molecular

physics concepts of vibrational transitions, followed by discussions of IR-

absorption spectroscopy and Raman scattering spectroscopy. Chapter 7
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teaches the physics of scattering by single dielectric particles, including

Mie theory, and lays the groundwork for measurements of elastic scattering;

also covered are dynamic light scattering from single particles and Doppler

flowmetry. Chapter 8 extends the principles established in Chapter 7 to mea-

surements of multiply scattered light in the sub-diffuse regime, and the

extraction of tissue optical properties from measurements at short source-

detector distances.

III. Chapters 9–15. These chapters cover the theoretical formalisms and a

range of measurement methods for light transport in the diffuse regime.

Chapter 9 introduces the Boltzmann transport equation and derives its best-

known approximations, including the diffusion equation in various forms

and the constraints of boundary conditions. Chapter 10 teaches the basics

and formalisms of continuous-wave tissue spectroscopy, with special atten-

tion to applications in the diffusion regime. Chapter 11 presents formalism

and methods of time-domain spectroscopy in the diffusion regime, with a

special emphasis on the features of the photon time-of-flight distribution.

Chapter 12 formulates the frequency-domain spectroscopy method in the

diffusion regime, including a detailed development of the concept of photon-

density waves. Chapter 13 presents a broad overview of the types of

instrumentation and experimental methods for diffuse tissue spectroscopy.

Chapter 14 focuses on methods of optical imaging in the diffusion regime,

and covers a broad array of parameter sensitivities and methods for solution

of the inverse imaging problem. Chapter 15 concludes this grouping by pre-

senting several exemplary areas of applications of diffuse optical methods,

for both clinical and pre-clinical use.

IV. Chapters 16–19. These chapters cover methods of higher-resolution imag-

ing in tissue and several advantageous areas of laser-tissue interactions.

Chapter 16 introduces the basic concepts of acousto-optic and opto-acoustic

methods for imaging at various length-scales based on the interaction or com-

bination of ultrasound and light in tissue. Chapter 17 starts with the basics of a

classical compound microscope, then teaches the basics of several classes of

modern optical microscopy that are important in biomedical science, and con-

cludes with recent developments of super-resolution microscopy. Chapter 18

introduces the fundamentals of optical coherence tomography, implemented

with both time-domain and frequency-domain methods, and includes some

practical considerations and applications. Finally, Chapter 19 overviews

the fundamentals of optical tweezers, with related instrumentation and

applications, and presents a survey of the more practical types of laser-

tissue interactions from sub-thermal tissue treatments to microsurgical

techniques.
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