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1. Statistical Models

1.1 Introduction

In this chapter, we review the usual statistical terminology that introduces the
fundamental notions of sample, parameters, statistical model, and likelihood
function. Our presentation avoids all technical developments of probability
theory, which are not strictly necessary in this book. For example, σ-fields (or
σ-algebras) are not introduced, nor are measurability conditions. The mathe-
matical rigor of the exposition is necessarily weakened by this choice, but our
aim is to focus the interest of the reader on purely statistical concepts.

It is expected that the reader knows the usual concepts of probability as well
as the most common probability distributions and we refer to various reference
books on this theme in the bibliographic notes.

At the end of this chapter, we emphasize conditional models, whose impor-
tance is fundamental in econometrics, and we introduce important concepts
such as identification and exogeneity.

1.2 Sample, Parameters, and Sampling Probability Distributions

A statistical model is usually defined as a triplet consisting of a sample space,
a parametric space and a family of sampling probability distributions.

We denote by x the realization of a sample. It is always assumed that x is
equal to a finite sequence (xi )i=1,...,n where n is the sample size and xi is the
i th observation. We limit ourselves to the case where xi is a vector of m real
numbers (possibly integers) belonging to a subset X of R

m . Hence, the sample
space is Xn ⊂ R

mn. The index i of the observations may have various meanings:

� i may index a set of individuals (households, firms, areas. . . ) observed at a
given instant. These data are referred to as cross-sectional data.

� i may describe a set of periods. Then, the observations xi form a time series
(multidimensional if m > 1).

3
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4 Econometric Modeling and Inference

� i may belong to a more complex set and be, for instance, equal to a pair
(�, t) where � represents an individual and t an observation time. Then,
the observations xi = x�t are double indexed and are called panel data or
longitudinal data.

As the sample space Xn is always assumed to belong to R
nm , it is associated

with a Borel field, on which some probability will be defined.
The parameter space is denoted as � and an element of this space is usually

denoted θ . The parameters are unknown elements of the statistical problem, the
observations provide information about these elements. Two kinds of statistical
models can be defined depending on the dimension of �:

� If � ⊂ R
k where k is a finite integer, the statistical model is said to be

parametric or a model with vector parameters.
� If � is not finite dimensional but contains a function space, the model is

said to be nonparametric or a model with functional parameters. In some
examples, although � is infinite dimensional, there exists a function λ of θ

which is finite dimensional. Then, the model is called semiparametric.

In the following, a parameter will be an element of �, whether the dimension
of this space is finite or infinite.

The third building block of a statistical model is the family of sampling
probability distributions. They will be denoted Pθ

n and therefore, for all θ ∈ �,

Pθ
n is the probability distribution on the sample space Xn . If the model is

correctly specified, we assume that the available observations (x1, . . . , xn) are
generated by a random process described by one of the sampling probability
distributions.

We summarize these concepts in the following definition.

Definition 1.1 A statistical model Mn is defined by the triplet

Mn = {
Xn, �, Pθ

n

}
where Xn ⊂ R

nm is the sample space of dimension n, � is a parameter space
and Pθ

n is the family of sampling probability distributions. �

We use the notation

x |θ ∼ Pθ
n (1.1)

to summarize “x is distributed according to the distribution Pθ
n if the param-

eter value equals θ”. Equivalently, we say that x follows the distribution Pθ
n

conditionally on θ. Hence, we incorporate the dependence on a parameter in a
probabilistic conditioning (which would necessitate, to be rigorous, regularity
assumptions not examined here).
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Statistical Models 5

Example 1.1 (Unidimensional normal model) Suppose that m = 1 and
x ∈ R

n. Here, the parameter vector is θ = (µ, σ 2) ∈ � = R × (0, +∞).
Moreover,

x |µ, σ 2 ∼ Nn

(
µ1n, σ

2 In

)
where 1n is a vector of R

n whose elements are all equal to 1 and In is the iden-
tity matrix of size n. The notation Nn represents the multidimensional normal
distribution of dimension n, but often we will drop the subscript n. �

Example 1.2 (Binomial model) Let m = 1 and x ∈ R
n with xi ∈ {0, 1} ⊂ R

for all i = 1, . . . , n. The parameter θ is now an element of � = [0, 1]. The
probability of a vector x given θ is then:

Pθ
n ({x}) =

n∏
i=1

θ xi (1 − θ )1−xi .

It follows from this expression that, if k = ∑n
i=1 xi ,

Pθ
n (k) = Ck

nθ k (1 − θ )n−k . �

The aim of statistical inference is essentially the acquisition of knowledge
on the distribution that generates the data or on the parameter θ that character-
izes this distribution. In order to relate these two notions, we suppose that the
statistical model is identified. This property is defined below.

Definition 1.2 The model Mn is identified if, for any pair of (vectorial or
functional) parameters θ1 and θ2 of �, the equality Pθ1

n = Pθ2
n implies θ1 = θ2.

In other words, the model is identified if the sampling probability distributions
define an injective mapping of the elements of �. �

We will spend more time on this concept in the sequel, in particular in Chap-
ter 16. Examples 1.1 and 1.2 define two identified models. The following model
illustrates the lack of identification.

Example 1.3 Suppose m = 1 and x ∈ R
n with θ = (α, β) ∈ R

2 = �. The
sampling probability distributions satisfy

x |θ ∼ Nn ((α + β) 1n, In) .

The model is not identified because θ1 = (α1, β1) and θ2 = (α2, β2) define the
same distribution as long as α1 + β1 = α2 + β2, which does not imply θ1 = θ2.

�

Given a realization x of a sample of size n, the econometrician will try to
estimate θ , that is, to associate with x a value θ̂ (x) (or θ̂n (x)) of θ , or to perform
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6 Econometric Modeling and Inference

hypothesis testing, that is, to answer positively or negatively to the question
whether θ belongs to a given subset of �. The estimation of θ can then serve
to forecast new realizations of the sampling process.

In a stylized way, the statistical model empirically translates an economic
theory by maintaining some assumptions through the choice of the family of
sampling probability distributions. The observations do not lead to reconsider-
ing the choice of the parameter space; instead they permit us to determine the
parameter value. This vision is a bit simplistic because recent procedures have
been developed to reject or validate a model as a whole, to choose between
models, and to determine a model from observations.

The statistical models described here pertain to so-called reduced forms. The
economic theory describes the complex behaviors of agents, the equilibrium
relationship between these behaviors, and the link between relevant economic
measures and the observable measures. It is assumed that this set of relation-
ships is solved in order to describe the law of the data. The last part of this book,
in particular Chapters 16 and 17, will detail the essential elements of this con-
struction, whereas the first parts suppose that this task of statistical translation
of the economic theory has been done.

The vector x is alternatively called data, observations, or sample. The two
last terms refer implicitly to different learning schemes; the first one evokes a
process of passive acquisition of data (macroeconomic data), whereas the sec-
ond one refers to a partial or total control of the data collection procedure (poll,
stratified survey, experiments). Again, these distinctions will not be exploited
until the last part of this book.

Similarly, we will not discuss the choice of random formalization, which is
now standard. The stochastic nature of the way observations are generated can
be interpreted in various manners, either as a measurement error or an error
resulting from missing variables, for instance. Moreover, the economic theory
has recently provided constructions that are random per se (for instance, models
describing the solution of games with imperfect information) and which we will
discuss in the presentation of structural models.

1.3 Independent and Identically Distributed Models

Independent and identically distributed models (i.i.d.) constitute the basic struc-
ture of statistical inference. Basically, they describe the arrival of a sequence of
observations that are generated by the same probability distribution, indepen-
dently from each other. These models do not provide a sufficient tool for the
econometrician who exploits individual observations (and hence generated by
different distributions dependent on the individual characteristics) or time series
(and hence generally dependent from one another), but they play a fundamental
role in the study of statistical procedures.
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Statistical Models 7

Definition 1.3 The model Mn = {Xn, �, Pθ
n } is i.i.d. if

a) The observations x1, . . . , xn are independent in terms of the distribution
Pθ

n for all θ (denoted ⊥⊥n
i=1xi |θ ).

b) The observations x1, . . . , xn have the same distribution denoted Qθ , so
that Pθ

n = [Qθ ]⊗n. �

Example 1.4 The model defined in Example 1.1 is i.i.d. and Qθ is the normal
distribution with mean µ and variance σ 2. This example permits us to define a
new notation:

⊥⊥n
i=1xi |θ

xi |θ ∼ N 
(
µ, σ 2

) ∀i

θ = (
µ, σ 2

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇐⇒ xi |θ ∼ i.i.N .

(
µ, σ 2

)
.

�

Example 1.5 Example 1.2 is again an i.i.d. model satisfying:

⊥⊥n
i=1xi |θ and xi |θ ∼ B (θ ) ∀i,

where B (θ ) denotes the Bernoulli random variable, which equals 1 and 0 with
probabilities θ and (1 − θ ) respectively. �

Consider now some counterexamples of i.i.d. models.

Example 1.6 Suppose that θ ∈ R
n and xi ∈ R with

⊥⊥n
i=1xi |θ and xi |θ ∼ N (θi , 1) .

The random variables xi are independent but their distributions differ. �

Example 1.7 Suppose that λ = (a, ξ, σ 2) ∈ R
2 × R

+
∗ and that the sample is

i.i.d. conditionally on λ such that

⊥⊥n
i=1xi |λ and xi |λ ∼ N

(
a + ξ, σ 2

)
.

Now, suppose ξ is an unobservable random variable generated by a normal
distribution with mean 0 and variance 1. Then, the parameter of interest is
θ = (a, σ 2). We integrate out ξ to obtain the distribution of the sample condi-
tional on θ . It follows that

x |θ ∼ N (a, V ) with V = σ 2 In + 1n1′
n.
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8 Econometric Modeling and Inference

Then, the observations xi have the same marginal distributions but are not
independent. Moreover, the distribution of x is not modified if one permutes the
order of the xi . In this case, the distribution is said to be exchangeable. �

This example, based on the presence of an unobservable variable, will also
be detailed in the last part of this book.

An important example of an i.i.d. model is provided by the following non-
parametric model.

Example 1.8 The sample x = (x1, . . . , xn), xi ∈ R
m, is i.i.d. and each xi is

generated by an unknown distribution Q. This model is denoted as

⊥⊥n
i=1xi |Q and xi |Q ∼ Q.

Here, the parameter θ is equal to Q. It is a functional parameter belonging to the
family Pm of distributions on R

m. We could modify this example by restricting Q
(for example, Q could have zero mean or could satisfy some symmetry condition
resulting in zero third moment). �

1.4 Dominated Models, Likelihood Function

The statistical model Mn = {Xn, �, Pθ
n } is dominated if the sampling proba-

bility distributions can be characterized by their density functions with respect
to the same dominating measure. In a large number of cases, this dominating
measure is Lebesgue measure on Xn (included in Rnm) and the dominance
property means that there exists a function �(x |θ ) such that

Pθ
n (S) =

∫
S
�(x |θ )dx S ⊂ Xn.

Example 1.9 Return to Example 1.1. The model is dominated and we have

�n (x |θ ) = (2π )− 
n
2 σ−n exp − 1

2σ 2
(x − µ1n)′ (x − µ1n) . �

The definition of dominance by Lebesgue measure is insufficient because it
does not cover in particular the models with discrete sampling space. In such
cases, we usually refer to the dominance by the counting measure. If X is discrete
(for example X = {0, 1}), the counting measure associates all sets of X with
the number of their elements. A probability distribution on X is characterized
by the probability of the points x ; these probabilities can be considered as the
density function with respect to the counting measure.
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Statistical Models 9

Example 1.10 In Example 1.2, we have

Pθ
n ({x}) = �n(x |θ ) =

n∏
i=1

θ xi (1 − θ )1−xi . �

Definition 1.4 A model Mn = {Xn, �, Pθ
n } is said to be dominated if there

exists a measure ν on X (independent of θ ) such that there exists �(x |θ )
satisfying

∀θ ∈ � Pθ
n (S) =

∫
S
�n (x |θ )ν(dx). (1.2)

The function �n of X × � in R+ is called density (function) of the observations
or likelihood function depending on whether it is considered as a function of x
for a fixed θ or as a function of θ for a fixed x. �

The dominance property is actually related to the dimension of the statistical
model. If the family Pθ

n is finite, that is if � is finite in the identified case, the
model is always dominated by the probability 1

n

∑
θ∈� P

θ
n . This property is not

true if � is infinite dimensional: the nonparametric model of Example 1.8 is
not dominated. A parametric model (in the sense of a finite dimensional �) is
not always dominated as shown by the following example.

Example 1.11 Let n = 1, X = [0, 1] and � = [0, 1]. Let

Pθ
1 = δθ

where δθ is the Dirac measure at θ defined by the property

δθ (S) =
∣∣∣∣∣ 1 if θ ∈ S

0 if θ /∈ S.

We also use the notation

δθ (S) = 1I(θ ∈ S),

where the function 1I(.) equals 1 if the condition in parentheses is true and 0
otherwise. This model is not dominated but the proof of this result requires more
advanced measure theory than we wish to use here. �

The dominance property is particularly useful in i.i.d. models. Suppose that
Mn = {Xn, �, Pθ

n } is i.i.d. and that each observation is generated by the prob-
ability distribution, Qθ . If Qθ is dominated and admits a density f (xi |θ ), the
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10 Econometric Modeling and Inference

independence and the identity of distributions imply that Mn is dominated and
that the density of the observations can be written as

�n(x |θ ) =
n∏

i=1

f (xi |θ ). (1.3)

The logarithm of the likelihood function plays an important role, it is also called
log-likelihood and is defined as

Ln(x, θ ) = ln �n(x |θ ). (1.4)

In the i.i.d. case, it satisfies the property:

Ln(x, θ ) =
n∑

i=1

ln f (xi |θ ). (1.5)

Example 1.12 (Multidimensional normal model) Let θ = (µ, �) where
µ ∈ R

m and � is a symmetric positive definite matrix of dimension m × m.
Hence, � = R

m × Cm where Cm is the cone of symmetric positive definite ma-
trices of size m × m. Moreover, X = R

nm and the model is i.i.d. with

xi |θ ∼ Nn(µ, �) xi ∈ R
n.

Therefore, the model is dominated. We have

�n(x |θ ) =
n∏

i=1

(2π )−
m
2 |�|− 1

2 exp −1

2
(xi − µ)′�−1(xi − µ)

= (2π )−
nm
2 |�|− n

2 exp −1

2

n∑
i=1

(xi − µ)′�−1(xi − µ). �

1.5 Marginal and Conditional Models

From a statistical model, one can build other models through the usual opera-
tions of probability calculus which are marginalization and conditioning. The
concept of a conditional model is particularly fundamental in econometrics and
allows us to build a first extension of the i.i.d. model which is too restrictive
to model economic phenomena. First, we will derive the conditional model as
a byproduct of the joint model, but in practice the conditional model is often
directly specified and the underlying joint model is not explicitly defined.

Let x = (xi )i=1,...,n be the sample. It is assumed that, for each observation
i , xi can be partitioned into (yi , zi ) with respective dimensions p and q (with
p + q = m). Let us denote y = (yi )i=1,...,n and z = (zi )i=1,...,n . Moreover, the
space X is factorized into Y × Z with yi ∈ Y and zi ∈ Z . This splitting of x
facilitates the presentation, but in some examples, yi and zi are two functions
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Statistical Models 11

of xi defining a bijective (one-to-one and onto) mapping between xi and the
pair (yi , zi ). By a relabelling of xi , one can get back to the current presentation.

Definition 1.5 From the model Mn = {Xn, �, Pθ
n }, one obtains:

� the marginal model on Zn, denotedMnz = {Zn, �, Pθ
nz}, with sample space

Zn, parameter space �, and sampling probability distribution Pθ
nz which is

the marginal probability of Pθ
n on Z.

� the conditional model given Z , denoted Mz
ny = {Y n × Zn, �, Pθ z

ny }, with
sample space Y n × Zn, parameter space �, but which sampling probability
distribution is the conditional distribution of Y n given z ∈ Zn.
In a dominated model (by Lebesgue measure to simplify) with the density
of observations denoted �n(x |θ ), the marginal and conditional models are
dominated and their densities satisfy:{

�n marg(z|θ ) = ∫
�n(y, z|θ )dy

�n cond (y|z, θ ) = �n (y,z|θ )
�n marg(z|θ ) .

(1.6)

�

Example 1.13 Consider an i.i.d. model with sample xi ∈ R
2 that satisfies

xi |θ ∼ i.i.N .

((
η

ζ

)
, �

)
with

θ = (η, ζ, �) and � =
(

σyy σyz

σyz σzz

)
.

Then, θ ∈ � = R
2 × C2. We can decompose this model into a marginal model

of Z which remains i.i.d. and satisfies

⊥⊥n
i=1zi |θ and zi |θ ∼ N (ζ, σzz)

and a conditional model characterized by

yi |zi , θ ∼ N (α + βzi , σ
2)

with

β = σyz

σzz
, α = η − σyz

σzz
ζ and σ 2 = σyy − σ 2

yz

σzz
. �

This example has the property that the parameter θ of the original model can
be decomposed into two functions of θ,

θmarg = (ζ, σzz) and θcond = (α, β, σ 2),
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