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CHAPTER 1

Probabilistic Models

In this book we study pattern matching problems in a probabilistic framework.
We first introduce some general probabilistic models of generating sequences.
The reader is also referred to Alon and Spencer (1992), Reinert, Schbath, and
Waterman (2000), Szpankowski (2001) and Waterman (1995a) for a brief intro-
duction to probabilistic models. For the convenience of the reader, we recall
here some definitions.

We also briefly discuss some analytic tools such as generating functions, the
residue theorem, and the Cauchy coefficient formula. For in-depth discussions
the reader is referred to Flajolet and Sedgewick (2009) and Szpankowski (2001).
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4 Chapter 1. Probabilistic Models

1.1. Probabilistic models on words

Throughout we shall deal with sequences of discrete random variables. We
write (Xk)

∞
k=1 for a one-sided infinite sequence of random variables; however,

we will often abbreviate it as X provided that it is clear from the context that
we are talking about a sequence, not a single variable. We assume that the
sequence (Xk)

∞
k=1 is defined over a finite alphabet A = {a1, . . . , aV } of size

V . A partial sequence is denoted as Xn
m = (Xm, . . . , Xn) for m < n. Finally,

we shall always assume that a probability measure exists, and we will write
P (xn1 ) = P (Xk = xk, 1 ≤ k ≤ n, xk ∈ A) for the probability mass, where we
use lower-case letters for a realization of a stochastic process.

Sequences are generated by information sources, usually satisfying some con-
straints. We also refer to such sources as probabilistic models. Throughout,
we assume the existence of a stationary probability distribution; that is, for
any string w we assume that the probability that the text X contains an oc-
currence of w at position k is equal to P (w) independently of the position k.
For P (w) > 0, we denote by P (u|w) the conditional probability, which equals
P (wu)/P (w).

The most elementary information source is a memoryless source; also known
as a Bernoulli source:

(B) Memoryless or Bernoulli Source. The symbols from the alphabet
A = {a1, . . . , aV } occur independently of one another; thus the string X =
X1X2X3 · · · can be described as the outcome of an infinite sequence of Bernoulli
trials in which P (Xj = ai) = pi and

∑V
i=1 pi = 1. Throughout, we assume that

at least for one i we have 0 < pi < 1.

In many cases, assumption (B) is not very realistic. When this is the case,
assumption (B) may be replaced by:

(M)Markov source. There is a Markov dependency between the consecutive
symbols in a string; that is, the probability pij = P (Xk+1 = aj |Xk = ai) de-
scribes the conditional probability of sampling symbol aj immediately after sym-
bol ai. We denote by P = {pij}Vi,j=1 transition matrix and by π = (π1, . . . , πV )
the stationary row vector satisfying πP = π. (Throughout, we assume that the
Markov chain is irreducible and aperiodic.) A general Markov source of order r is
characterized by the V r×V the transition matrix with coefficients P (j ∈ A | u)
for u ∈ Ar.

In some situations more general sources must be considered (for which one
still can obtain a reasonably precise analysis). Recently, Vallée (2001) introduced
dynamic sources, which we briefly describe here and will use in the analysis of
the generalized subsequence problem in Section 5.6. To introduce such sources
we start with a description of a dynamic system defined by:

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87608-7 - Analytic Pattern Matching: From DNA to Twitter
Philippe Jacquet and Wojciech Szpankowski
Excerpt
More information

http://www.cambridge.org/9780521876087
http://www.cambridge.org
http://www.cambridge.org


1.1. Probabilistic models on words 5

(a) (b)

Figure 1.1. Plots of Im versus x for the dynamic sources discussed
in Example 1.1.1: (a) a memoryless source with shift mapping Tm(x) =
(x − qm)/pm+1 for p1 = 1/2, p2 = 1/6, and p3 = 1/3; (b) a continued
fraction source with Tm(x) = 1/x−m = 〈1/x〉.

• a topological partition of the unit interval I = (0, 1) into a disjoint set of
open intervals Ia, a ∈ A;

• an encoding mapping e which is constant and equal to a ∈ A on each Ia;

• a shift mapping T : I → I whose restriction to Ia is a bijection of class
C2 from Ia to I; the local inverse of T restricted to Ia is denoted by ha.

Observe that such a dynamic system produces infinite words of A∞ through
the encoding e. For an initial x ∈ I the source outputs a word, say w(x) =
(e(x), (e(T (x)), . . .).

(DS) Probabilistic dynamic source. A source is called a probabilistic dy-
namic source if the unit interval of a dynamic system is endowed with a proba-
bility density f .

Example 1.1.1. A memoryless source associated with the probability distri-
bution {pi}Vi=1, where V can be finite or infinite, is modeled by a dynamic source
in which the components wk(x) are independent and the corresponding topolog-
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6 Chapter 1. Probabilistic Models

ical partition of I is defined as follows:

Im := (qm, qm+1], qm =
∑

j<m

pj .

In this case the shift mapping restricted to Im, m ∈ A, is defined as

Tm =
x− qm
pm+1

, qm < x ≤ qm+1.

In particular, a symmetric V -ary memoryless source can be described by

T (x) = 〈V x〉, e(x) = ⌊V x⌋,

where ⌊x⌋ is the integer part of x and 〈x〉 = x − ⌊x⌋ is the fractional part of x.
In Figure 1.1(a) we assume A = {1, 2, 3} and p1 = 1/2, p2 = 1/6, and p3 = 1/3,
so that q1 = 0, q1 = 1/2, q2 = 2/3, and q4 = 1. Then

T1 = 2x, T2 = 6(x− 1/2), T3 = 3(x− 2/3).

For example, if x = 5/6 then

w(x) = (e(x), e(T3(x)), e(T2(T3(x))), . . .) = (3, 2, 1, . . .).

Here is another example of a source with a memory related to continued
fractions. The alphabet A is the set of all natural numbers and the partition
of I is defined as Im = (1/(m + 1), 1/m). The restriction of T to Im is the
decreasing linear fractional transformation T (x) = 1/x−m, that is,

T (x) = 〈1/x〉, e(x) = ⌊1/x⌋.

Observe that the inverse branches hm of the mapping T (x) are defined as
hm(x) = 1/(x+m) (see Figure 1.1(b)).

Let us observe that a word of length k, say w = w1w2 . . . wk, is associated
with the mapping hw := hw1 ◦hw2 ◦· · ·◦hwk

, which is an inverse branch of T k. In
fact all words that begin with the same prefix w belong to the same fundamental
interval, defined as Iw = (hw(0), hw(1)). Furthermore, for probabilistic dynamic
sources with density f one easily computes the probability of w as the measure
of the interval Iw.

The probability P (w) of a word w can be explicitly computed through a
special generating operator Gw, defined as follows

Gw[f ](t) := |h′w(t)|f ◦ hw(t). (1.1)
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1.1. Probabilistic models on words 7

One recognizes in Gw[f ](t) a density mapping, that is, Gw[f ](t) is the density
of f mapped over hw(t). The probability of w can then be computed as

P (w) =

∣∣∣∣∣

∫ hw(1)

hw(0)

f(t)dt

∣∣∣∣∣ =
∫ 1

0

|h′w(t)|f ◦ hw(t)dt =
∫ 1

0

Gw[f ](t)dt. (1.2)

Let us now consider a concatenation of two words w and u. For memoryless
sources P (wu) = P (w)P (u). For Markov sources one still obtains the product of
the conditional probabilities. For dynamic sources the product of probabilities
is replaced by the product (composition) of the generating operators. To see
this, we observe that

Gwu = Gu ◦Gw, (1.3)

where we write Gw := Gw[f ](t). Indeed, hwu = hw ◦ hu and

Gwu = h′w ◦ huh′uf ◦ hw ◦ hu
while Gw = h′wf ◦ hw and so

Gu ◦Gw = h′uh
′
w ◦ huf ◦ hw ◦ hu,

as desired.
Another generalization of Markov sources, namely the mixing source, is very

useful in practice, especially for dealing with problems of data compression or
molecular biology when one expects long(er) dependency between the symbols
of a string.

(MX) (Strongly) ψ-mixing source. Let Fnm be a σ-field generated by the
sequence (Xk)

n
k=m for m ≤ n. The source is called mixing if there exists a

bounded function ψ(g) such that, for all m, g ≥ 1 and any two elements of the
σ-field (events) A ∈ Fm1 and B ∈ F∞

m+g, the following holds:

(1− ψ(g))P (A)P (B) ≤ P (AB) ≤ (1 + ψ(g))P (A)P (B). (1.4)

If, in addition, limg→∞ ψ(g) = 0 then the source is called strongly mixing.

In words, the model (MX) postulates that the dependency between (Xk)
m
k=1

and (Xk)
∞
k=m+g gets weaker and weaker as g becomes larger (note that when

the sequence (Xk) is independent and identically distributed (i.i.d.) we have
P (AB) = P (A)P (B)). The degree of dependency is characterized by ψ(g). A
weaker mixing condition, namely φ-mixing, is defined as follows:

− φ(g) ≤ P (B|A) − P (B) ≤ φ(g), P (A) > 0, (1.5)

provided that φ(g) → 0 as g → ∞. In general, strong ψ-mixing implies the
φ-mixing condition but not vice versa.
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8 Chapter 1. Probabilistic Models

1.2. Probabilistic tools

In this section, we briefly review some probabilistic tools used throughout the
book. We will concentrate on the different types of stochastic convergence.

The first type of convergence of a sequence of random variables is known as
convergence in probability. The sequence Xn converges to a random variable X

in probability, denoted Xn → X (pr.) or Xn
pr→X , if, for any ε > 0,

lim
n→∞

P (|Xn −X | < ε) = 1.

It is known that if Xn
pr→ X then f(Xn)

pr→ f(X) provided that f is a continuous
function (see Billingsley (1968)).

Note that convergence in probability does not say that the difference between
Xn and X becomes very small. What converges here is the probability that the
difference between Xn and X becomes very small. It is, therefore, possible,
although unlikely, for Xn and X to differ by a significant amount and for such
differences to occur infinitely often. A stronger kind of convergence that does
not allow such behavior is almost sure convergence or strong convergence. This
convergence ensures that the set of sample points for which Xn does not converge
to X has probability zero. In other words, a sequence of random variables Xn

converges to a random variable X almost surely, denoted Xn → X a.s. or

Xn
(a.s.)→ X , if, for any ε > 0,

lim
N→∞

P ( sup
n≥N
|Xn −X | < ε) = 1.

From this formulation of almost sure convergence, it is clear that if Xn → X
(a.s.), the probability of infinitely many large differences between Xn and X is
zero. As the term “strong” implies, almost sure convergence implies convergence
in probability.

A simple sufficient condition for almost sure convergence can be inferred from
the Borel–Cantelli lemma, presented below.

Lemma 1.2.1 (Borel–Cantelli). If
∑∞
n=0 P (|Xn − X | > ε) < ∞ for every

ε > 0 then Xn
a.s.→ X.

Proof. This follows directly from the following chain of relationships:

P

(
sup
n≥N
|Xn −X | ≥ ε

)
= P


 ⋃

n≥N
|Xn −X | ≥ ε


 ≤

∑

n≥N
P (|Xn−X | ≥ ε)→ 0.
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1.2. Probabilistic tools 9

The inequality above is a consequence of the fact that the probability of a union
of events is smaller than the sum of the probability of the events (see Boole’s
or the union inequality below). The last convergence is a consequence of our
assumption that

∑∞
n=0 P (|Xn −X | > ε) <∞.

A third type of convergence is defined on distribution functions Fn(x). The
sequence of random variables Xn converges in distribution or converges in law

to the random variable X , this convergence being denoted as Xn
d→ X , if

lim
n→∞

Fn(x) = F (x) (1.6)

for each point of continuity of F (x). In Billingsley (1968) it was proved that the

above definition is equivalent to the following: Xn
d→ X if

lim
n→∞

E[f(Xn)] = E[f(X)] (1.7)

for all bounded continuous functions f .
The next type of convergence is convergence in mean of order p or conver-

gence in Lp, which postulates that E[|Xn −X |p]→ 0 as n→∞. We write this

type of convergence as Xn
Lp

→ X . Finally, we introduce convergence in moments
for which limn→∞ E[Xp

n] = E[Xp] for any p ≥ 1.
We now describe the relationships (implications) between the various types

of convergence. The reader is referred to Billingsley (1968) for a proof.

Theorem 1.2.2. We have the following implications:

Xn
a.s.→ X ⇒ Xn

pr→ X, (1.8)

Xn
Lp

→ X ⇒ Xn
pr→ X, (1.9)

Xn
pr→ X ⇒ Xn

d→ X, (1.10)

Xn
Lp

→ X ⇒ E[Xp
n]→ E[Xp]. (1.11)

No other implications hold in general.

It is easy to devise an example showing that convergence in probability does
not imply convergence in mean (e.g., takeXn = n with probability 1/n andXn =
0 with probability 1−1/n). To obtain convergence in mean from convergence in
probability one needs somewhat stronger conditions. For example, if |Xn| ≤ Y
and E[Y ] < ∞ then, by the dominated convergence theorem, we know that
convergence in probability implies convergence in mean. To generalize, one
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10 Chapter 1. Probabilistic Models

introduces so-called uniform integrability. It is said that a sequence {Xn, n ≥ 1}
is uniformly integrable if

sup
n≥1

E [|Xn|I(|Xn| > a)]→ 0 (1.12)

when a → ∞; here I(B) is the indicator function, equal to 1 if A holds and 0
otherwise. The above is equivalent to

lim
a→∞

sup
n≥1

∫

|x|>a
xdFn(x) = 0.

Then the following is true, as shown in Billingsley (1968): if Xn is uniformly

integrable then Xn
pr→ X implies that Xn

L1

→ X .
In the probabilistic analysis of algorithms, inequalities are very useful for

establishing these stochastic convergences. We review now some inequalities
used in the book.

Boole’s or the union inequality. For any set of events A1, . . . , An the fol-
lowing is true:

P (A1 ∪ A2 ∪ · · · ∪An) ≤ P (A1) + P (A2) + · · ·+ P (An). (1.13)

The proof follows from iterative applications of P (An ∪ A2) ≤ P (A1) + P (A2),
which is obvious.

Markov’s inequality. For a nonnegative function g(·) and a random variable
X ,

P (g(X) ≥ t) ≤ E[g(X)]

t
(1.14)

holds for any t > 0. Indeed, we have the following chain of obvious inequalities:

E[g(X)] ≥ E [g(X)I(g(X) ≥ t)] ≥ tE[I(g(X) ≥ t)] = tP (g(X) ≥ t),

where we recall that I(A) is the indicator function of event A.

Chebyshev’s inequality. If one replaces g(X) by |X −E[X ]|2 and t by t2 in
Markov’s inequality then we have

P (|X −E[X ]| ≥ t) ≤ Var[X ]

t2
, (1.15)

which is known as Chebyshev’s inequality.

Schwarz’s inequality (also called the Cauchy–Schwarz inequality). Let X
and Y be such that E[X2] <∞ and E[Y 2] <∞. Then

E[|XY |]2 ≤ E[X2]E[Y 2] , (1.16)
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