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Introduction

One of the remarkable properties of Brownian motion is that we can use it
to construct (stochastic) integrals of the type

∫

. . . dB.

The reason this is remarkable is that almost every Brownian sample path
(Bt (ω) : t ∈ [0, T ]) has infinite variation and there is no help from the clas-
sical Stieltjes integration theory. Instead, Itô’s theory of stochastic inte-
gration relies crucially on the fact that B is a martingale and stochastic
integrals themselves are constructed as martingales. If one recalls the ele-
mentary interpretation of martingales as fair games one sees that Itô in-
tegration is some sort of martingale transform in which the integrand has
the meaning of a gambling strategy. Clearly then, the integrand must not
anticipate the random movements of the driving Brownian motion and one
is led to the class of so-called previsible processes which can be integrated
against Brownian motion. When such integration is possible, it allows for
a theory of stochastic differential equations (SDEs) of the form1

dY =

d∑

i=1

Vi (Y ) dBi + V0 (Y ) dt , Y (0) = y0 . (∗)

Without going into too much detail, it is hard to overstate the importance
of Itô’s theory: it has a profound impact on modern mathematics, both
pure and applied, not to speak of applications in fields such as physics,
engineering, biology and finance.

It is natural to ask whether the meaning of (∗) can be extended to
processes other than Brownian motion. For instance, there is motivation
from mathematical finance to generalize the driving process to general
(semi-)martingales and luckily Itô’s approach can be carried out naturally
in this context.

We can also ask for a Gaussian generalization, for instance by considering
a differential equation of the form (∗) in which the driving signal may be
taken from a reasonably general class of Gaussian processes. Such equations
have been proposed, often in the setting of fractional Brownian motion of
Hurst parameter H > 1/2,2 as toy models to study the ergodic behaviour

1 Here B =
(
B1 , . . . , Bd

)
is a d-dimensional Brownian motion.

2 Hurst parameter H = 1/2 corresponds to Brownian motion. For H > 1/2, one has

enough sample path regularity to use Young integration.
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2 Introduction

of non-Markovian systems or to provide new examples of arbitrage-free
markets under transactions costs.

Or we can ask for a Markovian generalization. Indeed, it is not hard to
think of motivating physical examples (such as heat flow in rough media)
in which Brownian motion B may be replaced by a Markov process Xa

with uniformly elliptic generator in divergence form, say 1
2

∑

i,j ∂i

(
aij∂j ·

)
,

without any regularity assumptions on the symmetric matrix
(
aij

)
.

The Gaussian and Markovian examples have in common that the sample
path behaviour can be arbitrarily close to Brownian motion (e.g. by taking
H = 1/2 ± ε resp. a uniformly ε-close to the identity matrix I). And yet,
Itô’s theory has a complete breakdown!

It has emerged over recent years, starting with the pioneering work of
T. Lyons [116], that differential equations driven by such non-semi-
martingales can be solved in the rough path sense. Moreover, the so-
obtained solutions are not abstract nonsense but have firm probabilistic
justification. For instance, if the driving signal converges to Brownian mo-
tion (in some reasonable sense which covers ε → 0 in the aforementioned
examples) the corresponding rough path solutions converge to the classical
Stratonovich solution of (∗), as one would hope.

While this alone seems to allow for flexible and robust stochastic mod-
elling, it is not all about dealing with new types of driving signals. Even
in the classical case of Brownian motion, we get some remarkable insights.
Namely, the (Stratonovich) solution to (∗) can be represented as a deter-
ministic and continuous image of Brownian motion and Lévy’s stochastic
area

Ajk
t (ω) =

1

2

(∫ t

0

BjdBk −
∫ t

0

BkdBj

)

alone. In fact, there is a “nice” deterministic map, the Itô–Lyons map,

(y0 ;x) �→ π (0, y0 ;x)

which yields, upon setting x =
(
Bi , Aj,k : i, j, k ∈ {1, . . . , d}

)
a very pleas-

ing version of the solution of (∗). Indeed, subject to sufficient regularity of
the coefficients, we see that (∗) can be solved simultaneously for all starting
points y0 , and even all coefficients! Clearly then, one can allow the starting
point and coefficients to be random (even dependent on the entire future of
the Brownian driving signals) without problems; in stark contrast to Itô’s
theory which struggles with the integration of non-previsible integrands.
Also, construction of stochastic flows becomes a trivial corollary of purely
deterministic regularity properties of the Itô–Lyons map.

This brings us to the (deterministic) main result of the theory: continuity
of the Itô–Lyons map

x �→ π (0, y0 ;x)

in “rough path” topology. When applied in a standard SDE context, it
quickly gives an entire catalogue of limit theorems. It also allows us to
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Introduction 3

reduce (highly non-trivial) results, such as the Stroock–Varadhan support
theorem or the Freidlin–Wentzell estimates, to relatively simple statements
about Brownian motion and Lévy’s area. Moreover, and at no extra price,
all these results come at the level of stochastic flows. The Itô–Lyons map is
also seen to be regular in certain perturbations of x which include (but are
not restricted to) the usual Cameron–Martin space, and so there is a natural
interplay with Malliavin calculus. At last, there is increasing evidence that
rough path techniques will play an important role in the theory of stochastic
partial differential equations and we have included some first results in this
direction.

All that said, let us emphasize that the rough path approach to (stochas-
tic) differential equations is not set out to replace Itô’s point of view.
Rather, it complements Itô’s theory in precisely those areas where the for-
mer runs into difficulties.

We hope that the topics discussed in this book will prove useful to
anyone who seeks new tools for robust and flexible stochastic modelling.
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The story in a nutshell

1 From ordinary to rough differential equations

Rough path analysis can be viewed as a collection of smart estimates for
differential equations of type

dy = V (y) dx ⇐⇒ ẏ =

d∑

i=1

Vi (y) ẋi .

Although a Banach formulation of the theory is possible, we shall remain
in finite dimensions here. For the sake of simplicity, let us assume that the
driving signal x ∈ C∞

(
[0, T ] , Rd

)
and that the coefficients V1 , . . . , Vd ∈

C∞,b (Re , Re), that is bounded with bounded derivatives of all orders. We
are dealing with a simple time-inhomogenous ordinary differential equation
(ODE) and there is no question about existence and uniqueness of an R

e -
valued solution from every starting point y0 ∈ R

e . The usual first-order
Euler approximation, from a fixed time-s starting point ys , is obviously

yt − ys ≈ Vi (ys)

∫ t

s

dxi .

(We now adopt the summation convention over repeated up–down indices.)
A simple Taylor expansion leads to the following step-2 Euler approxima-
tion,

yt − ys ≈ Vi (ys)

∫ t

s

dxi + V k
i ∂kVj (ys)

∫ t

s

∫ r

s

dxidxj

︸ ︷︷ ︸

=E(ys ,xs , t )

with

xs,t =

(∫ t

s

dx,

∫ t

s

∫ r

s

dx ⊗ dx

)

∈ R
d ⊕ R

d×d . (1)

Let us now make the following Hölder-type assumption: there exists c1 and
α ∈ (0, 1] such that, for all s < t in [0, T ] and all i, j ∈ {1, . . . , d},

(Hα ) :

∣
∣
∣
∣

∫ t

s

dxi

∣
∣
∣
∣
∨

∣
∣
∣
∣

∫ t

s

∫ r

s

dxidxj

∣
∣
∣
∣

1/2

≤ c1 |t − s|α . (2)

Note that
∫ t

s

∫ r

s
dxidxj is readily estimated by ℓ2 |t − s|2 , where ℓ =

|ẋ|∞;[0,T ] is the Lipschitz norm of the driving signal, and so (Hα ) holds,
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1 From ordinary to rough differential equations 5

somewhat trivially for now, with c1 = ℓ and α = 1. [We shall see later
that (Hα ) also holds for d-dimensional Brownian motion for any α < 1/2
and a random variable c1 (ω) < ∞ a.s. provided the double integral is un-
derstood in the sense of stochastic integration. Nonetheless, let us keep x
deterministic and smooth for now.]

It is natural to ask exactly how good these approximations are. The
answer is given by Davie’s lemma which says that, assuming (Hα ) for
some α ∈ (1/3, 1/2], one has the “step-2 Euler estimate”

|yt − ys − E (ys ,xs,t)| ≤ c2 |t − s|θ

where θ = 3α > 1. The catch here is uniformity : c2 = c2 (c1) depends on x
only through the Hölder bound c1 but not on its Lipschitz norm. Since it
is easy to see that (Hα ) implies

E (ys ,xs,t) ≤ c3 |t − s|α , c3 = c3 (c1) ,

the triangle inequality leads to

|yt − ys | ≤ c4 |t − s|α , c4 = c4 (c1) . (3)

As often in analysis, uniform bounds allow for passage to the limit. We
therefore take xn ∈ C∞

(
[0, T ] , Rd

)
with uniform bounds

sup
n

∣
∣
∣
∣

∫ t

s

dxi
n

∣
∣
∣
∣
∨

∣
∣
∣
∣

∫ t

s

∫ r

s

dxi
ndxj

n

∣
∣
∣
∣

1/2

≤ c1 |t − s|α

such that, uniformly in t ∈ [0, T ],
(∫ t

0

dxi
n ,

∫ t

0

∫ r

0

dxi
ndxj

n

)

→ xt ≡
(

x
(1)
t ,x

(2)
t

)

∈ R
d ⊕ R

d×d .

The limiting object x is a path with values in R
d ⊕ R

d×d and the class of
(
R

d ⊕ R
d×d

)
-valued paths obtained in this way is precisely what we call

the α-Hölder rough paths.1

Two important remarks are in order.

(i) The condition α ∈ (1/3, 1/2] in Davie’s estimate is intimately tied
to the fact that the condition (Hα ) involves the first two iterated
integrals.

(ii) The space R
d⊕R

d×d is not quite the correct state space for x. Indeed,
the calculus product rule d

(
xixj

)
= xidxj + xjdxi implies that2

Sym

(∫ t

0

∫ r

0

dx ⊗ dx

)

=
1

2

(∫ t

0

dx

)

⊗
(∫ t

0

dx

)

.

1 To be completely honest, we call this a weak geometric α-Hölder rough path.
2 Sym (A) := 1

2

(
A + AT

)
, Anti (A) := 1

2

(
A − AT

)
for A ∈ R

d×d .
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6 The story in a nutshell

Figure 1. We plot s �→ (xi
s , x

j
s ) and the chord which connects (xi

0 , x
j
0 ), on the

lower left side, say, with (xi
t , x

j
t ) on the right side. The (signed) enclosed area

(here positive) is precisely Anti(x
(2)
t )i ,j .

This remains valid in the limit so that x (t) must take values in
{

x =
(

x(1) ,x(2)
)

∈ R
d ⊕ R

d×d : Sym
(

x(2)
)

=
1

2
x(1) ⊗ x(1)

}

.

We can get rid of this algebraic redundancy by switching from x to3

(

x(1) , Anti(x(2))
)

∈ R
d ⊕ so (d) .

At least for a smooth path x (·) , this has an appealing geometric
interpretation. Let (xi

· , x
j
· ) denote the projection to two distinct co-

ordinates (i, j); basic multivariable calculus then tells us that

Anti(x
(2)
t )i,j =

1

2

(∫ t

0

(
xi

s − xi
0

)
dxj

s −
∫ t

0

(

xj
s − xj

0

)

dxi
s

)

is the area (with multiplicity and orientation taken into account)
between the curve {(xi

s , x
j
s) : s ∈ [0, t]} and the chord from (xi

t , x
j
t )

to (xi
0 , x

j
0). See Figure 1.

Example 1 Consider d = 2 and xn (t) =
(

1
n cos

(
2n2t

)
, 1

n sin
(
2n2t

))
∈

R
2 . Then (Hα ) holds with α = 1/2, as may be seen by considering sepa-

rately the cases where 1/n is less resp. greater than (t − s)
1/2

. Moreover,
the limiting rough path is

xt ≡
((

0
0

)

,

(
0 t
−t 0

))

, (4)

since we run around the origin essentially n2t/π times, sweeping out area
π/n2 at each round. �

3 As will be discussed in Chapter 7, this is precisely switching from the step-2 free

nilpotent Lie group (with d generators) to its Lie algebra.
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1 From ordinary to rough differential equations 7

We are now ready for the passage to the limit on the level of ODEs. To
this end, consider (yn ) ⊂ C ([0, T ] , Re), obtained by solving, for each n,
the ODE

dyn = V (yn ) dxn , yn (0) = y0 .

By Davie’s lemma the sequence (yn ) has a uniform α-Hölder bound c4

and by Arzela–Ascoli we see that (yn ) has at least one limit point in
C ([0, T ] , Re). Each such limit point is called a solution to the rough dif-

ferential equation (RDE) which we write as

dy = V (y)dx, y (0) = y0 . (5)

The present arguments apply immediately for V ∈ C2,b , that is bounded
with two bounded derivatives, and more precisely for V ∈Lipγ−1 ,γ > 1/α,
in the sense of Stein.4 As in classical ODE theory, one additional degree
of regularity (e.g. V ∈Lipγ , γ > 1/α) then gives uniqueness5 and we will

write

y = π(V ) (0, y0 ;x)

for such a unique RDE solution. At last, it should not be surprising from
our construction that the RDE solution map (a.k.a. Itô–Lyons map)

x �→ π(V ) (0, y0 ;x)

is continuous in x (e.g. under uniform convergence with uniform Hölder
bounds).

Example 2 Assume xt =
(∫ t

0
dxi ,

∫ t

0

∫ r

0
dxjdxk

)

i,j,k∈{1,...,d}
with smooth

x. Then

y = π(V ) (0, y0 ;x)

is the classical ODE solution to dy = V (y) dx, y (0) = y0 . �

Example 3 Assume x is given by (4) and V = (V1 , V2). Then

y = π(V ) (0, y0 ;x)

can be identified as the classical ODE solution to

dy = [V1 , V2 ] (y) dt

where [V1 , V2 ] = V i
1 ∂iV2 − V i

2 ∂iV1 is the Lie bracket of V1 and V2 . �

4 Writing γ = ⌊γ⌋+{γ} with integer ⌊γ⌋ and {γ} ∈ (0, 1] this means that V is bounded
and has up to ⌊γ⌋ bounded derivatives, the last of which is Hölder with exponent {γ}.

5 With more effort, uniqueness can be shown under Lip1/a -regularity.
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8 The story in a nutshell

Example 4 Assume B =
(
B1 , . . . , Bd

)
is a d-dimensional Brownian mo-

tion. Define enhanced Brownian motion by

Bt =

(∫ t

0

dBi ,

∫ t

0

Bj ◦ dBk

)

i,j,k∈{1,...,d}

(where ◦ indicates stochastic integration in the Stratonovich sense). We
shall see that B is an α-Hölder rough path for α ∈ (1/3, 1/2) and identify

Yt (ω) := π(V ) (0, y0 ;B)

as a solution to the Stratonovich stochastic differential equation6

dY =

d∑

i=1

Vi (Y ) ◦ dBi .

�

2 Carnot–Caratheodory geometry

We now try to gain a better understanding of the results discussed in the
last section. To this end, it helps to understand the more general case of
Hölder-type regularity with exponent α = 1/p ∈ (0, 1]. As indicated in
remark (i), this will require consideration of more iterated integrals and we
need suitable notation: given x ∈ C∞

(
[0, T ] , Rd

)
we generalize (1) to7

xt := SN (x)0,t :=

(

1,

∫ t

0

dx,

∫

∆2
[0 , t ]

dx ⊗ dx, . . . ,

∫

∆N
[ 0 , t ]

dx ⊗ · · · ⊗ dx

)

,

(6)
called the step-N signature of x over the interval [0, t] , with values in

TN
(
R

d
)

:= R ⊕ R
d ⊕

(
R

d
)⊗2 ⊕ · · · ⊕

(
R

d
)⊗N

.

Observe that we added a zeroth scalar component in our definition of xt

which is always set to 1. This is pure convention but has some algebraic
advantages. To go further, we note that TN

(
R

d
)

has the structure of a
(truncated) tensor-algebra with tensor-multiplication ⊗. (Elements with
scalar component equal to 1 are always invertible with respect to ⊗.) Com-
putations are simply carried out by considering the standard basis (ei) of
R

d as non-commutative indeterminants; for instance,
(
aiei

)
⊗

(
bjej

)
= aibj (ei ⊗ ej ) �= aibj (ej ⊗ ei).

6 A drift term V0 (y) dt can be trivially included by considering the time-space process
(t, B).

7 ∆k
[0 , t ]

denotes the k-dimensional simplex over [0, t].

www.cambridge.org/9780521876070
www.cambridge.org


Cambridge University Press
978-0-521-87607-0 — Multidimensional Stochastic Processes as Rough Paths
Peter K. Friz , Nicolas B. Victoir
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Carnot–Caratheodory geometry 9

The reason we are interested in this sort of algebra is that the trivial

xs,t ≡ (−xs) + xt =

∫ t

s

dx =: xs,t

generalizes to

xs,t ≡ x−1
s ⊗ xt =

(

1,

∫ t

s

dx,

∫

∆2
[s , t ]

dx ⊗ dx, . . . ,

∫

∆N
[s , t ]

dx ⊗ · · · ⊗ dx

)

.

As a consequence, we have Chen’s relation xs,u = xs,t ⊗ xt,u , which
tells us precisely how to “patch together” iterated integrals over adjacent
intervals [s, t] and [t, u].

Let us now take on remark (ii) of the previous section. One can see that
the step-N lift of a smooth path x, as given in (6), takes values in the free
step-N nilpotent (Lie) group with d generators, realized as restriction of
TN

(
R

d
)

to

GN
(
R

d
)

= exp
(
R

d ⊕
[
R

d , Rd
]
⊕

[
R

d ,
[
R

d , Rd
]
⊕ . . .

])
≡ exp

(
g

N
(
R

d
))

where g
N

(
R

d
)

is the free step-N nilpotent Lie algebra and exp is defined
by the usual power-series based on ⊗.

Example 5 [N = 2] Note that
[
R

d , Rd
]

= so (d). Then

exp
(
R

d ⊕
[
R

d , Rd
])

=

{(

1, v,
1

2
v ⊗ v + A

)

: v ∈ R
d , A ∈ so (d)

}

which is precisely the algebraic relation we pointed out in remark (ii) of
the previous section. �

If the discussion above tells us that TN
(
R

d
)

is too big a state space for

lifted smooth paths, Chow’s theorem tells us that GN
(
R

d
)

is the correct

state space. It asserts that for all g ∈ GN
(
R

d
)

there exists γ : [0, 1] → R
d ,

which may be taken to be piecewise linear such that SN (γ)0,1 = g. One
can then define the Carnot–Caratheodory norm

‖g‖ = inf
{

length
(
γ|[0,1]

)
: SN (γ)0,1 = g

}

,

where the infimum is achieved for some Lipschitz continuous path γ∗ :
[0, 1] → R

d , some sort of geodesic path associated with g. The Carnot–

Caratheodory distance is then simply defined by d (g, h) :=
∥
∥g−1 ⊗ h

∥
∥. A

Carnot–Caratheodory unit ball is plotted in Figure 2.

Example 6 Take g =

((
0
0

)

,

(
0 a
−a 0

))

∈ G2
(
R

2
)
. Then γ∗ is the

shortest path which returns to its starting point and sweeps out area a.
From basic isoperimetry, γ∗ must be a circle and ‖g‖ = 2

√
πa1/2 . See

Figure 3. �
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10 The story in a nutshell

Figure 2. After identifying G2
(
R

d
)

with the 3-dimensional Heisenberg group,

i.e.

((
x
y

)

,

(
0 a
−a 0

))

≡ (x, y, a), we plot the (apple-shaped) unit-ball with

respect to the Carnot–Caratheodory distance. It contains (and is contained in) a
Euclidean ball.

Figure 3. We plot the circle γ∗. The z-axis represents the wiped-out area and
runs from 0 to a.
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