PLANETARY SYSTEMS AND THE ORIGINS OF LIFE

Several major breakthroughs in the last decade have helped to contribute to the emerging field of astrobiology. These have ranged from the study of microorganisms, which have adapted to living in extreme environments on Earth, to the discovery of over 200 planets orbiting around other stars, and the ambitious programs for the robotic exploration of Mars and other bodies in our Solar System. Focusing on these developments, this book explores some of the most exciting and important problems in this field.

Beginning with how planetary systems are discovered, the text examines how these systems formed, and how water and the biomolecules necessary for life were produced. It then focuses on how life may have originated and evolved on Earth. Building on these two themes, the final section takes the reader on an exploration for life elsewhere in the Solar System. It presents the latest results of missions to Mars and Titan, and explores the possibilities for life in the ice-covered ocean of Europa. Colour versions of some of the figures are available at www.cambridge.org/9780521875486.

This interdisciplinary book is a fascinating resource for students and researchers in subjects in astrophysics, planetary science, geosciences, biochemistry, and evolutionary biology. It will provide any scientifically literate reader with an enjoyable overview of this exciting field.

RALPH PUDRITZ is Director of the Origins Institute and a Professor in the Department of Physics and Astronomy at McMaster University.

PAUL HIGGS is Canada Research Chair in Biophysics and a Professor in the Department of Physics and Astronomy at McMaster University.

JONATHON STONE is Associate Director of the Origins Institute and SHARCNet Chair in Computational Biology in the Department of Biology at McMaster University. Cambridge Astrobiology

Series Editors

Bruce Jakosky, Alan Boss, Frances Westall, Daniel Prieur, and Charles Cockell

Books in the series:

- 1. Planet Formation: Theory, Observations, and Experiments Edited by Hubert Klahr and Wolfgang Brandner ISBN 978-0-521-86015-4
- Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning Edited by John D. Barrow, Simon Conway Morris, Stephen J. Freeland, and Charles L. Harper, Jr. ISBN 978-0-521-87102-0
- 3. Planetary Systems and the Origins of Life Edited by Ralph Pudritz, Paul Higgs, and Jonathon Stone ISBN 978-0-521-87548-6

PLANETARY SYSTEMS AND THE ORIGINS OF LIFE

RALPH PUDRITZ, PAUL HIGGS, JONATHON STONE McMaster University, Canada

© Cambridge University Press

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521875486

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-87548-6 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of contributors		<i>page</i> xi	
Preface		XV	
Pa		Planetary systems and the origins of life	1
1		servations of extrasolar planetary systems	3
	Sha	y Zucker	
	1.1	Introduction	3
	1.2	RV detections	4
	1.3	Transit detections	7
	1.4	Properties of the extrasolar planets	10
	1.5	Other methods of detection	14
	1.6	Future prospects for space missions	16
	Ack	nowledgements	17
	Refe	erences	17
2	The	atmospheres of extrasolar planets	21
	L. Je	eremy Richardson and Sara Seager	
	2.1	Introduction	21
	2.2	The primary eclipse	21
	2.3	The secondary eclipse	23
	2.4	Characteristics of known transiting planets	25
	2.5	Spectroscopy	27
	2.6	Model atmospheres	30
	2.7	Observations	32
	2.8	Future missions	35
	2.9	Summary	37
	Refe	erences	38

vi	Contents	
3	Terrestrial planet formation	41
	Edward W. Thommes	
	3.1 Introduction	41
	3.2 The formation of planetesimals	42
	3.3 The growth of protoplanets	43
	3.4 The growth of planets	47
	3.5 The origin of the Earth–Moon system	52
	3.6 Terrestrial planets and life	52
	3.7 Summary	56
	Acknowledgements	57
	References	57
4	From protoplanetary disks to prebiotic amino acids and the	
	origin of the genetic code	62
	Paul G. Higgs and Ralph E. Pudritz	
	4.1 Introduction	62
	4.2 Protoplanetary disks and the formation of planet systems	63
	4.3 Protoplanetary disks and the formation of biomolecules	68
	4.4 Measurements and experiments on amino acid synthesis	71
	4.5 A role for thermodynamics	73
	4.6 The RNA world and the origin of the genetic code	76
	4.7 How was the genetic code optimized?	80
	4.8 Protein evolution	82
	4.9 Summary	84
	Acknowledgements	84
	References	84
5	Emergent phenomena in biology: the origin of cellular life	89
	David Deamer	
	5.1 Introduction	89
	5.2 Defining emergence	89
	5.3 Emergence of life: a very brief history	90
	5.4 The first emergent phenomena: self-assembly processes	
	on the early Earth	91
	5.5 Sources of amphiphilic molecules	92
	5.6 The emergence of primitive cells	95
	5.7 Self-assembly processes in prebiotic organic mixtures	100
	5.8 Emergence of membrane functions	101
	5.9 Emergence of growth processes in primitive cells	103
	5.10 Environmental constraints on the first forms of life	105

		Contents	vii
	Ack	nowledgements	106
		erences	106
Pa	rt II	Life on Earth	111
6		remophiles: defining the envelope for the search for life	
		ne universe	113
	•	n Rothschild	
		Introduction	113
	6.2	1	114
		Categories of extremophiles	115
	6.4		115
		How do they do it?	123
		Examples of extreme ecosystems	125
	6.7	Space: new categories of extreme environments	126
	6.8	Life in the Solar System?	127
	6.9	Conclusions	130
		nowledgements	131
	Refe	erences	131
7		perthermophilic life on Earth – and on Mars?	135
		l O. Stetter	
	7.1		135
		Biotopes	136
	7.3		138
	7.4		139
	7.5	Physiologic properties	141
	7.6	Examples of recent HT organisms	143
	Refe	erences	147
8	-	logenomics: how far back in the past can we go?	149
	Hen	ner Brinkmann, Denis Baurain, and Hervé Philippe	
	8.1	Introduction	149
	8.2	The principles of phylogenetic inference	149
	8.3	Artefacts affecting phylogenetic reconstruction	152
	8.4	Strengths and limitations of phylogenomics	155
	8.5	The importance of secondary simplification	160
	8.6	The tree of life	164
	8.7	Frequent strong claims made with weak evidence	
		in their favour	167

viii	Contents	
	8.8 Conclusions	171
	Acknowledgements	171
	References	172
9	Horizontal gene transfer, gene histories, and the root	
-	of the tree of life	178
	Olga Zhaxybayeva and J. Peter Gogarten	
	9.1 Introduction	178
	9.2 How to analyse multigene data?	179
	9.3 What does the plurality consensus represent?	
	Example of small marine cyanobacteria	182
	9.4 Where is the root of the 'tree of life'?	183
	9.5 Use of higher order characters: example of ATPases	185
	9.6 Conclusions	188
	Acknowledgements	188
	References	188
10	Evolutionary innovation versus ecological incumbency	193
	Adolf Seilacher	
	10.1 The Ediacaran world	193
	10.2 Preservational context	194
	10.3 Vendobionts as giant protozoans	195
	10.4 Kimberella as a stem-group mollusc	198
	10.5 Worm burrows	202
	10.6 Stability of ecosystems	203
	10.7 The parasite connection	204
	10.8 Conclusions	207
	Acknowledgements	208
	References	208
11	Gradual origin for the metazoans	210
	Alexandra Pontefract and Jonathon Stone	
	11.1 Introduction	210
	11.2 Collagen as a trait tying together metazoans	211
	11.3 The critical oxygen concentration criterion	212
	11.4 The Burgess Shale fauna: a radiation on rocky ground	213
	11.5 Accumulating evidence about snowball Earth	215
	11.6 North of 80°	216
	11.7 Conclusion	219

Contents	ix
Acknowledgements	219
References	219
Part III Life in the Solar System?	223
12 The search for life on Mars	225
Chris P. McKay	
12.1 Introduction	225
12.2 Mars today and the Viking search for life	227
12.3 Search for second genesis	229
12.4 Detecting a second genesis on Mars	235
12.5 Conclusions	238
References	238
13 Life in the dark dune spots of Mars: a testable hypothesis	241
Eörs Szathmáry, Tibor Gánti, Tamás Pócs, András Horváth, Ákos	
Kereszturi, Szaniszló Bérczi, and András Sik	
13.1 Introduction	241
13.2 History	241
13.3 Basic facts and considerations about DDSs	243
13.4 Challenges and answers	250
13.5 Partial analogues on Earth	255
13.6 Discussion and outlook	257
Acknowledgements	258
References	258
14 Titan: a new astrobiological vision from the	
Cassini–Huygens data	263
François Raulin	
14.1 Introduction	263
14.2 Analogies between Titan and the Earth	264
14.3 A complex prebiotic-like chemistry	271
14.4 Life on Titan?	278
14.5 Conclusions	280
Acknowledgements	281
References	282
15 Europa, the ocean moon: tides, permeable ice, and life	285
Richard Greenberg	
15.1 Introduction: life beyond the habitable zone	285
15.2 The surface of Europa	286

x	Contents	
	15.3 Tides	295
	15.4 The permeable crust: conditions for a Europan biosphere	305
	Acknowledgements	309
	References	309
Inc	lex	313

Contributors

Denis Baurain Department de Biochimie Université de Montréal Montréal, Ouebec Canada Szaniszló Bérczi Department of General Physics Cosmic Material Research Group Eötvös University Budapest Hungary Henner Brinkmann Department de Biochimie Université de Montréal Montréal, Quebec Canada David Deamer Department of Chemistry & **Biochemistry** University of California, Santa Cruz Santa Cruz, CA USA Tibor Gánti Collegium Budapest Institute for Advanced Study Budapest Hungary

J. Peter Gogarten Department of Molecular & Cell Biology University of Connecticut Storrs, CT USA

Richard Greenberg Lunar and Planetary Observatory University of Arizona Tucson, AZ USA

Paul G. Higgs Department of Physics & Astronomy McMaster University Hamilton, Ontario Canada

András Horváth Collegium Budapest Institute for Advanced Study Budapest Hungary

Ákos Kereszturi Collegium Budapest Institute for Advanced Study Budapest Hungary

CAMBRIDGE

Cambridge University Press 978-0-521-87548-6 - Planetary Systems and the Origins of Life Ralph Pudritz, Paul Higgs, and Jonathon Stone Frontmatter More information

xii

Contributors

Chris P. McKay NASA Ames Research Center Moffett Field, CA USA Hervé Philippe Department de Biochimie Université de Montréal Montréal, Quebec Canada Tamás Pócs Department of Botany Eszterházy Károly College Eger Hungary Alexandra Pontefract Department of Biology McMaster University Hamilton, Ontario Canada Ralph E. Pudritz Germany Department of Physics & Astronomy McMaster University Hamilton, Ontario Canada François Raulin Universités Paris 7 et Paris 12 Creteil France L. Jeremy Richardson NASA Goddard Space Flight Center Greenbelt, MD USA Lynn Rothschild NASA Ames Research Center Moffett Field, CA USA

Sara Seager Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge, MA USA Adolf Seilacher University of Tubingen Tubingen Germany András Sik Department of Physical Geography Eötvös University Budapest Hungary Karl O. Stetter Lehrstuhl fur Mikrobiologie Universiät Regensburg Regensburg

Jonathon Stone Department of Biology McMaster University Hamilton, Ontario Canada

Eörs Szathmáry Collegium Budapest Institute for Advanced Study Budapest Hungary

Edward W. Thommes Canadian Institute for Theoretical Astrophysics University of Toronto Toronto, Ontario Canada

Contributors

Olga ZhaxybayevaShay ZuckerDepartment of Biochemistry &Geophysics & Planetary ScienceMolecular BiologyDepartmentDalhousie UniversityFaculty of Exact SciencesHalifax, Nova ScotiaTel Aviv UniversityCanadaTel AvivIsrael

xiii

Preface

The inspiration for this book arises from the creation of the Origins Institute (OI) at McMaster University, which formally started operating in July 2004. Many of the greatest questions that face twenty-first century scientists are interrelated in fundamental ways. The OI was established to address several of these major interdisciplinary questions from within a broad framework of 'origins' themes: space-time, elements, structure in the cosmos, life, species, and humanity.

The origin of life has a privileged position in this great sweep of scientific endeavour and ideas. It addresses, arguably, the most surprising and most fundamental transition to have arisen during the entire evolution of the universe, namely, the transformation of collections of molecules from the inanimate to animate realm. Substantial progress in solving this great problem has been achieved relatively recently but may be traced back to ideas first proposed by Darwin. The great excitement in our era is the realization that physical properties of planetary systems play an important role in setting the stage for life, and that microbial life, on Earth at least, is incredibly robust and has adapted itself to surprisingly 'extreme' conditions. Progress can be traced to four scientific revolutions that have occurred over the last two decades:

- (i) the discovery, since 1995, of over 200 extrasolar planets (one which is only 7.5 times more massive than the Earth) around other stars and the possibility that at least a few of these systems may harbour life-sustaining planets;
- (ii) the discovery of extremophile microorganisms on Earth that have adapted to conditions of extreme temperatures, acidity, salinity, etc., which considerably broadens the range of habitats where we might hope to find life on other planets in our solar system and other planetary systems;
- (iii) the rapid advances in genome sequencing that enable comparative analysis of large numbers of organisms at the whole genome level, thereby enabling the study of evolutionary relationships on the earliest branches of the tree of life; and

xvi

Preface

(iv) the enormous efforts being made by National Aeronautics and Space Agency (NASA) and European Space Agency (ESA) (and, more recently, the Canadian Space Agency (CSA)) to send robotic probes to search for water, biomolecules, and life on Mars and Titan and possibly the ice-covered, oceanic moon of Jupiter – Europa.

These are some of the major drivers of the emergent science of astrobiology and were the central themes explored during the two-week conference and workshop sponsored by the OI and held at McMaster University in Hamilton, Ontario, Canada, on 24 May–4 June 2005. Our conference featured invited review lectures as well as invited and contributed talks from many of the international leaders in the field (for a full list, please consult the conference internet site at http://origins.mcmaster.ca/astrobiology/).

How to use this book - a user's manual

The chapters of this book are derived from invited, one-hour review talks, as well as a few invited shorter talks, given at the conference. These constitute an outstanding set of lectures delivered by masters of fields such as planetary science, evolutionary biology, and the interdisciplinary links between the two. One of our major goals was to create a volume that would be useful for teaching an interdisciplinary audience at the level of senior undergraduate or junior graduate students. Our intent was to capture the exciting interdisciplinary research atmosphere that attendees experienced at the conference and, thereby, create a volume that is an excellent resource for research. The OI plans to use this volume for a third year undergraduate course about the origins of life, which will be offered for the first time in 2006. The authors were all aware of these two aspects of the book as they prepared their manuscripts. To accommodate and educate a broad interdisciplinary audience, we have tried to ensure that technical jargon is kept to a minimum without compromising scientific accuracy and a clear analysis of the important principles and latest results at an advanced scientific level.

The editors made every effort to keep the authors of individual chapters informed of the content of related chapters. All of the chapters in this book were peer reviewed by arm's-length experts in relevant fields. In addition to receiving useful referee reports, the authors also received comprehensive comments from the editors designed to help integrate their chapters with other related chapters. We hoped by these means to create an integrated book of the highest scientific standard and not just a collection of unrelated review talks that are typical of many conference proceedings. The users of this book will be the ultimate judges of how well we succeeded in attaining this goal.

There are three parts of this book. The first takes the reader from the domain of planetary systems and how they are formed, through the origins of biomolecules

Preface

xvii

and water and their delivery to terrestrial planets. It then focuses on general questions about how the genetic code may have appeared and how the first cells were assembled. These chapters marshal general arguments about the possible universality of basic processes that lead to the appearance of life, perhaps on planets around most stars in our Galaxy and others.

The second part – life on Earth – begins with an exploration of microbial life on our planet and how it has adapted to extreme environments. These are analogous to environments that will be explored on Mars and other worlds in the Solar System. The part then moves on to the results of genomics – as exploited by phylogenetic methods. This allows us to explore the interrelationships of organisms to try to create a tree of life. This is central to efforts designed to address what the earliest organisms might have been like, and two chapters are devoted to such issues. This part then moves on to explore ideas on how metazoans originated approximately 560 million years ago.

The topic of the final part of the book – the search for life in the Solar System – constitutes a synthesis of those from the first two parts and lies at the heart of modern 'astrobiology'. Its four chapters review the latest results on the physical environments and the search for life in the Solar System, specifically on Mars, Titan, and Europa.

Acknowledgements

There are many people to thank for helping to put together the conference out of which this book originated. Financial support for sponsoring research conferences and workshops run by the OI comes ultimately from the Office of the Vice President Research at McMaster University – Professor Mamdouh Shoukri. We are indebted to him for his keen interest and support in helping us launch the OI and this first conference.

The scientific organizing committee for the conference consists of OI members – who are also faculty members in departments across the Faculty of Science. The list of organizers is:

- Professors Paul Higgs and James Wadsley of the Dept. of Physics and Astronomy
- Professors Brian Golding and Jonathon Stone (also the Associate Director of the OI) from the Dept. of Biology
- Professor Ralph Pudritz, the chair of the organizing committee, Director of the OI, and member of the Dept. of Physics and Astronomy

The hard work and scientific insights of these committee members were essential in driving the very successful conference programme, discussions, workshop, and, ultimately, the foundations of this book. xviii

Preface

The enormous amount of work in actually organizing and running this international conference and workshop was carried out with great skill and dedication by two outstanding individuals:

- Ms Mara Esposto, administrator for the Dept. of Physics and Astronomy and part time administrator support for the OI and
- Ms Rosemary McNeice, the OI secretary and also secretary in the Dept. of Physics and Astronomy.

The design of the posters and website was carried out by:

- Mr Steve Janzen, graphic designer and media production services at McMaster, as well as by
- Mr Dan O'Donnell, an undergraduate physics and astronomy student. Dan also performed all of the many tasks needed to keep the conference website updated, and ran all of the audiovisual equipment at the conference.

Ultimately, the value of this book rests with the outstanding efforts and insights of our chapter authors, all of whom wrote admirable contributions and did a lot of extra work in addressing referee and editorial reports. The editors could not have finished this book without the outstanding services of Dan O'Donnell who performed all the LaTeX formatting required for this volume.

Finally, we wish to thank our excellent editors and assistants at Cambridge University Press for their interest in this volume, for their patience and many helpful suggestions, and for their quick responses to the many issues that came up in producing this volume. We thank in particular Miss Jacqueline Garget, who was the commissioning editor for astronomy and space science in charge of the Astrobiology series and whose early interest in our proposal helped to launch this volume. We also thank Vince Higgs, editor, astronomy and astrophysics who followed Jacqueline as well as his assistant, Ms Helen Morris (publishing assistant, physical sciences), for all of their help. Their continued support and help has been most welcome.

We close this preface with the hope that the reader of this volume will find much fascination, inspiration, and enjoyment in its pages. The scope and promise of this vibrant new area of science is extraordinary. We, as editors as well as authors, enjoyed our task and feel privileged to have worked with so many outstanding individuals during this project.