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Linear elastic waves

Chapter 1 provides the background, both the model equations and some

of the mathematical transformations, needed to understand linear elas-

tic waves. Only the basic equations are summarized, without derivation.

Both Fourier and Laplace transforms and their inverses are introduced

and important sign conventions settled. The Poisson summation formula

is also introduced and used to distinguish between a propagating wave

and vibration of a bounded body. A general survey of books and collec-

tions of papers that bear on the contents of the book are discussed at

the end of the chapter.

A linear wave carries information at a particular velocity, the group

velocity, which is characteristic of the propagation structure or envi-

ronment. It is this transmission of information that gives linear waves

their special importance. In order to introduce this aspect of wave prop-

agation, we discuss propagation in one-dimensional periodic structures.

Such structures are dispersive and therefore transmit information at a

speed different from the wavespeed of their individual components.

1.1 Model equations

The equations of linear elasticity consist of:

(1) the conservation of linear and angular momentum; and

(2) a constitutive relation relating force and deformation.

In the linear approximation the density ρ is constant. The conservation

of mechanical energy follows from (1) and (2). The most important fea-

ture of the model is that the force exerted across a surface, oriented

by the unit normal nj , by one part of a material on the other is given
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2 Linear elastic waves

by the traction ti = τjinj , where τji is the stress tensor. The conserva-

tion of angular momentum makes the stress tensor symmetric: that is,

τij = τji. The conservation of linear momentum, in differential form, is

expressed as

∂kτki + ρfi = ρ∂2
t ui . (1.1.1)

The term fi is a force per unit mass. In general we use Cartesian tensors

such as τij , where the indices i, j = 1, 2, 3, or a bold-face notation τ .

The symbol ∂i is used to represent the partial derivative with respect to

the ith coordinate; it is the ith component of the gradient operator ∇.

Similarly, sometimes dxf is used to represent df/dx. Repeated indices

are summed over 1, 2, 3 unless otherwise indicated. For problems

engaging only two coordinates, subscripts using Greek letters such as

α, β = 1, 2 are used so that a vector component would be written as

uβ and a partial derivative as ∂α. When these subscripts are repeated

they are summed over 1, 2. At times we use symbols such as cL or cT

when there is a need to distinguish between parameters that relate to

compressional or shear disturbances, but when that distinction is not

important we drop the subscript. Constants such as A are used over and

over again and have no special meaning.

Deformation is described using a strain tensor

ǫij = (∂iuj + ∂jui)/2, (1.1.2)

where ui is ith component of particle displacement. The underlying

dependence of the deformation is upon the symmetric part of the dis-

placement gradient ∇u, which ensures that no rigid body rotations are

included. For a homogeneous, isotropic, linearly elastic solid, stress and

strain are related by

τij = λǫkkδij + 2μǫij , (1.1.3)

where λ and μ are Lamé’s elastic constants and δij is the Kronecker

delta symbol. Substituting (1.1.2) in (1.1.3), followed by substituting the

outcome into (1.1.1), gives one form of the equation of motion, namely,

(λ + μ)∂i∂kuk + μ∂j∂jui + ρfi = ρ∂2
t ui . (1.1.4)

Written in vector notation the equation becomes

(λ + μ)∇(∇ · u) + μ∇2u + ρf = ρ∂2
t u . (1.1.5)
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1.1 Model equations 3

Using the identity ∇2u = ∇(∇ · u) −∇ ∧∇ ∧ u, the equation can also

be written in the form

(λ + 2μ)∇(∇ · u) − μ∇∧∇ ∧ u + ρf = ρ∂2
t u. (1.1.6)

This last equation indicates that elastic waves have both dilatational ∇·u

and rotational ∇ ∧ u deformations. If ∂R is the boundary of a region

R occupied by a solid then commonly the tractions t or displacements

u, or combinations of either, are prescribed on ∂R. When t is given

over part of ∂R and u over another part, the boundary conditions are

said to be mixed. One very common boundary condition is to ask that

t = 0 everywhere on ∂R. This models the case where a solid surface

is adjacent to a gas of such small density and compressibility that it is

almost a vacuum. When R is infinite in one or more dimensions, special

conditions are imposed such that a disturbance decays to zero at infinity

or radiates outward toward infinity from any sources contained within R.

Another common situation is that in which ∂R12 is the boundary

between two regions, 1 and 2, occupied by solids having different prop-

erties. Contact between solid bodies is quite complicated, but in many

cases it is usual to assume that the traction and displacement, t and

u, are continuous. This models welded contact. One other simple con-

tinuity condition that commonly arises is that between a solid and an

ideal fluid. Because the viscosity is ignored, the tangential component of

t is set to zero, while the normal component of traction and the normal

component of displacement are made continuous.

These are only models and are often inadequate. To briefly indicate

some of the possible complications, consider two solid bodies pressed

together. A (linear) wave incident on such a boundary would experience

continuity of traction and displacement when the solids press together,

but would experience a traction-free boundary condition when they pull

apart (Comninou and Dundurs, 1977). This produces a complex non-

linear interaction.

The reader may consult Hudson (1980) for a succinct discussion of lin-

ear elasticity or Atkin and Fox (1980) for a somewhat more general view.

1.1.1 One-dimensional models

We assume that the various wavefield quantities depend only on the

variables x1 and t. For longitudinal strain u1 is finite, while u2 and u3

are assumed to be zero, so that (1.1.2) combined with (1.1.3) becomes

τ11 = (λ + 2μ)∂1u1, τ22 = τ33 = λ∂1u1, (1.1.7)
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4 Linear elastic waves

and (1.1.1) becomes

(λ + 2μ)∂2
1u1 + ρf1 = ρ∂2

t u1. (1.1.8)

For longitudinal stress all the stress components except τ11 are assumed

to be zero. Equation (1.1.3) becomes

τ11 = E∂1u1, E = μ
3λ + 2μ

λ + μ
, (1.1.9)

and

∂2u2 = ∂3u3 = −ν∂1u1, ν =
λ

2(λ + μ)
. (1.1.10)

Equation (1.1.1) now becomes

E∂2
1u1 + ρf1 = ρ∂2

t u1 . (1.1.11)

Equations (1.1.8) and (1.1.11) are essentially the same, though they have

somewhat different physical meanings. The longitudinal stress model is

useful for rods having a small cross-section and a traction-free surface.

Stress components that vanish at the surface are assumed to be negligible

in the interior.

1.1.2 Two-dimensional models

We assume that the various wavefield quantities are independent of x3.

As a consequence, (1.1.1) breaks into two separate equations, namely,

∂βτβ3 + ρf3 = ρ∂2
t u3 (1.1.12)

and

∂βτβα + ρfα = ρ∂2
t uα . (1.1.13)

We use Greek subscripts α, β = 1, 2 to indicate that the independent

spatial variables are x1 and x2. The case for which the only non-zero dis-

placement component is u3(x1, x2, t), namely (1.1.12), is called antiplane

shear motion, or SH motion for shear horizontal. In this case

τ3β = μ∂βu3, (1.1.14)

giving, from (1.1.12),

μ∂β∂βu3 + ρf3 = ρ∂2
t u3 . (1.1.15)

Note that this is a two-dimensional scalar equation, similar to (1.1.8) or

(1.1.11).

The case for which u3 = 0, while the other two displacement com-

ponents are generally non-zero, (1.1.13), is called inplane motion. The

www.cambridge.org/9780521875301
www.cambridge.org


Cambridge University Press
978-0-521-87530-1 — Elastic Waves at High Frequencies
John G. Harris
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Model equations 5

initials P and SV are used to describe the two types of inplane motion,

namely, compressional and shear vertical, respectively. For this case

(1.1.3) becomes

ταβ = λ∂γuγδαβ + μ(∂αuβ + ∂βuα), (1.1.16)

and

τ33 = λ∂γuγ . (1.1.17)

The equation of motion remains (1.1.4): that is,

(λ + μ)∂α∂βuβ + μ∂β∂βuα + ρfα = ρ∂2
t uα. (1.1.18)

This last equation is a vector equation and contains two wave types,

compressional and shear, whose character we explore shortly. It leads to

problems of some complexity.

These two-dimensional equations are the principal models used. The

scalar model (1.1.14) allows us to solve complicated problems in detail

without being overwhelmed by the size and length of the calculations

needed, while the vector model (1.1.18) allows us enough structure to

indicate the complexity found in elastic wave propagation.

1.1.3 Displacement potentials

When (1.1.4)–(1.1.6) are used, a boundary condition, such as t = 0, is

relatively easy to implement. However, in problems where there are few

boundary conditions, it is often easier to cast the equations of motion

into a simpler form and allow the boundary condition to become more

complicated. One way to do this is to use Helmholtz’ theorem (Phillips,

1933, pp. 182–196) to express the particle displacement u as the sum of

a scalar ϕ and a vector potential ψ: that is,

u = ∇ϕ + ∇∧ ψ, ∇ · ψ = 0. (1.1.19)

The second condition is needed because u has only three components

(the particular condition selected is not the only possibility). Assume

f = 0. Substituting these expressions into (1.1.6) gives

(λ + 2μ)∇

(

∇2ϕ −
1

c2
L

∂2
t ϕ

)

+ μ∇∧

(

∇2ψ −
1

c2
T

∂2
t ψ

)

= 0. (1.1.20)

The equation can be satisfied if

c2
L∇

2ϕ = ∂2
t ϕ, c2

L = (λ + 2μ)/ρ, (1.1.21)

and

c2
T∇

2ψ = ∂2
t ψ, c2

T = μ/ρ. (1.1.22)
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6 Linear elastic waves

The terms cL and cT are the compressional or longitudinal wavespeed,

and shear or transverse wavespeed, respectively. The scalar potential

describes a wave of compressional motion, which in the plane-wave case

is longitudinal, while the vector potential describes a wave of shear

motion, which in the plane-wave case is transverse. Knowing ϕ and ψ,

do we know u completely? Yes we do. Proofs of completeness, along with

related references, are given in Achenbach (2003).

1.2 Continuity and boundary conditions

Consider a plane fluid–solid interface oriented by means of a unit normal

vector n̂ pointing into the fluid. The traction acting on the surface of

the solid is ts = n̂ ·τ . The continuity conditions at the interface are thus

expressed as

ts · n̂ = −pf , n̂ ∧ ts = 0, us · n̂ = uf · n̂. (1.2.1)

Because the fluid is ideal, no condition is placed on n̂ ∧ uf,s.

The only other boundary condition needed in this work is one at infin-

ity. The waves must in general be outgoing, though when the focused

beam is discussed an incoming wave is considered. The principle of lim-

iting absorption (Harris, 2001, pp. 62, 63) is used, in most cases, to

determine this. Either by Fourier transforming a signal or by considering

a time-harmonic one, in the far field, it will have the form

ϕ =
A(φ, θ)

kr
ei(kr−ωt),

where (r, φ, θ) are spherical coordinates, and k = ω/c is the wavenumber,

with c being the wavespeed. The angular frequency is defined such that

ω = ω0 +iǫ, ω0 > 0, ǫ ≥ 0. The wavenumber then becomes k = (ω0/c)+

i(ǫ/c). Therefore

|ϕ| ∼ e−ǫr/c eǫt, (1.2.2)

as r → ∞ with t fixed; that is, the wave vanishes provided the combi-

nation [i(kr − ωt)] appears in some guise. The parameter ǫ can be sent

to zero at the end of the calculations.

1.3 Flux of energy

The remaining conservation law of importance is the conservation of

mechanical energy. Again assume f = 0. This law can be derived directly
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1.3 Flux of energy 7

from (1.1.1)–(1.1.3) by taking the dot product of ∂tu with (1.1.1). This

gives, initially,

(∂jτji)∂tui − ρ(∂2
t ui)∂tui = 0. (1.3.1)

Forming the product τklǫkl, using (1.1.3) and making use of the decom-

position ∂jui = ǫji +ωji, where ωji = (∂jui −∂iuj)/2, allows us to write

(1.3.1) as

1

2
∂t {ρ(∂tui)(∂tui) + τkiǫki} + ∂k (−τki∂tui) = 0. (1.3.2)

The first two terms on the left-hand side become the time rates of

change of

K =
1

2
ρ(∂tuk)(∂tuk), U =

1

2
τijǫij . (1.3.3)

These are the kinetic and internal energy density, respectively. The

remaining term is the divergence of the energy flux, F , where Fj is

given by

Fj = −τji∂tui . (1.3.4)

Equation (1.3.2) can then be written as

∂E

∂t
+ ∇ · F = 0, (1.3.5)

where E = K + U and is the energy density. This is the differential

statement of the conservation of mechanical energy. To better under-

stand that the energy flux or power density is given by (1.3.4), consider

an arbitrary region R, with surface ∂R. Integrating (1.3.5) over R and

using Gauss’ theorem gives

d

dt

∫

R

E(x, t) dV = −

∫

∂R

F · n̂dS. (1.3.6)

Therefore, as the mechanical energy decreases within R, it radiates

outward across the surface ∂R at a rate F · n̂.

Because time-harmonic problems are being considered (see the next

section), the time average of the flux of energy per unit area, or the

intensity, is of interest. The time average of a quantity a(x, t) is defined as

〈a(x, t)〉 :=
1

T

∫ t+T

t

a(x, τ)dτ, (1.3.7)

where T = 2π/ω, and the time-dependence is e−iωt. Given two terms

a(x, t) = Re[a(x)e−iωt], b(x, t) = Re[b(x)e−iωt],
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8 Linear elastic waves

the time average of their product is

〈a(x, t) b(x, t)〉 =
1

2
Re[a(x) b∗(x)]. (1.3.8)

This is derived by a direct substitution of the product into (1.3.7). The

superscript ∗ indicates the complex conjugate.

Equation (1.3.8) is especially useful when calculating the time-average

flux of energy per unit area, which is also called the intensity. Expressing

the stress tensor and particle displacement as

τ (x, t) = Re[τ (x)e−iωt], u(x, t) = Re[u(x)e−iωt],

the time average of (1.3.4) is

〈F〉 =
1

2
Im[ω τ (x) · u∗(x)]. (1.3.9)

Two additional time-average quantities will be of interest: the time-

average flux of energy 〈P〉 across a surface ∂S oriented by the unit

normal n̂, and its complex counterpart 〈P〉c. These are given by

〈P〉 = Re〈P〉c =

∫

∂S

〈F〉 · n̂dS (1.3.10)

and

〈P〉c =
iω

2

∫

∂S

(τ · u∗) · n̂dS. (1.3.11)

Lastly, in all the cases treated in this book it can be shown (Auld,

1990a, pp. 201–207; Lighthill, 1965) that

〈F〉 = C〈E〉, (1.3.12)

where C is the group velocity and the energy density E is given following

(1.3.5).

Cautionary note. There are waves, such as mode L3 of an elastic

plate (see §3.2 and §8.2), whose group velocity C and wave (or phase)

velocity c are in different directions. In such cases, the principle of lim-

iting absorption, (1.4.2), must be applied with care, and it is more

direct to ask that 〈F〉, or equivalently C, be directed away from the

source.
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1.4 The Fourier and Laplace transforms 9

1.4 The Fourier and Laplace transforms

All waves are transient in time. One useful representation of a transient

waveform is its Fourier one. This representation imagines the transient

signal decomposed into an infinite number of time-harmonic or frequency

components. One important reason for the usefulness of this representa-

tion is that the transmitter, receiver, and propagation structure usually

respond differently to the different frequency components. The linearity

of the problem ensures that we can work out the net propagation out-

comes for each frequency component and then combine the outcomes to

recreate the received signal.

The Fourier transform is defined as

ū(x, ω) =

∫ ∞

−∞

eiωtu(x, t)dt. (1.4.1)

The variable ω is complex. Its domain is such as to make the above

integral convergent. For t > 0 this domain is Im(ω) > 0. ū is an analytic

function within the domain of convergence, though it can be analytically

continued beyond it.1 The inverse transform is defined as

u(x, t) =
1

2π

∫ ∞

−∞

e−iωtū(x, ω)dω . (1.4.2)

Thus we have represented u as a sum of harmonic waves e−iωtū(x, ω).

Note that there is a specific sign convention for the exponential term that

we shall adhere to throughout the book.

A closely related transform is the Laplace one. It is usually used for

initial-value problems so that we imagine that, for t < 0, u(x, t) is

zero. This is not essential and its definition can be extended to include

functions that extend through values of negative t. This transform is

defined as

ũ(x, p) =

∫ ∞

0

e−ptu(x, t)dt. (1.4.3)

As with ω, p is a complex variable and its domain is such as to make

ũ(x, p) an analytic function of p. The domain is initially defined as

Re(p) > 0, but the function can be analytically continued beyond this.

Note that p = −iω so that Im(ω) > 0. The inverse transform is given by

u(x, t) =
1

2πi

∫ ǫ+i∞

ǫ−i∞

eptũ(x, p)dp, (1.4.4)

1 Analytic functions defined by contour integrals, including the case in which the
contour extends to infinity, are discussed in Titchmarsh (1939, pp. 85–86) in a
general way and in more detail by Noble (1988).
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10 Linear elastic waves

where ǫ ≥ 0. The expressions for the inverse transforms (1.4.2) and

(1.4.4) are misleading. In practice we define the inverse transforms on

contours that are designed to capture the physical features of the solu-

tion. A large part of this book will deal with just how those contours

are selected. But, for the present, we shall work with these definitions.

Consider the case of longitudinal strain. Imagine that at t = −∞ a

disturbance started with zero amplitude. Taking the Fourier transform

of (1.1.8) gives

d2ū1

dx2
1

+ k2ū1 = 0, (1.4.5)

where k = ω/cL and cL is the compressional wavespeed defined in

(1.1.21). The parameter k is called the wavenumber. Equation (1.4.5)

has solutions of the form

ū1(x1, ω) = A(ω)e±ikx1 . (1.4.6)

If we had sought a time-harmonic solution of the form

u1(x1, t) = ū1(x1, ω)e−iωt, (1.4.7)

we should have gotten the same answer except that e−iωt would be

present. In other words, taking the Fourier transform of an equation

over time or seeking solutions that are time-harmonic are two slightly

different ways of doing the same operation.

For (1.4.7), it is understood that the real part can always be taken to

obtain a real disturbance. Much the same happens in using (1.4.2). In

writing (1.4.2) we implicitly assumed that u(x, t) was real. That being

the case, ū(x, ω) = ū∗(x,−ω), where the superscript ∗ to the right of the

symbol indicates the complex conjugate. From this it follows that

u(x, t) =
1

π
Re

∫ ∞

0

e−iωtū(x, ω)dω . (1.4.8)

The advantage of this formulation of the inverse transform is that we may

proceed with all our calculations using an implied e−iωt and assuming ω

is positive. The importance of this will become apparent in subsequent

chapters. Equation (1.4.8) can be regarded as a generalization of taking

the real part of a time-harmonic wave (1.4.7).

Equation (1.4.6), when the + sign is taken, is a time-harmonic, plane

wave propagating in the positive x1 direction. We assume that the

wavenumber k is positive, unless otherwise stated. The wave propagates

in the positive x1 direction because the term (kx1−ωt) remains constant,

and hence u1 remains constant, only if x1 increases as t increases. The
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