
Rigid Cohomology

Dating back to work of Berthelot, rigid cohomology appeared as a common
generalization of Monsky–Washnitzer cohomology and crystalline cohomology. It is a
p-adic Weil cohomology suitable for computing Zeta and L-functions for algebraic
varieties on finite fields. Moreover, it is effective, in the sense that it gives algorithms
to compute the number of rational points of such varieties.

This is the first book to give a complete treatment of the theory, from full discussion
of all the basics to descriptions of the very latest developments. Results and proofs
are included that are not available elsewhere, local computations are explained, and
many worked examples are given. This accessible tract will be of interest to
researchers working in arithmetic geometry, p-adic cohomology theory, and related
cryptographic areas.
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À Pierre Berthelot.

Une mathématique bleue,
Sur cette mer jamais étale
D’où me remonte peu à peu
Cette mémoire des étoiles

(LÉO FERRÉ)
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Preface

In 2004, I was asked by Professor King Fai Lai to come to Peking University in
order to give a course on rigid cohomology. We agreed on the last two weeks of
January 2005. I want to thank here Professor Zhao Chunlai for the organization
of my visit as well as Professor Zhou Jian and his wife for showing us the city.
My family and I will always remember it.

While preparing this course, I realized that there was no introductory book
on rigid cohomology. Actually, there was no available material in English and
only an old document in French, Cohomologie rigide et cohomologie rigide
à support propre, by Pierre Berthelot. A revised version of the first part of
this document appeared as an official preprint in 1996 but the second part is
not fully written yet and, therefore, not really available to the mathematical
community. Fortunately, Berthelot was kind enough to answer my questions
on this second part and point out some articles where I could find some more
information.

Rigid cohomology was introduced by Berthelot as a p-adic analogue of
l-adic cohomology for lisse sheaves, generalizing Monsky–Washnitzer theory
as well as crystalline cohomology (up to torsion). Recently, it appeared that
this theory may be used in order to derive new algorithms for cryptography.
The first result in this direction is due to Kiran Kedlaya who has also done
incredible work on the theoretical aspect of the theory.

I knew that it was impossible to cover the full story in twenty one-hour
lectures. I decided to first introduce the theory from the cryptography point of
view (Introduction), then describe the basics of the theory with complete proofs
(heart of the the course), and conclude with an overview of the development
of the theory in the last 20 years (Conclusion). In particular, the main part of
this book is quite close to Berthelot’s original document. I hope that this will
be useful to the students who want to learn rigid cohomology and, eventually,
improve on our results.

ix
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x Preface

I insist on the fact that there is no original matter here and that almost
everything is due to Pierre Berthelot, apart from the mistakes arising from my
misunderstanding.

One can split the so-far short life of rigid cohomology into three periods: (1)
foundations, (2) cohomology of varieties and (3) cohomology of F -isocrystals.

It is a wonderful idea of Berthelot’s to generalize crystalline and Monsky–
Washnitzer cohomology into one theory. The principle is to compactify the
variety X, embed it into some smooth formal scheme P and compute the
limit de Rham cohomology of “strict” neighborhoods V of X in the generic
fiber PK of P . The astonishing fact is that the result does not depend on the
choices. Better: there exists a category of coefficients for this theory. This is
simply the limit category of differential modules on strict neighborhoods V

that have the good idea to be “overconvergent”. What makes this possible is a
deep geometrical result, the strong fibration theorem. It tells us that even the
geometry of V is essentially independent of the choices.

Some time after Berthelot had laid the foundations, the theory got a kick
thanks to Johan de Jong’s alterations theorem. He made it possible to use
rigid cohomology as a bridge between crystalline cohomology and Monsky–
Washnitzer cohomology in order to show that the latter is finite dimensional.
More generally, de Jong’s theorem, which states that one can solve singularity
in characteristic p if one is ready to work with étale topology, can be used to
show that rigid cohomology of varieties satisfies the formalism of Bloch–Ogus
(finiteness, Poincaré duality, Künneth formula, cycle class, etc.).

The third period started with three almost simultaneous proofs of the so
called conjecture of Crew. Even if he never stated this as an explicit conjec-
ture, Crew raised the following question: is a differential module with a strong
Frobenius structure on a Robba ring automatically quasi-unipotent? The first
proof, due to Yves André is an application of representation theory using re-
sults of Christol and Mebkhout on “slopes”. The second one, due to Zogman
Mebkhout, is derived from his previous work. More important for us, the
third one, due to Kiran Kedlaya, is a direct construction and can be general-
ized to higher dimension. From this, he can derive all the standard properties
of rigid cohomology of overconvergent F -isocrystals, and in particular finite
dimensionality.

In this course, we will focus on foundations. The main results of the second
period will be mentioned in the Introduction where we will try to give a histori-
cal introduction based on Weil’s conjectures and recent results in cryptography.
In the Conclusion, we will try to evaluate the state of the art and, at the same
time, review the main results of the third period.
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Preface xi
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Outline

Chapter 1 is an introduction to the theory from the cryptography viewpoint.
More precisely, several decades after André Weil had stated his conjectures,
it appeared that an effective proof of these results would be useful to cryp-
tography. Actually, the p-adic approach gives better results in some cases. We
recall the discrete logarithm problem and explain why it is useful to explicitly
compute the number of points of algebraic varieties. This is the purpose of Weil
conjectures which predict the existence of arithmetic cohomology theories that
will compute Zeta functions. Rigid cohomology is such a theory and we give
its properties. Finally, in Weil’s proof of the diagonal hypersurface case, the
necessity of introducing coefficients for the theory already appears. This leads
to the notion of L-functions.

Chapter 2 is devoted to the study of non-archimedean tubes. After fixing
the setting (we assume that the reader is familiar with rigid analytic geometry),
we introduce successively the notion of open tube of radius one and then the
notion of tube of smaller radius. If we are given a subvariety of the special
fiber of a formal scheme, the tube is simply the set of points in the generic
fiber that specialize into the given subvariety. The idea is to see this tube as
a lift of the algebraic variety (of positive characteristic) to an analytic variety
(of characteristic zero). Such a tube is not quasi-compact in general, and it is
therefore necessary to introduce smaller tubes which are quasi-compact and
whose increasing union is the original tube. The main result of this chapter
is the Weak Fibration Theorem (Corollary 2.3.16) which says that a smooth
morphism of formal scheme around an algebraic variety induces locally a
fibration by open balls (or better said, polydiscs). This will imply that the de
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xii Preface

Rham cohomology of the tube does not depend on the embedding into the
formal scheme.

Chapter 3 is rather technical but fundamental. The de Rham cohomology
of a closed ball is infinite dimensional and it is therefore necessary to work
in its neighborhood if one is looking for something interesting. Unfortunately,
rigid topology is not a usual topology and it is necessary to refine the notion of
neighborhood into that of strict neighborhood. We introduce the notion of frame
which is a sequence of an open immersion of algebraic varieties and a closed
immersion into a formal scheme. We then study the strict neighborhoods of the
tube of the first variety into the tube or the second one. For future computations,
it is essential to have a deep understanding of these strict neighborhoods. The
first idea is to remove a small tube of the complement (the locus at infinity).
But this does not give sufficiently general strict neighborhoods. We really
need to play around a little more with tubes in order to define the so-called
standard strict neighborhoods. It is then possible to extend the Weak Fibration
Theorem to strict neighborhoods and obtain the Strong Fibration Theorem
(Corollary 3.4.13). This is it for the geometrical part.

Chapter 4 is supposed to be a break. After recalling the basics about mod-
ules with integrable connections and their cohomology, we study them in the
context of strict neighborhoods and show that this is closely related to the no-
tion of radius of convergence. Actually, modules with integrable connections,
D-modules, stratified modules and crystals are simply different ways of see-
ing the same objects. We try to make this clear in the rigid geometric setting.
We work out some examples, Dwork, Kummer, superelliptic curves, Legendre
family, hypergeometric equations, etc. Then, we introduce the overconvergence
condition for an integrable connection. It means that the Taylor series is actu-
ally defined on some strict neighborhood of the diagonal. Locally, there is an
explicit description of this condition and this is the main result of the chapter
(Theorem 4.3.9). We then introduce the notion of radius of convergence of an
integrable connection with respect to a given set of étale coordinates and use
it to rewrite the overconvergence condition when the geometry is not too bad.
Finally, we also do the case of weakly complete algebras and Robba ring. They
will appear to be very important in the future when we try to compute rigid
cohomology.

Chapter 5 introduces the notion of overconvergent sheaf. The idea is to work
systematically with sections defined on a strict neighborhood. This notion of
overconvergence is actually very general and works in any topos but we quickly
specialize to the case of frames. In the case of abelian sheaves, we introduce also
the notion of sections with overconvergent support as well as the more classical
notion of sections with support. Next, we consider the sheaf of overconvergent
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Preface xiii

sections of the structural sheaf on the tube of a frame, and modules on this ring,
which we call dagger modules. The main result of this chapter (Theorem 5.4.4)
shows that the category of coherent dagger modules is equivalent to the limit
category of coherent modules on strict neighborhoods. In this chapter, we also
give a geometric meaning to weakly complete algebras and Robba rings and
prove Serre Duality in this context.

Chapter 6 studies dagger modules with integrable connections and their
cohomology. We simply apply usual calculus as explained earlier to dagger
modules. Rigid cohomology is just usual de Rham cohomology and it can
be extended to rigid cohomology with support in a closed subset by using
sections with overconvergent support. There is also the alternative theory of
cohomology with compact support which is made out of usual sections with
support. We give comparison theorems with Monsky-Washnitzer cohomology
and de Rham cohomology of Robba rings. The main result of the chapter
(Theorem 6.5.2) shows that rigid cohomology of coherent dagger modules
with integrable connection is invariant under a morphism of frames which is
the identity at the first level, proper at the second and smooth at the third. We
also prove the analogous results for cohomology with support. These theorems
will prove fundamental later.

Chapter 7 gives a crystalline interpretation of the theory. We define a (finitely
presented) overconvergent isocrystal on a frame as a family of coherent dagger
modules on all frames above it with some compatibility conditions. We prove
in Proposition 7.1.8 that the category of overconvergent isocrystals is invariant
under a morphism of frames which is the identity at the first level, proper
at the second and smooth at the third. We also show in Proposition 7.2.13
that one recovers exactly the notion of overconvergent integrable connection
introduced earlier. In particular, we can define the rigid cohomology of an
overconvergent isocrystal as the rigid cohomology of the corresponding module
with connection. Next, we consider what we call a virtual frame. This is simply
an open immersion of algebraic varieties but we want to see it as an incomplete
frame. One defines overconvergent isocrystals on a virtual frame exactly as
above and shows that we do get the same category when the virtual frame
extends to a smooth frame. Moreover, rigid cohomology is then independent of
the chosen extension thanks to our comparison theorems. Thus, it makes sense
to talk about the rigid cohomology of an overconvergent isocrystal on a virtual
frame.

Chapter 8 rewards us because we may now define overconvergent isocrys-
tals on an algebraic variety and their cohomology in a functorial way. First of
all, exactly as above, an overconvergent isocrystal on an algebraic variety is
just a family of dagger modules on each frame above the variety with some
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xiv Preface

compatibility conditions. If we embed successively our variety as an open subset
of a proper variety and then as a closed subset of a smooth formal scheme, we get
an equivalence with the category of overconvergent isocrystals on the frame as
shown in Corollary 8.1.9. Moreover, the cohomology is independent of the
choice of the embeddings as showed in Proposition 8.2.3. We finish with the
study of Frobenius action. We show that rigid cohomology is fully compatible
with Monsky–Washnitzer theory and, in particular, prove that overconvergent
F -isocrystals correspond exactly to coherent modules with an integrable con-
nection and a strong Frobenius.

Chapter 9 gives some informal complements. We recall what crystalline
cohomology is and how it may be used to compute rigid cohomology. This
comparison theorem could have been included with a complete proof in the
main part of the course but it did not seem reasonable to assume that the reader
was familiar with crystalline cohomology. Then, we explain how alterations
can be used to derive finiteness of rigid cohomology without coefficient from
this comparison theorem. Again, finiteness of rigid cohomology with compact
support could have been included with full proof. Unfortunately, the proof
for cohomology without support relies on a Gysin isomorphism that requires
the theory of arithmetic D-modules. We also explain the Crew conjecture and
Kedlaya’s methods to solve it. We end with Shiho’s theory of convergent log
site and his monodromy conjecture which may be seen as a generalization of
the conjecture of Crew.

Conventions and notations

When there is no risk of confusion, we will use standard multi-index notations,
namely

i := i1, . . . , in, |i| := i1 + · · · + in, i ≤ j ⇔ ∀k, ik ≤ jk

i! = i1! · · · in!,

(
i!

j !

)
:= i!

j !(i − j )!
,

t i := t
i1
1 · · · t inn , t [i] := t i

i!
,

and so on. Also, if X = ∪i∈IXi and J ⊂ I , then XJ := ∩i∈J Xi and if
λi : Xi ↪→ X denotes the inclusion map, we will write λJ : XJ ↪→ X for the
inclusion of the intersection.
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Preface xv

Throughout this book, we will work on a complete ultrametric field K with a
non trivial absolute value. We will denote by V its valuation ring, m its maximal
ideal and by k its residue field. Also, π will be a non zero element of m. There
is no harm in assuming that K has characteristic zero even if this is almost
never used in the theory. The reader will get a better intuition if he also assumes
that k has positive characteristic p.

Positive real numbers are always assumed to live in |K∗| ⊗ Q ⊂ R>0.
As usual, if S is any scheme (or ring), then AN

S (resp. PN
S ) will denote

the affine (resp. projective) space of dimension N over S. Also, when K is a
complete ultrametric field and ρ > 0, then BN (0, ρ+) (resp. BN (0, ρ−)) will
denote the closed (resp. open) ball (or polydisc) of radius ρ. It is the rigid
analytic open subset of AN,rig

K defined by |ti | ≤ ρ (resp. |ti | < ρ). We may
allow ρ = 0 in the + case and ρ = ∞ in the − case. When N = 1, we drop it
from the notations. Finally, if 0 < ε < ρ, then

AK (0, ε±, ρ±) := B(0, ρ±) \ B(0, ε∓)

will denote the annulus off radii ε and ρ. Again, we may allow ε = ρ in the
++ case as well as ε = 0 in the +± case and ρ = ∞ in the ±− case.

Since it is sometimes needed in applications, we choose not to assume that
varieties or formal schemes are quasi-compact. Many results and definitions
are however invalid without this assumption. It is therefore necessary to add
this hypothesis form time to time. The reader who so wishes may assume that
all (formal) schemes are quasi-compact in order to turn many assertions into a
simpler form.
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