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Introduction

1.1 Alice and Bob

Suppose Alice wants to send a secret message s to Bob. If Eve intercepts the
message, then she can read it and it will not be secret anymore. Thus, Alice
and Bob should agree on a two ways protocol that will turn the secret message
s into a public message p. This is called encryption. Reversing the operations
will allow Bob to recover s from p. For example, Alice would shift the letters
of the message in alphabetical order and Bob will simply do the same thing in
the reverse order (Caesar cipher). The Advanced Encryption Standard (AES)
protocol does the same thing in a more complicated way, but this is not the
subject of this course.

If Eve knows the two ways protocol, then she can derive s from p as easily
as Bob does and the message will not stay secret anymore. The solution is
to use a protocol with a parameter, the key. Then, Alice and Bob can make
their protocol public as long as they keep secret their key k. For example, the
protocol could be “replacing each letter in the message with the letter that is k

places further down the alphabet”. Again, AES does the same thing in a more
complicated way.

Still, Alice and Bob should agree on their common key k. If Alice chooses
the key, it can be intercepted by Eve when Alice sends it to Bob. This problem
can be fixed as was shown by Diffie, Hellman and Merkle: Alice and Bob can
make public the choice of a finite order element g in a group G. Alice chooses
a private key a ∈ N from which she derives her public key A := ga . Bob does
the same thing and obtains also a public key B := gb. Then Alice chooses as
common key k := Ba . She does not have to send it to Bob because he can
derive the same key in the same way. More precisely, Bob knows his private
key b, he knows the public key A of Alice and we have k = Ab.
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2 Introduction

At this point, I should mention that if Eve chooses a private key a′ and
publishes a fake public key A′ := ga′

for Alice, then Bob might use it to code
his message. If Eve intercepts the message, she can then use her private key a′

to read it. Thus, there is still a weakness in this system but we do not want to
discuss this here. So we will assume that Alice and Bob can trust each other’s
public key.

Thus, Eve knows the group G and the generator g and she also knows the
public keys A and B. But, in order to discover k, she needs to solve the Diffie–
Hellman problem: recovering gab from ga and gb. Of course, it is sufficient
to be able to derive x from X := gx . This last question is called the discrete
logarithm problem. Even if they cannot prove it, specialists think that, in fact,
the Diffie–Hellman problem is as hard as the discrete logarithm problem. And,
in practice, it takes way more time, given g, to recover x from X than to derive
X from x. We will try to explain this below.

1.2 Complexity

How long does it take to make a computation and how much room do we need
to store the data? This is called a complexity question. For example, what is the
complexity of (discrete) exponentiation? If |G| = n, it takes at most 2 log2 n

elementary operations to get X = gx from x: this is derived from the 2-adic
expansion of x. One says that the complexity of exponentiation is linear (in
log2 n). On the other hand, since exhaustive search of x from X might need n

elementary operations, and there is no clear alternative, it seems that the com-
plexity of the discrete logarithm is exponential (in log2 n). Actually, there are
many other methods that compute discrete logarithms which are more efficient
than exhaustive search but their complexity is still exponential in general.

However, note that in the case G := (Z/nZ)∗, there exists a sub-exponential
algorithm, the so called Index-Calculus method. Roughly speaking, one first
solves the discrete logarithm problem simultaneously for the small primes. In
order to do that, one looks at primary decompositions of random powers gr until
we get enough linear relations. Then, it is sufficient to consider the primary
decomposition of gsX for random s until only small prime factors appear.
Although not polynomial, this is better than exponential. If G is no longer
equal to (Z/nZ)∗ but is the set of rational points of a more general algebraic
group, there is no real equivalent to the Index-Calculus method, and there is no
known sub-exponential method to compute discrete logarithms in G.

Actually, the best-known technique is the Pohlig–Hellman algorithm which
is exponential but still quite fast when the order of the group has only small
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1.3 Weil conjectures 3

prime factors. In order to discard such a group, it is necessary to compute
its order. Thus, the crucial point becomes the determination of the number of
rational points of an algebraic variety over a finite field (see [22] for a recent
survey of the problem). As far as we stick to elliptic curves, the l-adic methods
work perfectly. But already in the hyperelliptic case, the p-adic methods are
way more effective for small primes p.

1.3 Weil conjectures

Concerning Weil conjectures, the case of diagonal hypersurfaces is completely
worked out in André Weil’s original article [85]. Also, if you want to go a
little further into the p-adic point of view, you are encouraged to look at
Paul Monsky’s course [70]. For the l-adic approach, Milne’s book [68] is the
reference.

We want to compute the number of points of an algebraic variety X over a
finite field Fq with q := pf elements, p a prime. For example, we are given

F1, . . . , Fd ∈ Z[T1, . . . , Tn]

and we want to compute the number of solutions of⎧⎪⎨
⎪⎩

F1(a1, . . . , an) = 0 mod p
...

Fd (a1, . . . , an) = 0 mod p

More generally, given an algebraic variety X over Fq , we want to compute

Nr (X) := |X(Fqr )|
for all r . The main result is the conjecture made by André Weil in 1949 ([85])
and proved in several steps, starting with rationality by Bernard Dwork in 1960
([39]), using p-adic methods:

If X is an algebraic variety of dimension d over Fq there exists finitely many
algebraic integers αi and βi such that for all r , we have

Nr (X) =
∑

βr
i − αr

i ,

and ending with purity (also called Riemann hypothesis) by Pierre Deligne in
1974 ([36]), using l-adic methods (recall that a Weil number of weight m is an
algebraic integer whose archimedean absolute values are of the form q

m
2 ):

The algebraic integers αi and βi are Weil numbers with weight in [0, 2d],
with many other results in between and, in particular, the functional equation
by Grothendieck in 1965 ([49]):
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4 Introduction

If X is proper and smooth, the application γ �→ qd/γ induces a permutation
of the αi’s and a permutation of the βi’s.

As an example, we can consider for p �= 2, an affine hyperelliptic curve of
equation y2 = F (x) with F separable of degree 2g + 1. Then,

Nr (X) = qr −
2g∑
i=1

αr
i

where each αi is a Weil number of weight 1 and αiαi+g = q.

1.4 Zeta functions

Weil conjectures are easier to deal with if we form the generating function

ζ (X, t) := exp(
∞∑

r=1

Nr (X)
t r

r
) =

∏
x∈|X|

1

1 − tdeg x
,

which is called the zeta function of X. The above results are then better refor-
mulated in the following way:

Rationality: the function ζ (X, t) is rational with coefficients in Q.
Purity: its zeros and poles are Weil numbers with weights ∈ [−2d, 0].
Functional equation: if X is proper and smooth, then

ζ (X,
1

qdt
) = –qdE/2tEζ (X, t)

with E ∈ Z (Euler characteristic).
Actually, this can be rewritten in the more precise form (recall that a Weil

Polynomial is a monic polynomial with integer coefficients whose roots are all
Weil numbers):

We have

ζ (X, t) =
2d∏
i=0

Pi(t)
(−1)i+1

where Pi is a Weil Polynomial with non-negative weights between 2(i − d) and
i. Moreover, if X is proper and smooth, Pi is pure of weight i and

P2d−i(t) = Cit
Bi Pi(

1

qdt
)

with Ci ∈ Z and Bi ∈ N (Betti numbers).
As an example, one can show that if X is an abelian variety, then |X(Fq)| =

P1(1). Actually, if X is a projective non singular curve and J is the jacobian of
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1.5 Arithmetic cohomology 5

X, we also have |J (Fq)| = P1(1). In other words, if we can compute P1 for a
curve, then we can tell the number of rational points of its jacobian which is an
algebraic group.

1.5 Arithmetic cohomology

If an algebraic variety X over Fq lifts to a compact manifold V over C, then the
numbers Bi that appear in the functional equation are the Betti number of V

(and E is its Euler characteristic). In other words, Bi is the rank of Hi(V, Z).
Actually, as André Weil already knew, the whole story can be told using a
suitable cohomology theory with a Fixed Point Lefschetz trace formula for
Frobenius.

Actually, if l is any prime (even l = p), there exists a finite extension K of
Ql such that the following holds (an operator φ on a finite-dimensional vector
space will be called a Weil operator if its characteristic polynomial is a Weil
polynomial):

We have (rationality)

ζ (X, t) =
2d∏
i=0

det(1 − tϕi)
(−1)i+1

where ϕi is a Weil operator (purity) with non-negative weights inside [2(i −
d), i] on a finite-dimensional K-vector space Hi

c (X). Moreover, If X is proper
and smooth (in which case we write Hi := Hi

c ), then ϕi is pure of weight i and
there is a perfect pairing (functional equation or Poincaré duality)

Hi(X) × H 2d−i(X) → K(−d)

compatible with the operators (with multiplication by qd on the right).
In the case l �= p, l-adic cohomology with compact support has all these

properties. As already mentioned, a good introduction to l-adic cohomology is
Milne’s book [68].

We will now stick to the case l = p. There is a good theory for proper
and smooth algebraic varieties that was developed by Pierre Berthelot in the
late 1960s. It is called crystalline cohomology (see for example [20]). For
smooth affine varieties, Monsky–Washnitzer cohomology was also available at
that time (see for example [83], but also [72], [69] and [71]) although finite
dimensionality was not known. Rigid cohomology is a theory that generalizes
both crystalline and Monsky–Washnitzer theories and was developed by Pierre
Berthelot in the 1980s (see [11]).
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6 Introduction

1.6 Bloch–Ogus cohomology

Rigid cohomology is a Bloch–Ogus cohomology ([74]). We explain below
what it means. We fix a complete ultrametric field K of characteristic zero
with valuation ring V and residue field k. Although it does not seem necessary,
according to a yet unpublished result of Vladimir Berkovich based on an idea
of Offer Gabber, we prefer assuming that the valuation is discrete.

There exists a contravariant functor

(Y ↪→ X) �→ Hi
Y,rig(X)

from the category of closed embeddings of algebraic varieties over k (with
cartesian diagrams as morphisms) to the category of finite dimensional vector
spaces over K . This cohomology only depends on a neighborhood of Y in X.
If we are given a sequence of closed immersions

Z ↪→ Y ↪→ X,

there is a functorial long exact sequence

· · · → Hi
Z,rig(X) → Hi

Y,rig(X) → Hi
Y\Z,rig(X \ Z) → · · ·

There is another “functor”

X �→ Hi
rig,c(X)

from the category of algebraic varieties over k to the category of finite-
dimensional vector spaces over K . Actually, this is only covariant with respect
to open immersions and contravariant with respect to proper maps (and these
two functorialities are compatible). If we are given a closed immersion Y ↪→ X,
there is a functorial long exact sequence

· · · → Hi
rig,c(X \ Y ) → Hi

rig,c(X) → Hi
rig,c(Y ) → · · ·

For Y ↪→ X a closed immersion, there is a cup-product

Hi
rig,c(Y ) × H

j

Y,rig(X) → Hi+j
rig,c(X)

which is functorial with respect to proper morphisms. For X irreducible of
dimension d, there exists a trace map

tr : H 2d
rig,c(X) → K

which is functorial with respect to open immersions. In the case X is smooth,
the Poincaré pairing

Hi
rig,c(Y ) × H 2d−i

Y,rig (X) → H 2d
rig,c(X) → K

is perfect and compatible with the long exact sequences (Poincaré duality).
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1.7 Frobenius on rigid cohomology 7

We can say a little more about rigid cohomology. First of all, by definition,
we have

Hi
rig(X) := Hi

X,rig(X)

and there is a canonical morphism

Hi
rig,c(X) → Hi

rig(X)

which is an isomorphism for X proper. Note that Hi
rig,c(X) and Hi

rig(X) are both
0 unless 0 ≤ i ≤ 2d. Also, there are Künneth formulas

Hi
rig,c(X) ⊗ Hi

rig,c(X′) � Hi
rig,c(X × X′)

in general and

Hi
rig(X) ⊗ Hi

rig(X′) � Hi
rig(X × X′)

when X and X′ are both smooth. And finally, rigid cohomology and rigid
cohomology with compact support both commute to isometric extensions of K .

1.7 Frobenius on rigid cohomology

Before introducing the Frobenius map, I want to recall that the Chow group
of an algebraic variety X is defined as the quotient A(X) of the cycle group
Z(X) modulo rational equivalence. More precisely, a cycle T on X is a closed
integral subvariety and the cycle group is the free abelian group on cycles.
A cycle is rationally equivalent to 0 if it is of the form f∗(D) where D is a
principal Cartier divisor and

f : X′ → X

a proper map. In [74], Denis Pétrequin shows that in the situation of the previous
paragraph, there is a canonical pairing

Ai(X) × H 2i
rig,c(X) �� K

(T , ω) � ��
∫
T

ω := tr(ω|T ).

From this, one can derive a Lefschetz trace formula. More precisely, if ϕ :
X → X is an endomorphism with a finite number of fixed points N (counting
multiplicities), then

N =
2d∑
i=0

(−1)i+1trϕ∗
|Hi

rig,c(X).
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8 Introduction

When k is a field of characteristic p, then the Frobenius map x �→ xq with
q = pf acts by functoriality on Hi

Y,rig(X) and Hi
rig,c(X). Actually, we need to

choose a continuous lifting σ of Frobenius to K and we get semi-linear maps.
Anyway, it can be shown that the above Bloch–Ogus formalism is compatible
with the Frobenius actions up to a twist by qd in the trace map.

When k = Fq , we can derive from the Lefschetz trace formula the following
equalities:

ζ (X, t) =
2d∏
i=0

det(1 − tF ∗
|Hi

rig,c(X))
(−1)i+1

and, for Y ⊂ X smooth,

ζ (Y, t) =
2d∏
i=0

det(1 − tqd (F ∗)−1
|Hi

Y,rig(X)
)(−1)i+1

One can show (see for example [23]) that the Frobenius is a Weil operator
on Hi

rig,c(X) with positive weights between 2(i − d) and i. By duality again,
we see that when X is smooth, Frobenius is also a Weil operator on Hi

Y,rig(X)
with weights between i and 2i but less than 2d.

1.8 Slopes of Frobenius

Up to this point, l-adic cohomology does as well as, and in general better than,
rigid cohomology. However, the latter becomes essential when it comes to the
computation of slopes. So, let us assume that the valuation is discrete and that
σ fixes a uniformizer π . Then, Dieudonné–Manin theorem tells us that, up to
a finite extension of k, any σ -linear operator has a basis {eij } with

ei1 �→ ei2 �→ · · · �→ eis �→ πrei1

in which case

λ := 1

[K : Qp]

r

s

is called a slope. It is shown in [23] that any slope λ of Hi
rig,c(X) satisfies

0 ≤ λ ≤ d and 0 ≤ i − λ ≤ d. By duality again, the same is true for Hi
Y,rig(X)

when X is smooth.
The above p-adic cohomological formula for the Zeta function shows that

the slopes of rigid cohomology of X determine the p-adic absolute values of
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1.10 F -isocrystals 9

the algebraic integers αi and βi such that

|X(Fr
q)| =

∑
i

αr
i − βr

i .

1.9 The coefficients question

In his marvellous article [85], Weil proves his conjecture for diagonal hy-
persurfaces

∑
xr

i = 0. The method consists in projecting to the diagonal hy-
perplane

∑
xi = 0. In other words, if f : Y → X is the projection x �→ xr ,

we have

Nr (Y ) =
∑

x∈X(Fqr )

Nr (Yx)

with Yx := f −1(x) and therefore, we are led to compute more complicated
sums (than just counting points) on simpler algebraic varieties.

In order to generalize this, we must define in a functorial way, for each
algebraic variety X, a category of coefficients E on X. Moreover, we need to
associate to E, at each closed point x ∈ X, some S(X,E, x). Then, we will
define

Sr (X,E) =
∑

x∈X(Fqr )

S(X,E, x)

and

L(X,E, t) := exp(
∞∑

r=1

Sr (X,E)
t r

r
).

Of course, the cohomology theory should take into account these coefficients
and provide a cohomological formula for computing L-functions.

Ideally, one looks for a “constructible” theory of coefficients satisfying
Grothendieck six operations formalism. The p-adic candidate is the theory of
arithmetic D-modules of Berthelot ([14], [18] and [19]) and its study is beyond
the scope of this course. We will consider here the “lisse” p-adic theory and
introduce the category or overconvergent F -isocrystals.

1.10 F -isocrystals

For an algebraic variety X over k, we will define the category

F−isoc†(X/K)
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10 Introduction

of overconvergent F -isocrystals over X/K . This is an abelian category with
⊗, internal Hom and rank. If f : Y → X is any morphism, there is an inverse
image functor

f ∗ : F−isoc†(X/K) → F−isoc†(Y/K).

If f is proper and smooth, there should be a direct image functor

f∗ : F−isoc†(Y/K) → F−isoc†(X/K).

This is the case when f is finite or if it has a “nice” lifting.
Let us concentrate for a while on the case of a closed point. First of all,

F−isoc†(Speck/K) is identical to the category F−isoc(K) of strong finite
dimensional F -isocrystals over K: an F -isocrystal over K is a vector space E

with a σ -linear endomorphism ϕ. It is said to be strong when the Frobenius
endomorphism is actually bijective. More generally, let k′ be a finite extension
of k. If K ′ is an unramified extension of K with residue field k′ and σ ′ a
frobenius on K ′ compatible with σ , then F−isoc†(Speck′/K) is equivalent to
F−isoc(K ′).

Assume that k = Fq and let d := [k′ : k]. If (E, φ) is an F -isocrystal on K ′,
then φd is linear and one sets

S(k′, E) := T rφd.

Now, if X is any algebraic variety over Fq and E is an overconvergent F -
isocrystal over X/K , then for each closed point x ∈ X, the inverse image Ex

of E on x is an overconvergent F -isocrystal on k(x) and one sets

S(X,E, x) = S(k(x), Ex).

Using the formulas of Section 1.9, we can define Sr (X,E) and L(X,E, t).
Note that, as before, if K(x) denotes an unramified extension of K having k(x)
as residue field, we have

L(X,E, t) =
∏

x∈|X|

1

detK(x)(1 − tdeg xφ
deg x
x )

.

One can define the rigid cohomology of overconvergent F -isocrystals. These
vector spaces come with a Frobenius automorphism and one can prove coho-
mological formulas

L(X,E, t) =
2d∏
i=0

det(1 − tF ∗
|Hi

rig,c(X,E))
(−1)i+1
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