Cambridge University Press 978-0-521-87509-7 — Semiconductor Quantum Optics Mackillo Kira , Stephan W. Koch Frontmatter <u>More Information</u>

SEMICONDUCTOR QUANTUM OPTICS

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations.

The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered.

The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends, and publications on the field. The link can be found at www.cambridge.org/9780521875097.

MACKILLO KIRA and STEPHAN W. KOCH are Professors of Theoretical Physics in the Department of Physics, Philipps-Universität Marburg.

Cambridge University Press 978-0-521-87509-7 — Semiconductor Quantum Optics Mackillo Kira , Stephan W. Koch Frontmatter <u>More Information</u>

SEMICONDUCTOR QUANTUM OPTICS

MACKILLO KIRA Philipps-Universität Marburg

STEPHAN W. KOCH Philipps-Universität Marburg

Cambridge University Press 978-0-521-87509-7 — Semiconductor Quantum Optics Mackillo Kira , Stephan W. Koch Frontmatter <u>More Information</u>

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521875097

© M. Kira and S. W. Koch 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Kira, Mackillo, 1969– Semiconductor quantum optics / Mackillo Kira and Stephan W. Koch. p. cm. ISBN 978-0-521-87509-7 (hardback) 1. Semiconductors. 2. Quantum optix. 3. Quantum electrodynamics. I. Koch, S. W. (Stephan W.) II. Title. QC611.6.Q36K57 2011 621.3815'2–dc23 2011025901

ISBN 978-0-521-87509-7 Hardback

Additional resources for this publication at www.cambridge.org/9780521875097

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-87509-7 — Semiconductor Quantum Optics Mackillo Kira , Stephan W. Koch Frontmatter <u>More Information</u>

Contents

Preface		<i>page</i> xi
1 Central	concepts in classical mechanics	1
1.1 C	Classical description	1
1.2 S	Statistical description of particles	13
Exercis	es	23
Further	reading	25
2 Central	concepts in classical electromagnetism	26
2.1 C	Classical description of electromagnetic fields	26
2.2 H	Particle aspects of electromagnetic waves	32
2.3 C	Generalized wave and Helmholtz equations	38
Exercis	es	45
Further	reading	46
3 Central	concepts in quantum mechanics	48
3.1 S	Schrödinger equation	49
3.2 H	Expectation values in quantum mechanics	54
Exercis	es	63
Further	reading	64
4 Central	concepts in stationary quantum theory	65
4.1 S	Stationary Schrödinger equation	65
4.2 C	Dne-dimensional Schrödinger equation	67
4.3 C	Classification of stationary eigenstates	71
4.4 C	Generic classification of energy eigenstates	82
Exercis	es	84
Further	reading	85
5 Central	concepts in measurement theory	86
5.1 H	Hermitian operators	86
5.2 H	Eigenvalue problems	87
5.3 H	Born's theorem	93

v

vi	Contents	
	Exercises Further reading	98 99
6	 Wigner's phase-space representation 6.1 Wigner function 6.2 Wigner-function dynamics 6.3 Density matrix 6.4 Feasibility of quantum-dynamical computations Exercises Further reading 	101 101 111 115 116 118 119
7	 Hamiltonian formulation of classical electrodynamics 7.1 Basic concepts 7.2 Hamiltonian for classical electrodynamics 7.3 Hamilton equations for light-matter system 7.4 Generalized system Hamiltonian Exercises Further reading 	121 122 124 129 136 139 140
8	 System Hamiltonian of classical electrodynamics 8.1 Elimination of the scalar potential 8.2 Coulomb and Lorentz gauge 8.3 Transversal and longitudinal fields 8.4 Mode expansion of the electromagnetic field Exercises Further reading 	141 141 143 148 153 159 160
9	 System Hamiltonian in the generalized Coulomb gauge 9.1 Separation of electronic and ionic motion 9.2 Inclusion of the ionic polarizability 9.3 Generalized Coulomb potential 9.4 Generalized light-mode functions Exercises Further reading 	162 162 165 170 177 190 191
10	 Quantization of light and matter 10.1 Canonical quantization 10.2 Second quantization of light 10.3 Eigenstates of quantized modes 10.4 Elementary properties of Fock states Exercises Further reading 	193 193 198 203 211 216 217
11	Quasiparticles in semiconductors 11.1 Second-quantization formalism	218 218

Contents		vii
	11.2 System Hamiltonian of solidsExercisesFurther reading	229 236 238
12	 Band structure of solids 12.1 Electrons in the periodic lattice potential 12.2 Systems with reduced effective dimensionality Exercises Further reading 	240 240 246 251 252
13	Interactions in semiconductors13.1Many-body Hamiltonian13.2Light-matter interaction13.3Phonon-carrier interaction13.4Coulomb interaction13.5Complete system Hamiltonian in different dimensionsExercisesFurther reading	253 253 254 264 267 269 276 277
14	 Generic quantum dynamics 14.1 Dynamics of elementary operators 14.2 Formal properties of light 14.3 Formal properties of general operators Exercises Further reading 	279 279 288 295 300 302
15	 Cluster-expansion representation of the quantum dynamics 15.1 Singlet factorization 15.2 Cluster expansion 15.3 Quantum dynamics of expectation values 15.4 Quantum dynamics of correlations 15.5 Scattering in terms of correlations Exercises Further reading 	304 305 310 315 316 318 321 322
16	 Simple many-body systems 16.1 Single pair state 16.2 Hydrogen-like eigenstates 16.3 Optical dipole Exercises Further reading 	324 324 328 335 342 343
17	Hierarchy problem for dipole systems 17.1 Quantum dynamics in the $\hat{\mathbf{A}} \cdot \hat{\mathbf{p}}$ picture 17.2 Light–matter coupling	345 345 351

viii	Contents	
	17.3 Dipole emission 17.4 Quantum dynamics in the $\hat{\mathbf{E}} \cdot \hat{\mathbf{x}}$ picture Exercises Further reading	351 356 361 363
18	Two-level approximation for optical transitions 18.1 Classical optics in atomic systems 18.2 Two-level system solutions Exercises Further reading	365 365 377 386 387
19	 Self-consistent extension of the two-level approach 19.1 Spatial coupling between light and two-level system 19.2 Maxwell-optical Bloch equations 19.3 Optical Bloch equations with radiative coupling Exercises Further reading 	388 388 394 399 403 403
20	 Dissipative extension of the two-level approach 20.1 Spin representation of optical excitations 20.2 Dynamics of Pauli spin matrices 20.3 Phenomenological dephasing 20.4 Coupling between reservoir and two-level system Exercises Further reading 	405 405 406 408 412 418 418
21	Quantum-optical extension of the two-level approach 21.1 Quantum-optical system Hamiltonian 21.2 Jaynes–Cummings model Exercises Further reading	420 420 427 436 437
22	Quantum dynamics of two-level system22.1Formal quantum dynamics22.2Quantum Rabi flopping22.3Coherent states22.4Quantum-optical response to superposition statesExercisesFurther reading	438 438 441 445 449 454 454
23	Spectroscopy and quantum-optical correlations23.1Quantum-optical spectroscopy23.2Quantum-statistical representations23.3Thermal state23.4Cluster-expansion dynamics	457 457 459 464 467

	Contents	ix
	23.5 Quantum optics at the singlet–doublet level	473
	Exercises	476
	Further reading	478
24	General aspects of semiconductor optics	480
	24.1 Semiconductor nanostructures	480
	24.2 Operator dynamics of solids in optical regime	486
	24.3 Cluster-expansion dynamics	490
	24.4 Relevant singlets and doublets	491
	24.5 Dynamics of singlets	492
	Exercises	496
	Further reading	497
25	Introductory semiconductor optics	499
	25.1 Optical Bloch equations	499
	25.2 Linear response	502
	25.3 Coherent vs. incoherent quantities	507
	25.4 Temporal aspects in semiconductor excitations	512
	Exercises	518
	Further reading	519
26	Maxwell-semiconductor Bloch equations	521
	26.1 Semiconductor Bloch equations	521
	26.2 Excitonic states	526
	26.3 Semiconductor Bloch equations in the exciton basis	529
	26.4 Linear optical response	532
	26.5 Excitation-induced dephasing	541
	Exercises	547
	Further reading	548
27	Coherent vs. incoherent excitons	550
	27.1 General singlet excitations	550
	27.2 Incoherent excitons	556
	27.3 Electron–hole correlations in the exciton basis	563
	Exercises	568
	Further reading	570
28	Semiconductor luminescence equations	572
	28.1 Incoherent photon emission	572
	28.2 Dynamics of photon-assisted correlations	577
	28.3 Analytic investigation of the semiconductor luminescence	582
	28.4 Excitonic signatures in the semiconductor luminescence	588
	Exercises	590
	Further reading	591

x		Contents	
29	Many	v-body aspects of excitonic luminescence	593
	29.1	Origin of excitonic plasma luminescence	593
	29.2	Excitonic plasma luminescence	597
	29.3	Direct detection of excitons	602
	Exerc	vises	604
	Furth	er reading	606
30	Adva	nced semiconductor quantum optics	608
	30.1	General singlet-doublet dynamics	609
	30.2	Advanced quantum optics in the incoherent regime	614
	30.3	Advanced quantum optics in the coherent regime	616
	Exerc	vises	622
	Furth	er reading	622
App	endix	Conservation laws for the transfer matrix	627
	A.1	Wronskian-induced constraints	627
	A.2	Current-induced constraints	628
	A.3	Explicit conservation laws	630
	Furth	er reading	632
	Index		633

Cambridge University Press 978-0-521-87509-7 — Semiconductor Quantum Optics Mackillo Kira , Stephan W. Koch Frontmatter <u>More Information</u>

Preface

A wide variety of quantum-optical effects can be understood by analyzing atomic model systems interacting with the quantized light field. Often, one can fully calculate and even measure the quantum-mechanical wave function and its dependence on both the atomic and the light degrees of freedom. By elaborating on and extending this approach, researchers perpetually generate intriguing results and new insights allowing for the exploration and utilization of effects encountered only in the realm of quantum phenomena.

By now, quantum-optical investigations have evolved from atoms all the way to complex systems, such as solids, in particular semiconductors. As a profound conceptual challenge, the optical transitions in semiconductors typically involve an extremely large number of electronic states. Due to their electric charge, the optically active electrons experience strong Coulomb interaction effects. Furthermore, they are coupled to the lattice vibrations of the solid crystal. For such an interacting many-body system, the overwhelmingly large number of degrees of freedom makes it inconceivable to measure the full wave function; we obviously need new strategies to approach semiconductor quantum optics. The combination of quantum-optical and many-body interactions not only leads to prominent modifications of the effects known from atomic systems but also causes new phenomena without atomic counterparts.

In this book, we develop a detailed microscopic theory for the analysis of semiconductor quantum optics. As central themes, we discuss how the quantum-optical approach can be systematically formulated for solids, which new aspects and prospects arise, and which conceptual modifications have to be implemented. The presented material is largely based on our own research and teaching endeavors on various topics in quantum mechanics, many-body theory, solid-state physics, optics, laser theory, quantum-optics, and semiconductor quantum optics. Our experience shows that one needs a systematic combination of optical and many-body theory to truly understand and predict quantum-optical effects in semiconductors. Therefore, we have implemented a multifaceted approach where we first discuss the basic quantum-theoretical techniques and concepts. We then present the central steps to quantize the light field and the many-body system. Altogether, we develop a systematic theory for semiconductor quantum optics and present its main consequences.

One of our major goals is to provide a bridge between "traditional" quantum optics and many-body theory. We naturally cannot present the final conclusion on this topic because

Cambridge University Press 978-0-521-87509-7 — Semiconductor Quantum Optics Mackillo Kira , Stephan W. Koch Frontmatter <u>More Information</u>

xii

Preface

the combination of quantum optics and many-body quantum dynamics actually poses one of the most difficult problems in contemporary physics, which does not allow for general exact results. Therefore, the material in this book is designed such that it can be applied to generate new systematic approximations to the full many-body/quantum optics. We believe that this work will contribute to an expansion of the general knowledge base needed to diversify our understanding of quantum mechanics in complex many-body systems.

This book introduces all the central concepts and develops the main steps of the theory needed for a precise formulation and analysis of many relevant phenomena. We thoroughly discuss the emerging effects as we cross the boundary from the classical to the quantum-optical features of semiconductor systems. Even though we present a research outlook beyond the basic investigations in the last chapter of this book, the more detailed applications and many-body extensions of the presented theory are covered in our second book, *Semiconductor Quantum Optics: Advanced Many-Body Aspects* (Cambridge University Press, to be published). Whereas this first book develops a working knowledge up to a level where one can start doing research on semiconductor quantum optics, our second book deepens the analysis to an advanced level and examines intriguing new phenomena and details.

This first book has been designed in such a way that it can be used for self-study as well as classroom teaching for advanced undergraduate or regular postgraduate courses with a different emphasis on the topics. To follow many details of the theory development and to deepen the basic understanding, we recommend reflecting upon the presented material through the exercises given at the end of each chapter. Chapters 1–6 can serve as supplementary material in teaching quantum mechanics, especially, for keen beginners or to provide a complementary view besides the standard books. Chapters 7–10 are well suited for introducing light quantization and quantum field theory while chapters 11–15 present the elements of solid-state and many-body theory. Especially, the cluster-expansion method (Chapter 15) provides a common starting point to bridge the "traditional" and the semiconductor quantum optics.

After these foundations are carefully laid, one can design a pure quantum-optics course based on Chapters 16–24. Here, we have paid special attention to study atomic phenomena with the goal to provide a connection to semiconductor quantum optics. The remaining chapters, 25–30, present the material for lectures discussing the essence of semiconductor quantum optics. Naturally, we recommend combining the material from all the chapters for the full learning experience. Further information, figure downloads, and comments on the book can be found at http://sqo.physik.uni-marburg.de.

This series of two books has been written during an extended period from 2006–2011. Most of this work has been done at the Philipps-Universität Marburg – we truly appreciate the research-oriented infrastructure provided here. We also thank the members of our department, our collaborators, and students for the inspirational research and teaching interactions we have had during our efforts to reveal and explain new semiconductor quantum phenomena. We also have enjoyed the hospitality of several collaborating institutes. In particular, we want to thank Professor Steven Cundiff (M.K., JILA visiting fellow program,

Cambridge University Press 978-0-521-87509-7 — Semiconductor Quantum Optics Mackillo Kira , Stephan W. Koch Frontmatter <u>More Information</u>

Preface

xiii

University of Colorado), Professor Ilkka Tittonen (M.K., Aalto University (Finland) visitor program), and Professor Jerome V. Moloney (S.W.K, University of Arizona) for allowing us to expand our book as well as our collaborations during the extended visits there. We are also very grateful to Renate Schmid who has helped us tremendously in coordinating the LaTeX manuscript and who provided us with prolific language and consistency checks. Many of our students have been instrumental in creating this book. Especially, the members of the cluster-crunching-club (CCC) are thanked dearly for their careful reading of the first draft. Our main collaborators as well as the current CCC member list can be found under the web link mentioned above.